Skip to content

Commit ab62c4a

Browse files
committed
new
1 parent 5855938 commit ab62c4a

File tree

1 file changed

+328
-0
lines changed

1 file changed

+328
-0
lines changed
Lines changed: 328 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,328 @@
1+
---
2+
title: 'Angular Momentum'
3+
date: 2025-03-09
4+
permalink: /posts/2025/09/angular-momentum/
5+
tags:
6+
- quantum
7+
- math
8+
- physics
9+
---
10+
11+
This is one of the key postulates of **Bohr’s atomic model**, stating that the **angular momentum** $L$ of an electron in a stable orbit is **quantized**, i.e., it can only take specific discrete values depending on an integer $n$.
12+
13+
$$
14+
L = n \cdot \frac{h}{2\pi}
15+
$$
16+
17+
---
18+
19+
### 🧠 Goal of the Explanation:
20+
21+
We’ll explain:
22+
23+
1. **What this equation represents** (in terms of physics)
24+
2. **Why it’s important** (Bohr’s postulate)
25+
3. **How it came to be** (historical + mathematical reasoning)
26+
4. **What math/physics concepts it uses**
27+
28+
---
29+
30+
## 🧪 1. What does the equation mean?
31+
32+
* $L$ is the **angular momentum** of an electron orbiting the nucleus.
33+
* $h$ is **Planck’s constant**:
34+
35+
$$
36+
h \approx 6.626 \times 10^{-34} \, \text{Js}
37+
$$
38+
* $2\pi$ appears because we’re dealing with **circular motion**.
39+
* $\frac{h}{2\pi}$ is often written as $\hbar$ (pronounced "h-bar"):
40+
41+
$$
42+
\hbar = \frac{h}{2\pi}
43+
$$
44+
* $n \in \mathbb{Z^+}$ is the **principal quantum number**: 1, 2, 3, …
45+
46+
Thus, Bohr said:
47+
48+
> “The angular momentum of an electron in orbit is quantized and must be an integer multiple of $\hbar$.”
49+
50+
---
51+
52+
## 🔁 2. Why quantize angular momentum?
53+
54+
Bohr’s atomic model was built to explain **why electrons don’t spiral into the nucleus** and why **hydrogen has a discrete line spectrum**.
55+
56+
In classical physics:
57+
58+
* An electron in orbit should emit radiation continuously.
59+
* It should lose energy and spiral inward — but atoms are stable!
60+
* So Bohr postulated: **Electrons can only exist in orbits where their angular momentum is quantized**.
61+
62+
That’s where the equation:
63+
64+
$$
65+
L = n \cdot \frac{h}{2\pi}
66+
$$
67+
68+
comes in — it’s a **quantization condition**.
69+
70+
---
71+
72+
## ⚙️ 3. How did Bohr come up with it?
73+
74+
Bohr didn’t derive it purely mathematically — it was a **bold postulate** inspired by the new ideas of **quantum theory**, particularly **Planck's** and **Einstein’s** work on **quantized energy**.
75+
76+
But later it was justified using **de Broglie’s hypothesis** and **wave mechanics**.
77+
78+
---
79+
80+
## 🔁 4. Deeper Mathematical Justification (via de Broglie)
81+
82+
After Bohr, in 1924, **Louis de Broglie** suggested that **electrons have wave properties**, and their **orbits must fit whole wavelengths**:
83+
84+
$$
85+
\text{Circumference of orbit} = n \lambda
