-
Notifications
You must be signed in to change notification settings - Fork 699
/
Copy patharg_min_max_test.py
70 lines (58 loc) · 2.37 KB
/
arg_min_max_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) Glow Contributors. See CONTRIBUTORS file.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pyre-ignore-all-errors
import torch
from glow.glow.torch_glow.tests.tests import utils
class ArgMinModule(torch.nn.Module):
def __init__(self, dim=None, keepDims=True):
super(ArgMinModule, self).__init__()
self.dim = dim
self.keepDims = keepDims
def forward(self, tensor):
if self.dim:
return torch.argmin(tensor, self.dim, self.keepDims)
else:
return torch.argmin(tensor)
class ArgMaxModule(torch.nn.Module):
def __init__(self, dim=None, keepDims=True):
super(ArgMaxModule, self).__init__()
self.dim = dim
self.keepDims = keepDims
def forward(self, tensor):
if self.dim:
return torch.argmax(tensor, self.dim, self.keepDims)
else:
return torch.argmax(tensor)
class TestArgMin(utils.TorchGlowTestCase):
@utils.deterministic_expand(
[
lambda: ("basic", ArgMinModule(), torch.randn(4)),
lambda: ("dimensions1", ArgMinModule(1, False), torch.randn(4, 4)),
lambda: ("dimensions2", ArgMinModule(1), torch.randn(5, 5)),
]
)
def test_argmin_node(self, _, module, tensor):
"""Test of the PyTorch ArgMin node on Glow."""
utils.run_comparison_tests(module, tensor, fusible_ops={"aten::argmin"})
class TestArgMax(utils.TorchGlowTestCase):
@utils.deterministic_expand(
[
lambda: ("basic", ArgMaxModule(), torch.randn(4)),
lambda: ("dimensions1", ArgMaxModule(1, False), torch.randn(4, 4)),
lambda: ("dimensions2", ArgMaxModule(1), torch.randn(5, 5)),
]
)
def test_argmax_node(self, _, module, tensor):
"""Test of the PyTorch ArgMax node on Glow."""
utils.run_comparison_tests(module, tensor, fusible_ops={"aten::argmax"})