|
| 1 | +--- |
| 2 | +title: 'Angular Momentum' |
| 3 | +date: 2025-03-09 |
| 4 | +permalink: /posts/2025/09/angular-momentum/ |
| 5 | +tags: |
| 6 | + - quantum |
| 7 | + - math |
| 8 | + - physics |
| 9 | +--- |
| 10 | + |
| 11 | +This is one of the key postulates of **Bohr’s atomic model**, stating that the **angular momentum** $L$ of an electron in a stable orbit is **quantized**, i.e., it can only take specific discrete values depending on an integer $n$. |
| 12 | + |
| 13 | +$$ |
| 14 | +L = n \cdot \frac{h}{2\pi} |
| 15 | +$$ |
| 16 | + |
| 17 | +--- |
| 18 | + |
| 19 | +### 🧠 Goal of the Explanation: |
| 20 | + |
| 21 | +We’ll explain: |
| 22 | + |
| 23 | +1. **What this equation represents** (in terms of physics) |
| 24 | +2. **Why it’s important** (Bohr’s postulate) |
| 25 | +3. **How it came to be** (historical + mathematical reasoning) |
| 26 | +4. **What math/physics concepts it uses** |
| 27 | + |
| 28 | +--- |
| 29 | + |
| 30 | +## 🧪 1. What does the equation mean? |
| 31 | + |
| 32 | +* $L$ is the **angular momentum** of an electron orbiting the nucleus. |
| 33 | +* $h$ is **Planck’s constant**: |
| 34 | + |
| 35 | + $$ |
| 36 | + h \approx 6.626 \times 10^{-34} \, \text{Js} |
| 37 | + $$ |
| 38 | +* $2\pi$ appears because we’re dealing with **circular motion**. |
| 39 | +* $\frac{h}{2\pi}$ is often written as $\hbar$ (pronounced "h-bar"): |
| 40 | + |
| 41 | + $$ |
| 42 | + \hbar = \frac{h}{2\pi} |
| 43 | + $$ |
| 44 | +* $n \in \mathbb{Z^+}$ is the **principal quantum number**: 1, 2, 3, … |
| 45 | + |
| 46 | +Thus, Bohr said: |
| 47 | + |
| 48 | +> “The angular momentum of an electron in orbit is quantized and must be an integer multiple of $\hbar$.” |
| 49 | +
|
| 50 | +--- |
| 51 | + |
| 52 | +## 🔁 2. Why quantize angular momentum? |
| 53 | + |
| 54 | +Bohr’s atomic model was built to explain **why electrons don’t spiral into the nucleus** and why **hydrogen has a discrete line spectrum**. |
| 55 | + |
| 56 | +In classical physics: |
| 57 | + |
| 58 | +* An electron in orbit should emit radiation continuously. |
| 59 | +* It should lose energy and spiral inward — but atoms are stable! |
| 60 | +* So Bohr postulated: **Electrons can only exist in orbits where their angular momentum is quantized**. |
| 61 | + |
| 62 | +That’s where the equation: |
| 63 | + |
| 64 | +$$ |
| 65 | +L = n \cdot \frac{h}{2\pi} |
| 66 | +$$ |
| 67 | + |
| 68 | +comes in — it’s a **quantization condition**. |
| 69 | + |
| 70 | +--- |
| 71 | + |
| 72 | +## ⚙️ 3. How did Bohr come up with it? |
| 73 | + |
| 74 | +Bohr didn’t derive it purely mathematically — it was a **bold postulate** inspired by the new ideas of **quantum theory**, particularly **Planck's** and **Einstein’s** work on **quantized energy**. |
| 75 | + |
| 76 | +But later it was justified using **de Broglie’s hypothesis** and **wave mechanics**. |
| 77 | + |
| 78 | +--- |
| 79 | + |
| 80 | +## 🔁 4. Deeper Mathematical Justification (via de Broglie) |
| 81 | + |
| 82 | +After Bohr, in 1924, **Louis de Broglie** suggested that **electrons have wave properties**, and their **orbits must fit whole wavelengths**: |
| 83 | + |
| 84 | +$$ |
| 85 | +\text{Circumference of orbit} = n \lambda |
| 86 | +\Rightarrow 2\pi r = n \lambda |
| 87 | +$$ |
| 88 | + |
| 89 | +Since de Broglie said: |
| 90 | + |
| 91 | +$$ |
| 92 | +\lambda = \frac{h}{p} = \frac{h}{mv} |
| 93 | +$$ |
| 94 | + |
| 95 | +Substitute: |
| 96 | + |
| 97 | +$$ |
| 98 | +2\pi r = n \cdot \frac{h}{mv} |