86+
\Rightarrow 2\pi r = n \lambda
87+
$$
88+
89+
Since de Broglie said:
90+
91+
$$
92+
\lambda = \frac{h}{p} = \frac{h}{mv}
93+
$$
94+
95+
Substitute:
96+
97+
$$
98+
2\pi r = n \cdot \frac{h}{mv}
99+
\Rightarrow mvr = \frac{nh}{2\pi}
100+
\Rightarrow L = mvr = n \cdot \frac{h}{2\pi}
101+
$$
102+
103+
🧠 **So from de Broglie’s wave-particle duality**, we get Bohr’s angular momentum quantization as a **natural result of standing waves**!
104+
105+
---
106+
107+
## 📐 5. What is Angular Momentum? (Quick Refresher)
108+
109+
In circular motion:
110+
111+
$$
112+
L = m v r
113+
$$
114+
115+
Where:
116+
117+
* $m$ = mass of electron
118+
* $v$ = orbital speed
119+
* $r$ = radius of orbit
120+
121+
Bohr said this quantity $L$ can **only** be $n \cdot \hbar$, not just anything.
122+
123+
---
124+
125+
## 🔢 Summary:
126+
127+
| Concept | Meaning |
128+
| ----------------- | ----------------------------------------------------------------------------------------------- |
129+
| **Equation** | $L = n \cdot \frac{h}{2\pi}$ |
130+
| **Describes** | Quantized angular momentum of electrons in Bohr orbits |
131+
| **Postulated by** | Niels Bohr (1913) |
132+
| **Supported by** | de Broglie’s wave hypothesis (1924) |
133+
| **Key idea** | Electron orbit must accommodate a whole number of de Broglie wavelengths — standing waves only! |
134+
135+
---
136+
137+
## step-by-step derivations
138+
139+
1. **Radius of Bohr orbit $r_n$**
140+
2. **Energy of electron in $n^\text{th}$ orbit $E_n$**
141+
3. **(Bonus)**: Visual of the **standing wave condition** (why angular momentum is quantized)
142+
143+
---
144+
145+
## 🔷 1. Derivation of Radius $r_n$
146+
147+
We’ll derive the **Bohr radius** formula starting from physics principles:
148+
149+
### 🔹 Step 1: Use centripetal force = electrostatic force
150+
151+
An electron moves in a circular orbit, so:
152+
153+
$$
154+
\text{Centripetal force} = \text{Coulomb (electrostatic) force}
155+
$$
156+
157+
$$
158+
\frac{mv^2}{r} = \frac{k e^2}{r^2}
159+
$$
160+
161+
Where:
162+
163+
* $m$ = electron mass
164+
* $v$ = velocity
165+
* $r$ = orbit radius
166+
* $e$ = electron charge
167+
* $k = \frac{1}{4\pi\varepsilon_0}$ (Coulomb constant)
168+
169+
---
170+
171+
### 🔹 Step 2: Use Bohr’s angular momentum quantization
172+
173+
$$
174+
L = mvr = n \cdot \frac{h}{2\pi}
175+
\Rightarrow v = \frac{n h}{2\pi m r}
176+
$$
177+
178+
---
179+
180+
### 🔹 Step 3: Substitute velocity $v$ into force equation
181+
182+
$$
183+
\frac{m}{r} \left(\frac{n h}{2\pi m r}\right)^2 = \frac{k e^2}{r^2}
184+
$$
185+
186+
Simplify:
187+
188+
$$
189+
\frac{n^2 h^2}{4\pi^2 m r^3} = \frac{k e^2}{r^2}
190+
$$
191+
192+
Multiply both sides by $r^3$:
193+
194+
$$
195+
\frac{n^2 h^2}{4\pi^2 m} = k e^2 r
196+
$$
197+
198+
Solve for $r$:
199+
200+
$$
201+
r = \frac{n^2 h^2}{4\pi^2 m k e^2}
202+
$$
203+
204+
This is the **Bohr radius formula**. For hydrogen ($Z = 1$):
