Open
Description
I am profiling a ML workload using torch profiler. The code appears as:
with profile(activities=[
ProfilerActivity.CPU,
ProfilerActivity.CUDA],
record_shapes=True
) as prof:
main_args = parse_main_args()
main(main_args, DETECTED_SYSTEM)
prof.export_chrome_trace("torch_trace.json")
# print(prof.key_averages().table(sort_by="self_cpu_time_total", row_limit=20))
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=20))
The code runs fine without the profiler. The code also runs fine to finish with the torch profiler. However when the profiler reaches the export statement, I get the following error:
[mlperf-inference-skps-x86-64-29200:6413 :0:6413] Caught signal 11 (Segmentation fault: address not mapped to object at address 0x55ea1b76a8cc)
==== backtrace (tid: 6413) ====
0 0x0000000000042520 __sigaction() ???:0
1 0x0000000006743c49 libkineto::CuptiCallbackApi::__callback_switchboard() ???:0
2 0x00000000067441ba libkineto::callback_switchboard() CuptiCallbackApi.cpp:0
3 0x0000000000117456 cuptiEnableAllDomains() ???:0
4 0x000000000010f5c4 cuptiGetRecommendedBufferSize() ???:0
5 0x000000000010d3a8 cuptiGetRecommendedBufferSize() ???:0
6 0x00000000001b295d cudbgApiInit() ???:0
7 0x00000000001b393b cudbgApiInit() ???:0
8 0x00000000001ae05c cudbgApiInit() ???:0
9 0x00000000002d2188 cuStreamWaitEvent() ???:0
10 0x0000000000027ee8 __cudaRegisterUnifiedTable() ???:0
11 0x000000000002856d __cudaRegisterUnifiedTable() ???:0
12 0x0000000000045495 secure_getenv() ???:0
13 0x0000000000045610 exit() ???:0
14 0x0000000000029d97 __libc_init_first() ???:0
15 0x0000000000029e40 __libc_start_main() ???:0
16 0x000000000024ec65 _start() ???:0
=================================
/bin/bash: line 1: 6413 Segmentation fault (core dumped) LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:/work/build/inference/loadgen/build python3.10 -m code.main --benchmarks=dlrm-v2 --scenarios=offline --action="run_harness" 2>&1
6414 Done | tee /work/build/logs/2025.01.21-19.47.54/stdout.txt
make: *** [Makefile:46: run_harness] Error 139
How to resolve this error? The machine is DGX H200x8, Ubuntu 22.04.4 LTS (Jammy Jellyfish)
Metadata
Assignees
Labels
No labels