|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import pytest |
| 8 | +import torch |
| 9 | + |
| 10 | +from torchtune.models.flux import flux_1_autoencoder |
| 11 | +from torchtune.training.seed import set_seed |
| 12 | + |
| 13 | +BSZ = 32 |
| 14 | +CH_IN = 3 |
| 15 | +RESOLUTION = 16 |
| 16 | +CH_MULTS = [1, 2] |
| 17 | +CH_Z = 4 |
| 18 | +RES_Z = RESOLUTION // len(CH_MULTS) |
| 19 | + |
| 20 | + |
| 21 | +@pytest.fixture(autouse=True) |
| 22 | +def random(): |
| 23 | + set_seed(0) |
| 24 | + |
| 25 | + |
| 26 | +class TestFluxAutoencoder: |
| 27 | + @pytest.fixture |
| 28 | + def model(self): |
| 29 | + model = flux_1_autoencoder( |
| 30 | + resolution=RESOLUTION, |
| 31 | + ch_in=CH_IN, |
| 32 | + ch_out=3, |
| 33 | + ch_base=32, |
| 34 | + ch_mults=CH_MULTS, |
| 35 | + ch_z=CH_Z, |
| 36 | + n_layers_per_resample_block=2, |
| 37 | + scale_factor=1.0, |
| 38 | + shift_factor=0.0, |
| 39 | + ) |
| 40 | + |
| 41 | + for param in model.parameters(): |
| 42 | + param.data.uniform_(0, 0.1) |
| 43 | + |
| 44 | + return model |
| 45 | + |
| 46 | + @pytest.fixture |
| 47 | + def img(self): |
| 48 | + return torch.randn(BSZ, CH_IN, RESOLUTION, RESOLUTION) |
| 49 | + |
| 50 | + @pytest.fixture |
| 51 | + def z(self): |
| 52 | + return torch.randn(BSZ, CH_Z, RES_Z, RES_Z) |
| 53 | + |
| 54 | + def test_forward(self, model, img): |
| 55 | + actual = model(img) |
| 56 | + assert actual.shape == (BSZ, CH_IN, RESOLUTION, RESOLUTION) |
| 57 | + |
| 58 | + actual = torch.mean(actual, dim=(0, 2, 3)) |
| 59 | + expected = torch.tensor([0.4286, 0.4276, 0.4054]) |
| 60 | + torch.testing.assert_close(actual, expected, atol=1e-4, rtol=1e-4) |
| 61 | + |
| 62 | + def test_backward(self, model, img): |
| 63 | + y = model(img) |
| 64 | + loss = y.mean() |
| 65 | + loss.backward() |
| 66 | + |
| 67 | + def test_encode(self, model, img): |
| 68 | + actual = model.encode(img) |
| 69 | + assert actual.shape == (BSZ, CH_Z, RES_Z, RES_Z) |
| 70 | + |
| 71 | + actual = torch.mean(actual, dim=(0, 2, 3)) |
| 72 | + expected = torch.tensor([0.6150, 0.7959, 0.7178, 0.7011]) |
| 73 | + torch.testing.assert_close(actual, expected, atol=1e-4, rtol=1e-4) |
| 74 | + |
| 75 | + def test_decode(self, model, z): |
| 76 | + actual = model.decode(z) |
| 77 | + assert actual.shape == (BSZ, CH_IN, RESOLUTION, RESOLUTION) |
| 78 | + |
| 79 | + actual = torch.mean(actual, dim=(0, 2, 3)) |
| 80 | + expected = torch.tensor([0.4246, 0.4241, 0.4014]) |
| 81 | + torch.testing.assert_close(actual, expected, atol=1e-4, rtol=1e-4) |
0 commit comments