205+
206+
$$
207+
r_n = n^2 \cdot a_0
208+
$$
209+
210+
Where $a_0 = \frac{h^2}{4\pi^2 m k e^2} \approx 0.529 \times 10^{-10} \, \text{m}$
211+
212+
---
213+
214+
## 🔷 2. Derivation of Energy $E_n$
215+
216+
Total energy of the electron is:
217+
218+
$$
219+
E = \text{Kinetic Energy} + \text{Potential Energy}
220+
$$
221+
222+
### 🔹 Step 1: Kinetic energy
223+
224+
From above:
225+
226+
$$
227+
\frac{mv^2}{r} = \frac{ke^2}{r^2} \Rightarrow mv^2 = \frac{ke^2}{r}
228+
$$
229+
230+
So:
231+
232+
$$
233+
K.E. = \frac{1}{2} mv^2 = \frac{1}{2} \cdot \frac{ke^2}{r}
234+
$$
235+
236+
---
237+
238+
### 🔹 Step 2: Potential energy
239+
240+
Potential energy in a Coulomb field:
241+
242+
$$
243+
U = - \frac{ke^2}{r}
244+
$$
245+
246+
---
247+
248+
### 🔹 Step 3: Total energy
249+
250+
$$
251+
E = K.E. + U = \frac{1}{2} \cdot \frac{ke^2}{r} - \frac{ke^2}{r} = -\frac{ke^2}{2r}
252+
$$
253+
254+
Now substitute $r$ from radius formula:
255+
256+
$$
257+
r = \frac{n^2 h^2}{4\pi^2 m k e^2}
258+
\Rightarrow \frac{1}{r} = \frac{4\pi^2 m k e^2}{n^2 h^2}
259+
$$
260+
261+
So:
262+
263+
$$
264+
E_n = -\frac{1}{2} ke^2 \cdot \frac{4\pi^2 m k e^2}{n^2 h^2}
265+
= -\frac{2\pi^2 m k^2 e^4}{n^2 h^2}
266+
$$
267+
268+
This gives the **energy levels** of the hydrogen atom:
269+
270+
$$
271+
E_n = -\frac{13.6\, \text{eV}}{n^2}
272+
$$
273+
274+
---
275+
276+
## 🌀 3. Diagram: Standing Wave Condition
277+
278+
Let’s describe how **standing wave = quantized orbits**:
279+
280+
### ⚛ De Broglie Hypothesis:
281+
282+
Electron has **wavelength**:
283+
284+
$$
285+
\lambda = \frac{h}{mv}
286+
$$
287+
288+
For a **stable orbit**, the circumference must fit a whole number of wavelengths:
289+
290+
$$
291+
2\pi r = n \lambda
292+
$$
293+
294+
Otherwise, the wave interferes destructively and **cancels itself**.
295+
296+
This directly leads to:
297+
298+
$$
299+
mvr = n \cdot \frac{h}{2\pi}
300+
\Rightarrow L = n\hbar
301+
$$
302+
303+
✅ This matches Bohr’s postulate!
304+
305+
---
306+
307+
### 📊 Visualization (text-based)
308+
309+
| Orbit Number | Wave Fit Around Orbit |
310+
| ------------ | ----------------------------------------- |
311+
| $n = 1$ | One full wave around the circle — 🔁🌊 |
312+
| $n = 2$ | Two full waves around the circle — 🔁🌊🌊 |
313+
| $n = 3$ | Three full waves — 🔁🌊🌊🌊 |
314+
315+
In each case, the wave **constructively interferes**, making a **stable standing wave**.
316+
317+
---
318+
319+
## ✅ Summary
320+
321+
| Concept | Formula |
322+
| -------------------------- | ------------------------------------------------ |
323+
| Radius of orbit | $r_n = \frac{n^2 h^2}{4\pi^2 m k e^2} = n^2 a_0$ |
324+
| Bohr radius | $a_0 = 0.529 \times 10^{-10} \, \text{m}$ |
325+
| Angular momentum quantized | $L = n \cdot \frac{h}{2\pi}$ |
326+
| Energy of orbit | $E_n = -\frac{13.6}{n^2} \, \text{eV}$ |
327+
328+
---

0 commit comments

Comments
 (0)