-
Notifications
You must be signed in to change notification settings - Fork 244
/
Copy pathconvert_llama_to_dcp.py
155 lines (137 loc) · 5.73 KB
/
convert_llama_to_dcp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
from pathlib import Path
import torch
import torch.distributed.checkpoint as DCP
from torchtitan.logging import init_logger, logger
from torchtitan.models.llama.model import precompute_freqs_cis
@torch.inference_mode()
def convert_llama_weights(input_dir, output_dir, max_seq_len: int):
with open(input_dir / "params.json", "r") as f:
params = json.load(f)
n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
checkpoint_list = sorted([file for file in input_dir.rglob("*.pth")])
logger.info(
f"Loading original Llama weights from {[ckpt.name for ckpt in checkpoint_list]}"
)
shards = [
torch.load(ckpt, map_location="cpu", weights_only=True, mmap=True)
for ckpt in checkpoint_list
]
if len(shards) == 1:
state_dict = shards[0]
else: # sharded
state_dict = {}
n_heads_per_shard = n_heads // len(shards)
num_key_value_heads = params["n_kv_heads"]
n_kv_heads_per_shard = num_key_value_heads // len(shards)
key_value_dim = dims_per_head * num_key_value_heads
for layer in range(n_layers):
state_dict[f"layers.{layer}.attention_norm.weight"] = shards[0][
f"layers.{layer}.attention_norm.weight"
]
for i in range(len(shards)):
del shards[i][f"layers.{layer}.attention_norm.weight"]
state_dict[f"layers.{layer}.ffn_norm.weight"] = shards[0][
f"layers.{layer}.ffn_norm.weight"
]
for i in range(len(shards)):
del shards[i][f"layers.{layer}.ffn_norm.weight"]
for wn, nh in [
("wq", n_heads_per_shard),
("wk", n_kv_heads_per_shard),
("wv", n_kv_heads_per_shard),
]:
state_dict[f"layers.{layer}.attention.{wn}.weight"] = torch.cat(
[
shards[i][f"layers.{layer}.attention.{wn}.weight"].view(
nh, dims_per_head, dim
)
for i in range(len(shards))
],
dim=0,
).reshape(nh * len(shards) * dims_per_head, dim)
for i in range(len(shards)):
del shards[i][f"layers.{layer}.attention.{wn}.weight"]
state_dict[f"layers.{layer}.attention.wo.weight"] = torch.cat(
[
shards[i][f"layers.{layer}.attention.wo.weight"]
for i in range(len(shards))
],
dim=1,
)
for i in range(len(shards)):
del shards[i][f"layers.{layer}.attention.wo.weight"]
state_dict[f"layers.{layer}.feed_forward.w1.weight"] = torch.cat(
[
shards[i][f"layers.{layer}.feed_forward.w1.weight"]
for i in range(len(shards))
],
dim=0,
)
for i in range(len(shards)):
del shards[i][f"layers.{layer}.feed_forward.w1.weight"]
state_dict[f"layers.{layer}.feed_forward.w2.weight"] = torch.cat(
[
shards[i][f"layers.{layer}.feed_forward.w2.weight"]
for i in range(len(shards))
],
dim=1,
)
for i in range(len(shards)):
del shards[i][f"layers.{layer}.feed_forward.w2.weight"]
state_dict[f"layers.{layer}.feed_forward.w3.weight"] = torch.cat(
[
shards[i][f"layers.{layer}.feed_forward.w3.weight"]
for i in range(len(shards))
],
dim=0,
)
for i in range(len(shards)):
del shards[i][f"layers.{layer}.feed_forward.w3.weight"]
state_dict["norm.weight"] = shards[0]["norm.weight"]
for i in range(len(shards)):
del shards[i]["norm.weight"]
state_dict["tok_embeddings.weight"] = torch.cat(
[shards[i]["tok_embeddings.weight"] for i in range(len(shards))], dim=0
)
for i in range(len(shards)):
del shards[i]["tok_embeddings.weight"]
state_dict["output.weight"] = torch.cat(
[shards[i]["output.weight"] for i in range(len(shards))], dim=0
)
for i in range(len(shards)):
del shards[i]["output.weight"]
# NOTE: precompute freqs_cis because must be persisted by default in torchtitan
state_dict["freqs_cis"] = precompute_freqs_cis(
dims_per_head,
max_seq_len,
params.get("rope_theta", 500000),
)
logger.info(f"Writing to DCP at '{output_dir}'")
output_dir.mkdir(parents=True, exist_ok=True)
storage_writer = DCP.filesystem.FileSystemWriter(output_dir, thread_count=8)
DCP.save({"model": state_dict}, storage_writer=storage_writer)
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser(description="Convert Llama weights to DCP format.")
parser.add_argument(
"input_dir", type=Path, help="Input directory with original Llama weights."
)
parser.add_argument("output_dir", type=Path, help="Output directory for DCP.")
parser.add_argument(
"--max_seq_len",
type=int,
default=131072,
help="The maximum sequence length of the model.",
)
args = parser.parse_args()
convert_llama_weights(args.input_dir, args.output_dir, max_seq_len=args.max_seq_len)