| 99 | +\Rightarrow mvr = \frac{nh}{2\pi} |
| 100 | +\Rightarrow L = mvr = n \cdot \frac{h}{2\pi} |
| 101 | +$$ |
| 102 | + |
| 103 | +🧠 **So from de Broglie’s wave-particle duality**, we get Bohr’s angular momentum quantization as a **natural result of standing waves**! |
| 104 | + |
| 105 | +--- |
| 106 | + |
| 107 | +## 📐 5. What is Angular Momentum? (Quick Refresher) |
| 108 | + |
| 109 | +In circular motion: |
| 110 | + |
| 111 | +$$ |
| 112 | +L = m v r |
| 113 | +$$ |
| 114 | + |
| 115 | +Where: |
| 116 | + |
| 117 | +* $m$ = mass of electron |
| 118 | +* $v$ = orbital speed |
| 119 | +* $r$ = radius of orbit |
| 120 | + |
| 121 | +Bohr said this quantity $L$ can **only** be $n \cdot \hbar$, not just anything. |
| 122 | + |
| 123 | +--- |
| 124 | + |
| 125 | +## 🔢 Summary: |
| 126 | + |
| 127 | +| Concept | Meaning | |
| 128 | +| ----------------- | ----------------------------------------------------------------------------------------------- | |
| 129 | +| **Equation** | $L = n \cdot \frac{h}{2\pi}$ | |
| 130 | +| **Describes** | Quantized angular momentum of electrons in Bohr orbits | |
| 131 | +| **Postulated by** | Niels Bohr (1913) | |
| 132 | +| **Supported by** | de Broglie’s wave hypothesis (1924) | |
| 133 | +| **Key idea** | Electron orbit must accommodate a whole number of de Broglie wavelengths — standing waves only! | |
| 134 | + |
| 135 | +--- |
| 136 | + |
| 137 | +## step-by-step derivations |
| 138 | + |
| 139 | +1. **Radius of Bohr orbit $r_n$** |
| 140 | +2. **Energy of electron in $n^\text{th}$ orbit $E_n$** |
| 141 | +3. **(Bonus)**: Visual of the **standing wave condition** (why angular momentum is quantized) |
| 142 | + |
| 143 | +--- |
| 144 | + |
| 145 | +## 🔷 1. Derivation of Radius $r_n$ |
| 146 | + |
| 147 | +We’ll derive the **Bohr radius** formula starting from physics principles: |
| 148 | + |
| 149 | +### 🔹 Step 1: Use centripetal force = electrostatic force |
| 150 | + |
| 151 | +An electron moves in a circular orbit, so: |
| 152 | + |
| 153 | +$$ |
| 154 | +\text{Centripetal force} = \text{Coulomb (electrostatic) force} |
| 155 | +$$ |
| 156 | + |
| 157 | +$$ |
| 158 | +\frac{mv^2}{r} = \frac{k e^2}{r^2} |
| 159 | +$$ |
| 160 | + |
| 161 | +Where: |
| 162 | + |
| 163 | +* $m$ = electron mass |
| 164 | +* $v$ = velocity |
| 165 | +* $r$ = orbit radius |
| 166 | +* $e$ = electron charge |
| 167 | +* $k = \frac{1}{4\pi\varepsilon_0}$ (Coulomb constant) |
| 168 | + |
| 169 | +--- |
| 170 | + |
| 171 | +### 🔹 Step 2: Use Bohr’s angular momentum quantization |
| 172 | + |
| 173 | +$$ |
| 174 | +L = mvr = n \cdot \frac{h}{2\pi} |
| 175 | +\Rightarrow v = \frac{n h}{2\pi m r} |
| 176 | +$$ |
| 177 | + |
| 178 | +--- |
| 179 | + |
| 180 | +### 🔹 Step 3: Substitute velocity $v$ into force equation |
| 181 | + |
| 182 | +$$ |
| 183 | +\frac{m}{r} \left(\frac{n h}{2\pi m r}\right)^2 = \frac{k e^2}{r^2} |
| 184 | +$$ |
| 185 | + |
| 186 | +Simplify: |
| 187 | + |
| 188 | +$$ |
| 189 | +\frac{n^2 h^2}{4\pi^2 m r^3} = \frac{k e^2}{r^2} |
| 190 | +$$ |
| 191 | + |
| 192 | +Multiply both sides by $r^3$: |
| 193 | + |
| 194 | +$$ |
| 195 | +\frac{n^2 h^2}{4\pi^2 m} = k e^2 r |
| 196 | +$$ |
| 197 | + |
| 198 | +Solve for $r$: |
| 199 | + |
| 200 | +$$ |
| 201 | +r = \frac{n^2 h^2}{4\pi^2 m k e^2} |
| 202 | +$$ |
| 203 | + |
| 204 | +This is the **Bohr radius formula**. For hydrogen ($Z = 1$): |
| 205 | + |
| 206 | +$$ |
| 207 | +r_n = n^2 \cdot a_0 |
| 208 | +$$ |
| 209 | + |
| 210 | +Where $a_0 = \frac{h^2}{4\pi^2 m k e^2} \approx 0.529 \times 10^{-10} \, \text{m}$ |
