Lora and Dora finetuning produces identical results #2250
Open
Description
I was trying to compare lora, dora, and full finetuning on llama 1B, but i found that lora and dora finetuning produced identical results. I am using the orca 10k dataset, like they did in the answer.ai post comparing the 2 methods.
here is the wandb report for the runs
here is my config file, the only thing that i changed between runs was the use_dora field from true to false. The command i ran was tune run lora_finetune_single_device --config benchmark_methods/llama_3_2_1b_lora_adam.yaml
I am using a 3090 gpu.
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Llama3.2 1B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-3.2-1B-Instruct --output-dir ./tmp/Llama-3.2-1B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config llama3_2/1B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config llama3_2/1B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.
output_dir: ./tmp/torchtune/llama3_2_1B/lora_single_device # /tmp may be deleted by your system. Change it to your preference.
# Model Arguments
model:
_component_: torchtune.models.llama3_2.lora_llama3_2_1b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
lora_rank: 32 # higher increases accuracy and memory
lora_alpha: 64 # usually alpha=2*rank
lora_dropout: 0.0
use_dora: True
# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: ./tmp/Llama-3.2-1B/original/tokenizer.model
max_seq_len: 2048
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: ./tmp/Llama-3.2-1B/
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: LLAMA3_2
resume_from_checkpoint: False
save_adapter_weights_only: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.chat_dataset
packed: True # True increases speed
source: qnguyen3/orca_math_10k
conversation_column: conversations
conversation_style: sharegpt
split: train
seed: 42
shuffle: True
batch_size: 4
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 1e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 2 # Use to increase effective batch size
compile: True # torch.compile the model + loss, True increases speed + decreases memory
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.WandBLogger
project: benchmark_torchtune
log_every_n_steps: 1
log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16
# Activations Memory
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory
# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1