This project is no longer actively maintained. While existing releases remain available, there are no planned updates, bug fixes, new features, or security patches. Users should be aware that vulnerabilities may not be addressed.
In this example we will show how to serve MNIST image classification model locally using kserve.
Clone pytorch/serve repository
navigate to examples/image_classifier/mnist
torch-model-archiver --model-name mnist --version 1.0 \
--model-file mnist.py \
--serialized-file mnist_cnn.pt \
--handler mnist_handler.py
The command will create mnist.mar
file in current directory
Move the mar file to model-store
sudo mv mnist.mar /mnt/models/model-store
and use the following config properties (/mnt/models/config
)
inference_address=http://127.0.0.1:8085
management_address=http://127.0.0.1:8085
metrics_address=http://127.0.0.1:8082
enable_envvars_config=true
install_py_dep_per_model=true
enable_metrics_api=true
service_envelope=kservev2
metrics_mode=prometheus
NUM_WORKERS=1
number_of_netty_threads=4
job_queue_size=10
model_store=/mnt/models/model-store
model_snapshot={"name":"startup.cfg","modelCount":1,"models":{"mnist":{"1.0":{"defaultVersion":true,"marName":"mnist.mar","minWorkers":1,"maxWorkers":5,"batchSize":1,"maxBatchDelay":5000,"responseTimeout":120}}}}
mnist_v2_bytes or mnist_v2_tensor can be used.
For generating input for a new image follow the instructions given below
Move to kubernetes/kserve/kf_request_json/v2/mnist
For bytes input, use tobytes utility.
python tobytes.py 0.png
For tensor input, use totensor utility
python totensor.py 0.png
Start TorchServe
torchserve --start --ts-config /mnt/models/config/config.properties --ncs
To test locally, clone TorchServe and move to the following folder kubernetes/kserve/kserve_wrapper
Start Kserve
python __main__.py
Navigate to kubernetes/kserve/kf_request_json/v2/mnist
Run the following command
curl -v -H "Content-Type: application/json" http://localhost:8080/v2/models/mnist/infer -d @./mnist_v2_bytes.json
Expected Output
{"id": "d3b15cad-50a2-4eaf-80ce-8b0a428bd298", "model_name": "mnist", "model_version": "1.0", "outputs": [{"name": "predict", "shape": [1], "datatype": "INT64", "data": [0]}]}
Run the following command
curl -v -H "Content-Type: application/json" http://localhost:8080/v2/models/mnist/infer -d @./mnist_v2_tensor.json
Expected output
{"id": "d3b15cad-50a2-4eaf-80ce-8b0a428bd298", "model_name": "mnist", "model_version": "1.0", "outputs": [{"name": "predict", "shape": [1], "datatype": "INT64", "data": [0]}]}
Run the following command
curl -v -H "Content-Type: application/json" http://localhost:8080/v2/models/mnist/explain -d @./mnist_v2_bytes.json
Expected output
{"id": "d3b15cad-50a2-4eaf-80ce-8b0a428bd298", "model_name": "mnist", "model_version": "1.0", "outputs": [{"name": "explain", "shape": [1, 28, 28], "datatype": "FP64", "data": [-0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, 0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, 0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0040547529196303285, -0.000226128774499257, -0.00012734138382422276, 0.005648369544853077, 0.0089047843954152, 0.002638536593970295, 0.002680245911942565, -0.0026578015819202173, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00024465771891337887, 0.0008218450954311162, 0.01528591767842519, 0.007512832335428859, 0.00709498458333515, 0.0034056686436576803, -0.002091925041823873, -0.0007800293875604465, 0.02299587827540853, 0.019004329367380418, -0.0012529559050418735, -0.0014666116646934577, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.005298396405518712, -0.0007901605729004231, 0.0039060659926479398, 0.023174082126728335, 0.01723791770922474, 0.010867034167828598, 0.003001563229273835, 0.00622421771715703, 0.006120712207087491, 0.01673632965122119, 0.005674718948781803, 0.004344134599735745, -0.0012328422311881568, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, 0.0006867353833785289, 0.009772899792600862, -0.0038754932221901437, 0.001798693579973005, 0.001307544047675232, -0.0024510981010352315, -0.0008806773488194292, -0.0, -0.0, -0.00014277890760828639, -0.009322313235257151, 0.020608317727589167, 0.004351394518148479, -0.0007875566214137449, -0.0009075897508410689, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00022247238084657642, -0.0007829029819622099, 