| 211 | + |
| 212 | +--- |
| 213 | + |
| 214 | +## 🔷 2. Derivation of Energy $E_n$ |
| 215 | + |
| 216 | +Total energy of the electron is: |
| 217 | + |
| 218 | +$$ |
| 219 | +E = \text{Kinetic Energy} + \text{Potential Energy} |
| 220 | +$$ |
| 221 | + |
| 222 | +### 🔹 Step 1: Kinetic energy |
| 223 | + |
| 224 | +From above: |
| 225 | + |
| 226 | +$$ |
| 227 | +\frac{mv^2}{r} = \frac{ke^2}{r^2} \Rightarrow mv^2 = \frac{ke^2}{r} |
| 228 | +$$ |
| 229 | + |
| 230 | +So: |
| 231 | + |
| 232 | +$$ |
| 233 | +K.E. = \frac{1}{2} mv^2 = \frac{1}{2} \cdot \frac{ke^2}{r} |
| 234 | +$$ |
| 235 | + |
| 236 | +--- |
| 237 | + |
| 238 | +### 🔹 Step 2: Potential energy |
| 239 | + |
| 240 | +Potential energy in a Coulomb field: |
| 241 | + |
| 242 | +$$ |
| 243 | +U = - \frac{ke^2}{r} |
| 244 | +$$ |
| 245 | + |
| 246 | +--- |
| 247 | + |
| 248 | +### 🔹 Step 3: Total energy |
| 249 | + |
| 250 | +$$ |
| 251 | +E = K.E. + U = \frac{1}{2} \cdot \frac{ke^2}{r} - \frac{ke^2}{r} = -\frac{ke^2}{2r} |
| 252 | +$$ |
| 253 | + |
| 254 | +Now substitute $r$ from radius formula: |
| 255 | + |
| 256 | +$$ |
| 257 | +r = \frac{n^2 h^2}{4\pi^2 m k e^2} |
| 258 | +\Rightarrow \frac{1}{r} = \frac{4\pi^2 m k e^2}{n^2 h^2} |
| 259 | +$$ |
| 260 | + |
| 261 | +So: |
| 262 | + |
| 263 | +$$ |
| 264 | +E_n = -\frac{1}{2} ke^2 \cdot \frac{4\pi^2 m k e^2}{n^2 h^2} |
| 265 | += -\frac{2\pi^2 m k^2 e^4}{n^2 h^2} |
| 266 | +$$ |
| 267 | + |
| 268 | +This gives the **energy levels** of the hydrogen atom: |
| 269 | + |
| 270 | +$$ |
| 271 | +E_n = -\frac{13.6\, \text{eV}}{n^2} |
| 272 | +$$ |
| 273 | + |
| 274 | +--- |
| 275 | + |
| 276 | +## 🌀 3. Diagram: Standing Wave Condition |
| 277 | + |
| 278 | +Let’s describe how **standing wave = quantized orbits**: |
| 279 | + |
| 280 | +### ⚛ De Broglie Hypothesis: |
| 281 | + |
| 282 | +Electron has **wavelength**: |
| 283 | + |
| 284 | +$$ |
| 285 | +\lambda = \frac{h}{mv} |
| 286 | +$$ |
| 287 | + |
| 288 | +For a **stable orbit**, the circumference must fit a whole number of wavelengths: |
| 289 | + |
| 290 | +$$ |
| 291 | +2\pi r = n \lambda |
| 292 | +$$ |
| 293 | + |
| 294 | +Otherwise, the wave interferes destructively and **cancels itself**. |
| 295 | + |
| 296 | +This directly leads to: |
| 297 | + |
| 298 | +$$ |
| 299 | +mvr = n \cdot \frac{h}{2\pi} |
| 300 | +\Rightarrow L = n\hbar |
| 301 | +$$ |
| 302 | + |
| 303 | +✅ This matches Bohr’s postulate! |
| 304 | + |
| 305 | +--- |
| 306 | + |
| 307 | +### 📊 Visualization (text-based) |
| 308 | + |
| 309 | +| Orbit Number | Wave Fit Around Orbit | |
| 310 | +| ------------ | ----------------------------------------- | |
| 311 | +| $n = 1$ | One full wave around the circle — 🔁🌊 | |
| 312 | +| $n = 2$ | Two full waves around the circle — 🔁🌊🌊 | |
| 313 | +| $n = 3$ | Three full waves — 🔁🌊🌊🌊 | |
| 314 | + |
| 315 | +In each case, the wave **constructively interferes**, making a **stable standing wave**. |
| 316 | + |
| 317 | +--- |
| 318 | + |
| 319 | +## ✅ Summary |
| 320 | + |
| 321 | +| Concept | Formula | |
| 322 | +| -------------------------- | ------------------------------------------------ | |
| 323 | +| Radius of orbit | $r_n = \frac{n^2 h^2}{4\pi^2 m k e^2} = n^2 a_0$ | |
| 324 | +| Bohr radius | $a_0 = 0.529 \times 10^{-10} \, \text{m}$ | |
| 325 | +| Angular momentum quantized | $L = n \cdot \frac{h}{2\pi}$ | |
| 326 | +| Energy of orbit | $E_n = -\frac{13.6}{n^2} \, \text{eV}$ | |
| 327 | + |
| 328 | +--- |
0 commit comments