-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgpt2_train_main.py
391 lines (320 loc) · 14 KB
/
gpt2_train_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright 2019 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example of fine-tuning OpenAI GPT-2 language model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import importlib
import tensorflow as tf
import texar as tx
from utils import model_utils, processor
# pylint: disable=invalid-name, too-many-locals, too-many-statements, no-member
# pylint: disable=too-many-branches
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("checkpoint", None,
"Model checkpoint to resume training or for test.")
flags.DEFINE_string("pretrain_checkpoint",
"gpt2_pretrained_models/model_117M/model.ckpt",
"OpenAI pretrained model checkpoint. Ignored if "
"'--checkpoint' is specified.")
flags.DEFINE_string("pretrained_model_dir", "gpt2_pretrained_models/model_117M",
"The directory of pretrained model, for loading vocabuary, "
"etc.")
flags.DEFINE_float("temperature", 0.7,
"Softmax temperature for top-k sample decoding. Must be "
"strictly greater than 0. Defaults to 0.7.")
flags.DEFINE_integer("top_k", 40,
"The number of top most likely candidates from a vocab "
"distribution.")
flags.DEFINE_string("config_train", "configs.config_train",
"Configurations of GPT-2 training, including data and "
"optimization hyperparameters.")
flags.DEFINE_string("config_type", "texar",
"The configuration file type. Set to 'json' if the GPT-2 "
"config file is in the same type of the official GPT-2 "
"config file. Set to 'texar' if GPT-2 config file is in "
"Texar type.")
flags.DEFINE_string("config_model", "configs.config_model",
"The model configuration file to configure the model. "
"The config file type is define by the 'config_type',"
"it be of texar type or json type."
"For '--config_type=json', set the json config file path"
"like: '--config_model gpt2_pretrained_models/model_117M/"
"hparams.json';"
"For '--config_type=texar', set the texar config file "
"like: '--config_model configs.config_model'.")
flags.DEFINE_string("output_dir", "output/",
"The output directory where the model checkpoints will be "
"written.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool("do_test", False, "Whether to run test on the test set.")
flags.DEFINE_bool("distributed", False, "Whether to run in distributed mode.")
config_train = importlib.import_module(FLAGS.config_train)
def main(_):
"""
Builds the model and runs
"""
if FLAGS.distributed:
import horovod.tensorflow as hvd
hvd.init()
tf.logging.set_verbosity(tf.logging.INFO)
## Loads GPT-2 model configuration
if FLAGS.config_type == "json":
gpt2_config = model_utils.transform_gpt2_to_texar_config(
FLAGS.config_model)
elif FLAGS.config_type == 'texar':
gpt2_config = importlib.import_module(
FLAGS.config_model)
else:
raise ValueError('Unknown config_type.')
# Creates a data pre-processor for, e.g., BPE encoding
proc = processor.get_encoder(FLAGS.pretrained_model_dir)
max_decoding_length = config_train.max_decoding_length
assert max_decoding_length <= gpt2_config.position_size, (
"max_decoding_length should not be greater than position_size. "
"{}>{}".format(max_decoding_length, gpt2_config.position_size))
## Loads data
# Configures training data shard in distribued mode
if FLAGS.distributed:
config_train.train_hparam["dataset"]["num_shards"] = hvd.size()
config_train.train_hparam["dataset"]["shard_id"] = hvd.rank()
config_train.train_hparam["batch_size"] //= hvd.size()
datasets = {}
if FLAGS.do_train:
train_dataset = tx.data.TFRecordData(hparams=config_train.train_hparam)
datasets['train'] = train_dataset
if FLAGS.do_eval:
dev_dataset = tx.data.TFRecordData(hparams=config_train.dev_hparam)
datasets['dev'] = dev_dataset
if FLAGS.do_test:
test_dataset = tx.data.TFRecordData(hparams=config_train.test_hparam)
datasets['test'] = test_dataset
iterator = tx.data.FeedableDataIterator(datasets)
batch = iterator.get_next()
batch_size = tf.shape(batch['text_ids'])[0]
## Builds the GPT-2 model
word_embedder = tx.modules.WordEmbedder(
vocab_size=gpt2_config.vocab_size,
hparams=gpt2_config.embed)
pos_embedder = tx.modules.PositionEmbedder(
position_size=gpt2_config.position_size,
hparams=gpt2_config.pos_embed)
# Ties output layer with input word embedding
output_layer = tf.transpose(word_embedder.embedding, (1, 0))
decoder = tx.modules.TransformerDecoder(
vocab_size=gpt2_config.vocab_size,
output_layer=output_layer,
hparams=gpt2_config.decoder)
# For training
seq_len = tf.fill([batch_size], tf.shape(batch['text_ids'])[1])
pos_embeds = pos_embedder(sequence_length=seq_len)
input_embedding = word_embedder(batch['text_ids']) + pos_embeds
outputs = decoder(inputs=input_embedding, decoding_strategy='train_greedy')
loss = tx.losses.sequence_sparse_softmax_cross_entropy(
labels=batch['text_ids'][:, 1:],
logits=outputs.logits[:, :-1, :],
sequence_length=batch['length']-1,
average_across_timesteps=True,
sum_over_timesteps=False)
ppl = tf.exp(loss)
global_step = tf.Variable(0, trainable=False)
opt = tx.core.get_optimizer(
global_step=global_step,
hparams=config_train.opt)
if FLAGS.distributed:
opt = hvd.DistributedOptimizer(opt)
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=global_step,
learning_rate=None,
optimizer=opt)
# For generation: generates continuations of test text
def _embedding_fn(x, y):
# `x` is token ids, `y` is time steps
return word_embedder(x) + pos_embedder(y)
end_token = proc.encoder['<|endoftext|>']
start_tokens = batch['text_ids'][:, 0]
helper = tx.modules.TopKSampleEmbeddingHelper(
embedding=_embedding_fn,
start_tokens=start_tokens,
end_token=end_token,
top_k=FLAGS.top_k,
softmax_temperature=FLAGS.temperature)
outputs_infer, _ = decoder(
context=batch['text_ids'],
context_sequence_length=batch['length'],
max_decoding_length=max_decoding_length,
helper=helper)
sample_id = outputs_infer.sample_id
## Train/eval/test routine
saver = tf.train.Saver()
saver_best = tf.train.Saver(max_to_keep=1)
dev_best = {'loss': 1e8, 'ppl': 1e8}
def _is_head():
if not FLAGS.distributed:
return True
else:
return hvd.rank() == 0
def _train_epoch(sess):
"""Trains on the training set, and evaluates on the dev set
periodically.
"""
iterator.restart_dataset(sess, 'train')
fetches = {
'loss': train_op,
'step': global_step
}
while True:
try:
feed_dict = {
iterator.handle: iterator.get_handle(sess, 'train'),
tx.global_mode(): tf.estimator.ModeKeys.TRAIN,
}
rets = sess.run(fetches, feed_dict)
step = rets['step']
dis_steps = config_train.display_steps
if _is_head() and dis_steps > 0 and step % dis_steps == 0:
tf.logging.info('step:%d; loss:%f' % (step, rets['loss']))
eval_steps = config_train.eval_steps
if _is_head() and eval_steps > 0 and step % eval_steps == 0:
_dev_epoch(sess)
ckpt_steps = config_train.checkpoint_steps
if _is_head() and ckpt_steps > 0 and step % ckpt_steps == 0:
ckpt_fn = os.path.join(FLAGS.output_dir, 'model.ckpt')
ckpt_fn = saver.save(sess, ckpt_fn, global_step=step)
tf.logging.info('Checkpoint to {}'.format(ckpt_fn))
except tf.errors.OutOfRangeError:
break
def _dev_epoch(sess):
"""Evaluates on the dev set.