0.0026663695200516055, 0.0009733366691924418, 0.0, -0.0, 0.0, 0.0, 0.0, 0.0, -0.0, 0.0004323207980879993, 0.023657171939959983, 0.01069484496100618, -0.0023759529165659743, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.002074797197335781, -0.002320101263777886, -0.001289920656543141, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.007629679763806616, 0.01044862710854819, 0.00025032875474040415, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0003770836745884539, -0.005156369309364184, 0.0012477582083019567, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, -4.442513564501309e-05, 0.010248046436803096, 0.0009971133914441863, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, 0.0, 0.0, -0.0, 0.0004501048922351147, -0.00196305355861066, -0.0006664792277975681, 0.0020157403871024866, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.002214456978582924, 0.008361583668963536, 0.0031401942747203444, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0028943545250037983, -0.0031301382844878753, 0.002113252994616467, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0010321050071136991, 0.008905753948020954, 0.0028464383724280478, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0053052889804602885, -0.0019271100770928186, 0.0012090042664300153, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0011945155805738324, 0.005654442809865844, 0.0020132075147173286, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0014689358119857122, 0.0010743412654248086, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0017047980433136346, 0.0029066051664685937, -0.0007805868937027288, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, 5.541726090138969e-05, 0.0014516115182299915, 0.0002827700518397855, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.001440140782635336, 0.002381249982038837, 0.002146825452068144, -0.0, -0.0, 0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.001150052970321427, 0.0002865015237050364, 0.0029798150346815985, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.001775029606380323, 0.000833985914685474, -0.003770739075457816, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0006093176893524411, -0.00046905781658387527, 0.0034053217440919658, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0007450012183962096, 0.001298767353118675, -0.008499247802184222, -6.145165255574976e-05, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, 0.0, 0.0011809726462884672, -0.0018384763902449712, 0.005411106715800028, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.0021392341817010304, 0.0003259163122540385, -0.005276118905978749, -0.0019509840184772497, -9.545685077687876e-07, 0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0007772404694664217, -0.0001517954537059768, 0.006481484678129392, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 8.098064554131295e-05, -0.0024904264199929506, -0.0020718618328775897, -5.3411287747038166e-05, -0.0004556472202791715, 0.0, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0022750984867578, 0.001716405971437602, 0.0003221344811922982, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0015560282437342534, 9.107229584202956e-05, 0.0008772841867241755, 0.0006502979194500701, -0.004128780661881036, 0.0006030386196211547, 0.0, -0.0, 0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, -0.0, 0.0, 0.0, 0.0013959959731925453, 0.0026791526421029673, 0.002399500793142178, -0.00044960969955281656, 0.003101832495190209, 0.007494535809079955, 0.002864118744003058, -0.003052590549800204, 0.003420222341277871, 0.0014924017873988514, -0.0009357389226494119, 0.0007856229438140384, -0.001843397373255761, 1.6031851430693252e-05, 0.0, 0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, -0.000699901824825285, 0.0043822508549258565, -0.003541931476855951, -0.0028896746311921715, -0.0004873454583246359, -0.006087345141728267, 0.000388224886755815, 0.002533641621974457, -0.004352836429303485, -0.0006079421449756437, -0.003810133409713042, -0.0008284413779488711, 0.0, -0.0, 0.0, 0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0010901530854686326, -0.013135007707490608, 0.0004734520308098294, 0.0020504232707536456, -0.006609452262924153, 0.0023647861306777536, 0.004678920703192049, -0.0018122526857900652, 0.0021375383049022263, 0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}]}