RetrievalRecall, RetrievalPrecision require different, 1D input than MulticlassRecall, MulticlassPrecision which accept batch input #188
Open
Description
🐛 Describe the bug
The different behavior of RetrievalRecall and RetrievalPrecision make it difficult to compute standard metrics such as Precision@k or Recall@k for multiclass classification problems.
Would it be possible to have them accept the same shape of input, e.g. inputs of shape batch_size, num_classes
and targets of shape batch_size, num_classes
?
Example code below:
To install: pip install --pre torcheval-nightly
; using '0.0.7'.
import torch
from torch.nn import functional as F
from torcheval.metrics import RetrievalRecall
batch_size = 10
num_classes = 20
# generate random predictions
preds = torch.rand(batch_size, num_classes)
# generate random targets
targets = torch.randint(0, num_classes, (batch_size,))
recall = RetrievalRecall(num_queries=batch_size, k=5)
# first make the targets one hot (RetrievalRecall does not accept num_classes arguments, requires binary targets)
targets_one_hot = F.one_hot(targets.type(torch.long), num_classes)
targets_one_hot.shape
# indexes associate each prediction with a target
indexes = torch.arange(batch_size).repeat(num_classes, 1).T
recall.update(preds.ravel(), targets_one_hot.ravel(), indexes=indexes.ravel())
recall.compute().mean() # -> 0.1
from torcheval.metrics import MulticlassRecall, MulticlassPrecision
recall = MulticlassRecall(num_classes=num_classes)
precision = MulticlassPrecision(num_classes=num_classes)
recall.update(preds, targets)
precision.update(preds, targets)
recall.compute(), precision.compute() # -> 0.1, 0.1
Current workaround:
import torch
from torch.nn import functional as F
from torcheval.metrics import RetrievalRecall
class MulticlassRetrievalRecall(RetrievalRecall):
def __init__(self, batch_size, num_classes, **kwargs):
super().__init__(num_queries=batch_size, **kwargs)
self.num_classes = num_classes
def update(self, input, target):
target_one_hot = F.one_hot(target.type(torch.long), self.num_classes)
indexes = torch.arange(len(input)).repeat(self.num_classes, 1).T
super().update(input.ravel(), target_one_hot.ravel(), indexes=indexes.ravel())
Usage:
recall_multi = MulticlassRetrievalRecall(batch_size, num_classes, k=5)
recall_multi.update(preds, targets)
recall_multi.compute().mean() # -> 0.1
Open to any tips on how best to do this! Thank for this helpful canonical library :)
Versions
python collect_env.py 9854 17:14:34
Collecting environment information...
PyTorch version: 2.1.1
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: macOS 13.6.2 (arm64)
GCC version: Could not collect
Clang version: 15.0.0 (clang-1500.0.40.1)
CMake version: version 3.22.2
Libc version: N/A
Python version: 3.11.6 (main, Nov 2 2023, 04:39:43) [Clang 14.0.3 (clang-1403.0.22.14.1)] (64-bit runtime)
Python platform: macOS-13.6.2-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Apple M1 Max
Versions of relevant libraries:
[pip3] numpy==1.26.2
[pip3] torch==2.1.1
[pip3] torchaudio==2.1.1
[pip3] torchdata==0.7.1
[pip3] torcheval==0.0.7
[pip3] torcheval-nightly==2023.12.21
[pip3] torchtext==0.16.1
[pip3] torchvision==0.16.1
[conda] numpy 1.24.3 py310hb93e574_0
[conda] numpy-base 1.24.3 py310haf87e8b_0
[conda] torch 2.0.1 pypi_0 pypi
Metadata
Assignees
Labels
No labels