Open
Description
🐛 Describe the bug
Setting a float value to magnitude
argument of RandAugment() gets the wrong error message as shown below:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
my_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=3.5)
)
my_data[0] # Error
IndexError: only integers, slices (
:
), ellipsis (...
), None and long or byte Variables are valid indices (got float)
But setting None
to magnitude
argument doesn't work as shown below so the wrong error message above should be corrected:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
my_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=None)
)
my_data[0] # Error
ValueError: only one element tensors can be converted to Python scalars
In addition, setting a list of one element to magnitude
argument works as shown below but it's useless so magnitude
argument should only accept int
but not list(int
):
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
my_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=[3])
)
my_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
Versions
import torchvision
torchvision.__version__ # '0.20.1'
Metadata
Metadata
Assignees
Labels
No labels
Activity