-
Notifications
You must be signed in to change notification settings - Fork 699
/
Copy patharange_test.py
75 lines (65 loc) · 2.62 KB
/
arange_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (c) Glow Contributors. See CONTRIBUTORS file.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pyre-ignore-all-errors
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from glow.glow.torch_glow.tests.tests import utils
class SimpleArangeModule(torch.nn.Module):
def __init__(self, end, start=0, step=1):
super(SimpleArangeModule, self).__init__()
self.start = start
self.end = end
self.step = step
def forward(self, dummy):
start = self.start(dummy) if callable(self.start) else self.start
end = self.end(dummy) if callable(self.end) else self.end
step = self.step(dummy) if callable(self.step) else self.step
return torch.arange(start=start, end=end, step=step)
class TestArange(utils.TorchGlowTestCase):
"""
Tests for torch.arange glow fusion.
Note that torch.arange is effectively a constant, so torch jit will try to
compile it down to said constant. The tests in this class utilize a test
function which takes a tensor as input, so that we can prevent that from
happening. Otherwise, there would be nothing to fuse.
"""
@utils.deterministic_expand(
[
lambda: (
"simple",
SimpleArangeModule(end=lambda x: x.size(0)),
torch.randn(10),
),
lambda: (
"all_args",
SimpleArangeModule(start=lambda x: x.size(0), end=30, step=1),
torch.randn(10),
),
lambda: (
"floats",
SimpleArangeModule(start=lambda x: x.size(0), end=30.5, step=0.8),
torch.randn(10),
),
lambda: (
"negative_step",
SimpleArangeModule(
start=lambda x: x.size(0), end=lambda x: x.size(1), step=-1.2
),
torch.randn(10, 2),
),
]
)
def test_arange(self, _, module, dummy):
"""Testing arange with minimum parameters"""
utils.run_comparison_tests(module, dummy, fusible_ops={"aten::arange"})