-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscene_classification_implemented_by_pytorch.py
224 lines (207 loc) · 9.31 KB
/
scene_classification_implemented_by_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from tqdm import tqdm
import torch
from torch.autograd import Variable
from torch import nn,optim
import torchvision.transforms as transforms
import json
import os
import PIL
from time import strftime
num_epochs = 100
batch_size = 64
learning_rate = 0.001
#自定义数据集
class mydataset(torch.utils.data.Dataset):
def __init__(self,dir,annotation,train):
with open(annotation) as f:
datas = json.load(f)
self.dir = dir
self.images = [i["image_id"] for i in datas]
self.labels = [int(i["label_id"]) for i in datas]
self.train = train
self.val_transform = transforms.Compose([
transforms.Scale(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],
std=[0.229,0.224,0.225])
])
self.train_transform = transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],
std=[0.229,0.224,0.225])
])
def __getitem__(self,index):
image_path = os.path.join(self.dir,self.images[index])
img = PIL.Image.open(image_path).convert('RGB')
if self.train:
img = self.train_transform(img)
else:
img = self.val_transform(img)
return img,self.labels[index]
def __len__(self):
return len(self.images)
#说明输入数据的路径
train_images_path = "/home/szh/AIchallenger/ai_challenger_scene_train_20170904/scene_train_images_20170904"
train_annotation_path = "/home/szh/AIchallenger/ai_challenger_scene_train_20170904/scene_train_annotations_20170904.json"
traindataset = mydataset(train_images_path,train_annotation_path,True)
trainloader = torch.utils.data.DataLoader(traindataset,batch_size,shuffle=True,num_workers=4)
val_images_path = "/home/szh/AIchallenger/ai_challenger_scene_validation_20170908/scene_validation_images_20170908"
val_annotation_path = "/home/szh/AIchallenger/ai_challenger_scene_validation_20170908/scene_validation_annotations_20170908.json"
valdataset = mydataset(val_images_path,val_annotation_path,False)
valloader = torch.utils.data.DataLoader(valdataset,batch_size,shuffle=False,num_workers=4)
test_images_path = "/home/szh/AIchallenger/ai_challenger_scene_test_a_20170922/scene_test_a_images_20170922"
test_annotation_path = "/home/szh/AIchallenger/ai_challenger_scene_test_a_20170922/ai_challenger_scene_test_a_20170922.json"
testdataset = mydataset(test_images_path,test_annotation_path,False)
testloader = torch.utils.data.DataLoader(testdataset,batch_size,shuffle=False,num_workers=4)
#计算topk正确的个数
def topk_correct(score,label,k=3):
topk = score.topk(k)[1]
label = label.view(-1,1).expand_as(topk)
correct = (label==topk).float().sum()
return correct
#格式化指定字符串
def getinfo(epoch,lr,train_top1,train_top3,val_top1,val_top3):
return strftime('[%m%d_%H%M%S]')+('epoch:{epoch},lr:{lr},train_top1:{train_top1},'
'train_top3:{train_top3},val_top1:{val_top1},val_top3:{val_top3}').format(
epoch=epoch,
lr=lr,
train_top1=train_top1,
train_top3=train_top3,
val_top1=val_top1,
val_top3=val_top3)
#模型定义
def conv3x3(in_channels,out_channels,stride=1):
return nn.Conv2d(in_channels,out_channels,kernel_size=3,
stride=stride,padding=1,bias=False)
class ResidualBlock(nn.Module):
def __init__(self,in_channels,out_channels,stride=1,downsample=None):
super(ResidualBlock,self).__init__()
self.conv1 = conv3x3(in_channels,out_channels,stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels,out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self,x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,block,layers,num_classes=80):
super(ResNet,self).__init__()
self.in_channels =16
self.conv = conv3x3(3,16)
self.bn = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block,16,layers[0])
self.layer2 = self.make_layer(block,32,layers[1],2)
self.layer3 = self.make_layer(block,64,layers[2],2)
self.avg_pool = nn.AvgPool2d(8)
self.fc = nn.Linear(3136,num_classes)
def make_layer(self,block,out_channels,blocks,stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
downsample = nn.Sequential(
conv3x3(self.in_channels,out_channels,stride=stride),
nn.BatchNorm2d(out_channels))
layers = []
layers.append(block(self.in_channels,out_channels,stride,downsample))
self.in_channels = out_channels
for i in range(1,blocks):
layers.append(block(out_channels,out_channels))
return nn.Sequential(*layers)
def forward(self,x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.avg_pool(out)
out = out.view(out.size(0),-1)
out = self.fc(out)
return out
resnet = ResNet(ResidualBlock,[3,3,3])
resnet.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(resnet.parameters(),lr=learning_rate)
bestaccurcy = 0
for epoch in range(num_epochs):
total = 0
correct3 = 0
correct = 0
lossdata=0
#训练
resnet.train()
for images,labels in tqdm(trainloader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
optimizer.zero_grad()
outputs = resnet(images)
loss = criterion(outputs,labels)
total += labels.size(0)
correct3 += topk_correct(outputs.data,labels.data)
correct += topk_correct(outputs.data,labels.data,k=1)
lossdata+=loss.data[0]*labels.size(0)
loss.backward()
optimizer.step()
print("Epoch [%d/%d],Loss: %.4f"%(epoch+1,num_epochs,lossdata*1.0/total))
top3accuracy = correct3*1.0/total
accuracy = correct*1.0/total
train_top1=accuracy
train_top3=top3accuracy
print("top3 Accuracy and accuracy of the model on the train set are [%.4f|%.4f]"
%(top3accuracy,accuracy))
total = 0
correct3 = 0
correct = 0
#验证
resnet.eval()
for images,labels in tqdm(valloader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
outputs = resnet(images)
total += labels.size(0)
correct3 += topk_correct(outputs.data,labels.data)
correct += topk_correct(outputs.data,labels.data,k=1)
top3accuracy = correct3*1.0/total
accuracy = correct*1.0/total
val_top1=accuracy
val_top3=top3accuracy
print("top3 Accuracy and accuracy of the model on the validation set are [%.4f|%.4f]"
%(top3accuracy,accuracy))
torch.save(resnet.state_dict(),getinfo(epoch,learning_rate,train_top1,train_top3,val_top1,val_top3)
+"resnet.pkl")
if accuracy>bestaccurcy:
bestaccurcy = accuracy
torch.save(resnet.state_dict(),"bestresnet.pkl")
if (epoch+1)%10==0:
learning_rate /= 3
optimizer = torch.optim.Adam(resnet.parameters(),lr=learning_rate)
resnet.load_state_dict(torch.load("bestresnet.pkl"))
total = 0
correct3 = 0
correct = 0
#测试
for images,labels in tqdm(testloader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
outputs = resnet(images)
total += labels.size(0)
correct3 += topk_correct(outputs.data,labels.data)
correct += topk_correct(outputs.data,labels.data,k=1)
top3accuracy = correct3*1.0/total
accuracy = correct*1.0/total
print("top3 Accuracy and accuracy of the model on the test set are [%.4f|%.4f]"
%(top3accuracy,accuracy))