"""
iterator.restart_dataset(sess, 'dev')
cum_loss = 0.
cum_ppl = 0.
nsamples = 0
fetches = {
'loss': loss,
'ppl': ppl,
'batch_size': batch_size,
}
while True:
try:
feed_dict = {
iterator.handle: iterator.get_handle(sess, 'dev'),
tx.context.global_mode(): tf.estimator.ModeKeys.EVAL,
}
rets = sess.run(fetches, feed_dict)
cum_loss += rets['loss'] * rets['batch_size']
cum_ppl += rets['ppl'] * rets['batch_size']
nsamples += rets['batch_size']
except tf.errors.OutOfRangeError:
break
avg_loss = cum_loss / nsamples
avg_ppl = cum_ppl / nsamples
tf.logging.info('dev loss: {}; ppl: {}; nsamples: {}'.format(
avg_loss, avg_ppl, nsamples))
if FLAGS.do_train and avg_loss < dev_best['loss']:
dev_best['loss'] = avg_loss
dev_best['ppl'] = avg_ppl
ckpt_fn = os.path.join(FLAGS.output_dir, 'model_best.ckpt')
ckpt_fn = saver_best.save(sess, ckpt_fn)
tf.logging.info('Checkpoint best to {}'.format(ckpt_fn))
def _test_epoch(sess):
"""Generates samples on the test set.
"""
iterator.restart_dataset(sess, 'test')
_all_inputs = []
_all_samples = []
fetches = {
'inputs': batch['text_ids'],
'length': batch['length'],
'samples': sample_id
}
while True:
try:
feed_dict = {
iterator.handle: iterator.get_handle(sess, 'test'),
tx.context.global_mode(): tf.estimator.ModeKeys.PREDICT,
}
rets = sess.run(fetches, feed_dict=feed_dict)
_inputs = []
for i, l in zip(rets['inputs'], rets['length']):
# Delete padding
_inputs.append(i[:l].tolist())
_all_inputs.extend(_inputs)
_samples = []
for s, l in zip(rets['samples'], rets['length']):
# Delete inputs from samples
_samples.append(s[l:].tolist())
_all_samples.extend(_samples)
except tf.errors.OutOfRangeError:
break
# Parse samples and write to file
eos_token_id = proc.encoder['<|endoftext|>']
_all_input_text = []
for i in _all_inputs:
if i[0] == eos_token_id:
# '<|endoftext|>' is used as the BOS token. Delete it here
i = i[1:]
i_text = proc.decode(i)
_all_input_text.append(i_text)
# '<|endoftext|>' is used as the PAD token. Delete them here
_all_input_text = tx.utils.strip_eos(_all_input_text,
eos_token='<|endoftext|>')
_all_samples_text = []
for i, s in zip(_all_inputs, _all_samples):
s_text = proc.decode(s)
s_text = s_text.replace('\n', ' ')
_all_samples_text.append(s_text)
_all_samples_text = tx.utils.strip_eos(_all_samples_text,
eos_token='<|endoftext|>')
output_file = os.path.join(FLAGS.output_dir, "test_samples.tsv")
tf.logging.info('Write samples to {}'.format(output_file))
tx.utils.write_paired_text(
_all_input_text, _all_samples_text, output_file)
# Broadcasts global variables from rank-0 process
if FLAGS.distributed:
bcast = hvd.broadcast_global_variables(0)
session_config = tf.ConfigProto()
if FLAGS.distributed:
session_config.gpu_options.visible_device_list = str(hvd.local_rank())
with tf.Session(config=session_config) as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
if FLAGS.distributed:
bcast.run()
# Restores trained model if specified
if FLAGS.checkpoint:
tf.logging.info('Restore from {}'.format(FLAGS.checkpoint))
saver.restore(sess, FLAGS.checkpoint)
elif FLAGS.pretrain_checkpoint:
tf.logging.info('Restore from {}'.format(FLAGS.pretrain_checkpoint))
model_utils.init_gpt2_checkpoint(sess, FLAGS.pretrain_checkpoint)
print("\nFinished loading\n")
iterator.initialize_dataset(sess)
if FLAGS.do_train:
for _ in range(config_train.max_train_epoch):
_train_epoch(sess)
saver.save(sess, FLAGS.output_dir + '/model.ckpt')
if FLAGS.do_eval:
_dev_epoch(sess)
if FLAGS.do_test:
_test_epoch(sess)
if __name__ == "__main__":
tf.app.run()