|
| 1 | +import sys |
| 2 | +import weakref |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | +from torch.optim import Adam |
| 7 | +from torch.utils.data import DataLoader, TensorDataset |
| 8 | + |
| 9 | +from ignite.engine import create_supervised_trainer, create_supervised_evaluator, Events |
| 10 | +from ignite.handlers import ProgressBar, TensorboardLogger |
| 11 | +from ignite.handlers.tensorboard_logger import OptimizerParamsHandler |
| 12 | +from ignite.metrics import Loss |
| 13 | + |
| 14 | + |
| 15 | +class TestEngineMemoryLeak: |
| 16 | + """See: https://github.com/pytorch/ignite/issues/3438""" |
| 17 | + |
| 18 | + ENGINE_WEAK_REFS = {} |
| 19 | + |
| 20 | + def do(self, model, dataloader, device, runs_folder): |
| 21 | + optim = Adam(model.parameters(), 1e-4) |
| 22 | + loss = nn.BCEWithLogitsLoss() |
| 23 | + trainer = create_supervised_trainer(model, optim, loss, device) |
| 24 | + metrics = {"Loss": Loss(loss)} |
| 25 | + evaluator = create_supervised_evaluator(model, metrics, device) |
| 26 | + |
| 27 | + pbar = ProgressBar() |
| 28 | + pbar.attach(trainer) |
| 29 | + |
| 30 | + tb_logger = TensorboardLogger(log_dir=runs_folder) |
| 31 | + tb_logger.attach(trainer, OptimizerParamsHandler(optim), Events.EPOCH_STARTED) |
| 32 | + |
| 33 | + trainer.run(dataloader, 1) |
| 34 | + |
| 35 | + @trainer.on(Events.COMPLETED) |
| 36 | + def completed(engine): |
| 37 | + evaluator.run(dataloader) |
| 38 | + |
| 39 | + tb_logger.close() |
| 40 | + pbar.close() |
| 41 | + |
| 42 | + self.ENGINE_WEAK_REFS[weakref.ref(trainer)] = sys.getrefcount(trainer) - 1 |
| 43 | + self.ENGINE_WEAK_REFS[weakref.ref(evaluator)] = sys.getrefcount(evaluator) - 1 |
| 44 | + |
| 45 | + def test_circular_references(self, tmp_path): |
| 46 | + all_mem = [] |
| 47 | + all_max_mem = [] |
| 48 | + runs_folder = tmp_path / "runs" |
| 49 | + runs_folder.mkdir() |
| 50 | + |
| 51 | + if torch.cuda.is_available(): |
| 52 | + device = torch.device("cuda") |
| 53 | + else: |
| 54 | + device = torch.device("cpu") |
| 55 | + |
| 56 | + x = torch.rand(32, 1, 64, 64, 32) |
| 57 | + y = torch.round(torch.rand(32, 1)) |
| 58 | + ds = TensorDataset(x, y) |
| 59 | + dataloader = DataLoader(ds, 6) |
| 60 | + for i in range(5): |
| 61 | + N = 3000 |
| 62 | + model = nn.Sequential(nn.Flatten(), nn.Linear(64 * 64 * 32, N), nn.ReLU(), nn.Linear(N, 1)) |
| 63 | + model = model.to(device) |
| 64 | + self.do(model, dataloader, device, runs_folder) |
| 65 | + for engine_weak_ref, val in self.ENGINE_WEAK_REFS.items(): |
| 66 | + engine = engine_weak_ref() |
| 67 | + if engine is not None: |
| 68 | + ref_count = sys.getrefcount(engine) - 1 |
| 69 | + error_message = f"Engine Memory Leak: {engine} - Ref Count: {ref_count}" |
| 70 | + print(error_message) |
| 71 | + assert ref_count == 0 |
| 72 | + |
| 73 | + mem, max_mem = torch.cuda.memory_allocated(), torch.cuda.max_memory_allocated() |
| 74 | + print("!!!", i, mem, max_mem) |
| 75 | + if all_mem and all_max_mem: |
| 76 | + assert mem <= all_mem[-1], f"Memory Leak: {mem} > {all_mem[-1]}" |
| 77 | + assert max_mem <= all_max_mem[-1], f"Max Memory Leak: {max_mem} > {all_max_mem[-1]}" |
| 78 | + |
| 79 | + all_mem.append(mem) |
| 80 | + all_max_mem.append(max_mem) |
0 commit comments