-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_ddp.py
148 lines (119 loc) · 4.8 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch import nn, optim
from torch.distributed.elastic.multiprocessing.errors import record
from torchdata.stateful_dataloader import StatefulDataLoader
from torchft import (
DistributedDataParallel,
DistributedSampler,
Manager,
Optimizer,
ProcessGroupBabyNCCL,
ProcessGroupGloo,
)
logging.basicConfig(level=logging.INFO)
@record
def main() -> None:
REPLICA_GROUP_ID = int(os.environ.get("REPLICA_GROUP_ID", 0))
NUM_REPLICA_GROUPS = int(os.environ.get("NUM_REPLICA_GROUPS", 2))
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
trainset = torchvision.datasets.CIFAR10(
root="./cifar", train=True, download=True, transform=transform
)
# This shards the training set across all ranks and replica groups. We manage
# the dataloaders on a per replica group basis with the assumption that the
# majority of groups will be available so few batches will be dropped.
sampler = DistributedSampler(
trainset,
replica_group=REPLICA_GROUP_ID,
num_replica_groups=NUM_REPLICA_GROUPS,
rank=0,
# for DDP we can use replica groups of size 1, FSDP/PP/CP would need more.
num_replicas=1,
shuffle=True,
)
# This uses the torchdata StatefulDataLoader to be able to checkpoint and
# restore the per worker dataloader position.
trainloader = StatefulDataLoader(
trainset, batch_size=64, num_workers=2, sampler=sampler
)
def load_state_dict(state_dict):
m.load_state_dict(state_dict["model"])
optimizer.load_state_dict(state_dict["optim"])
def state_dict():
return {
"model": m.state_dict(),
"optim": optimizer.state_dict(),
}
device = "cuda" if torch.cuda.is_available() else "cpu"
pg = ProcessGroupBabyNCCL() if torch.cuda.is_available() else ProcessGroupGloo()
manager = Manager(
pg=pg,
min_replica_size=1,
load_state_dict=load_state_dict,
state_dict=state_dict,
replica_id=f"train_ddp_{REPLICA_GROUP_ID}",
)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
m = Net().to(device)
m = DistributedDataParallel(manager, m)
optimizer = Optimizer(manager, optim.AdamW(m.parameters()))
criterion = nn.CrossEntropyLoss()
print(m)
# You can use an epoch based training but with faults it's easier to use step
# based training.
while True:
for i, (inputs, labels) in enumerate(trainloader):
inputs = inputs.to(device)
labels = labels.to(device)
# must be called at the beginning of each train loop
# Quorum computation is triggered here but only needed in the backwards pass.
optimizer.zero_grad()
out = m(inputs)
loss = criterion(out, labels)
# Gradient allreduce overlaps with the backwards pass.
loss.backward()
# must be called at the end of the train loop
# This may not actually step the optimizer if an error occured during grad allreduce.
optimizer.step()
if manager.current_step() % 100 == 0:
print(f"[{manager.current_step()}] loss = {loss.item()}")
# TODO (by the user): periodically checkpoint model, optim, manager and dataloader
# You typically want to checkpoint dataloader frequently (every step?) to
# avoid repeated batches as it's replica group specific.
# Model, optim and manager checkpoints can be done more infrequently as
# they're shared across all groups and will load from existing replicas as
# long as not every worker goes down.
if manager.current_step() >= 10000:
# complete training
exit()
if __name__ == "__main__":
main()