Open
Description
Problem Description
alphalens.tears.create_full_tear_sheet(factor_data)
Cell In[20], line 1
----> 1 alphalens.tears.create_full_tear_sheet(factor_data)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/plotting.py:46, in customize.<locals>.call_w_context(*args, **kwargs)
44 with plotting_context(), axes_style(), color_palette:
45 sns.despine(left=True)
---> 46 return func(*args, **kwargs)
47 else:
48 return func(*args, **kwargs)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/tears.py:501, in create_full_tear_sheet(factor_data, long_short, group_neutral, by_group)
497 plotting.plot_quantile_statistics_table(factor_data)
498 create_returns_tear_sheet(
499 factor_data, long_short, group_neutral, by_group, set_context=False
500 )
--> 501 create_information_tear_sheet(
502 factor_data, group_neutral, by_group, set_context=False
503 )
504 create_turnover_tear_sheet(factor_data, set_context=False)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/plotting.py:48, in customize.<locals>.call_w_context(*args, **kwargs)
46 return func(*args, **kwargs)
47 else:
---> 48 return func(*args, **kwargs)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/tears.py:365, in create_information_tear_sheet(factor_data, group_neutral, by_group)
362 plotting.plot_ic_ts(ic, ax=ax_ic_ts)
364 ax_ic_hqq = [gf.next_cell() for _ in range(fr_cols * 2)]
--> 365 plotting.plot_ic_hist(ic, ax=ax_ic_hqq[::2])
366 plotting.plot_ic_qq(ic, ax=ax_ic_hqq[1::2])
368 if not by_group:
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/plotting.py:282, in plot_ic_hist(ic, ax)
279 ax = ax.flatten()
281 for a, (period_num, ic) in zip(ax, ic.items()):
--> 282 sns.histplot(ic.replace(np.nan, 0.0), kde=True, ax=a)
283 a.set(title="%s Period IC" % period_num, xlabel="IC")
284 a.set_xlim([-1, 1])
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/distributions.py:1462, in histplot(data, x, y, hue, weights, stat, bins, binwidth, binrange, discrete, cumulative, common_bins, common_norm, multiple, element, fill, shrink, kde, kde_kws, line_kws, thresh, pthresh, pmax, cbar, cbar_ax, cbar_kws, palette, hue_order, hue_norm, color, log_scale, legend, ax, **kwargs)
1451 estimate_kws = dict(
1452 stat=stat,
1453 bins=bins,
(...)
1457 cumulative=cumulative,
1458 )
1460 if p.univariate:
-> 1462 p.plot_univariate_histogram(
1463 multiple=multiple,
1464 element=element,
1465 fill=fill,
1466 shrink=shrink,
1467 common_norm=common_norm,
1468 common_bins=common_bins,
1469 kde=kde,
1470 kde_kws=kde_kws,
1471 color=color,
1472 legend=legend,
1473 estimate_kws=estimate_kws,
1474 line_kws=line_kws,
1475 **kwargs,
1476 )
1478 else:
1480 p.plot_bivariate_histogram(
1481 common_bins=common_bins,
1482 common_norm=common_norm,
(...)
1492 **kwargs,
1493 )
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/distributions.py:418, in _DistributionPlotter.plot_univariate_histogram(self, multiple, element, fill, common_norm, common_bins, shrink, kde, kde_kws, color, legend, line_kws, estimate_kws, **plot_kws)
416 kde_kws["cumulative"] = estimate_kws["cumulative"]
417 log_scale = self._log_scaled(self.data_variable)
--> 418 densities = self._compute_univariate_density(
419 self.data_variable,
420 common_norm,
421 common_bins,
422 kde_kws,
423 log_scale,
424 warn_singular=False,
425 )
427 # First pass through the data to compute the histograms
428 for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
429
430 # Prepare the relevant data
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/distributions.py:303, in _DistributionPlotter._compute_univariate_density(self, data_variable, common_norm, common_grid, estimate_kws, log_scale, warn_singular)
299 common_norm = False
301 densities = {}
--> 303 for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
304
305 # Extract the data points from this sub set and remove nulls
306 sub_data = sub_data.dropna()
307 observations = sub_data[data_variable]
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/_core.py:983, in VectorPlotter.iter_data(self, grouping_vars, reverse, from_comp_data)
978 grouping_vars = [
979 var for var in grouping_vars if var in self.variables
980 ]
982 if from_comp_data:
--> 983 data = self.comp_data
984 else:
985 data = self.plot_data
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/_core.py:1054, in VectorPlotter.comp_data(self)
1050 axis = getattr(ax, f"{var}axis")
1052 # Use the converter assigned to the axis to get a float representation
1053 # of the data, passing np.nan or pd.NA through (pd.NA becomes np.nan)
-> 1054 with pd.option_context('mode.use_inf_as_null', True):
1055 orig = self.plot_data[var].dropna()
1056 comp_col = pd.Series(index=orig.index, dtype=float, name=var)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:441, in option_context.__enter__(self)
440 def __enter__(self) -> None:
--> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops]
443 for pat, val in self.ops:
444 _set_option(pat, val, silent=True)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:441, in <listcomp>(.0)
440 def __enter__(self) -> None:
--> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops]
443 for pat, val in self.ops:
444 _set_option(pat, val, silent=True)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:135, in _get_option(pat, silent)
134 def _get_option(pat: str, silent: bool = False) -> Any:
--> 135 key = _get_single_key(pat, silent)
137 # walk the nested dict
138 root, k = _get_root(key)
File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:121, in _get_single_key(pat, silent)
119 if not silent:
120 _warn_if_deprecated(pat)
--> 121 raise OptionError(f"No such keys(s): {repr(pat)}")
122 if len(keys) > 1:
123 raise OptionError("Pattern matched multiple keys")
OptionError: No such keys(s): 'mode.use_inf_as_null'
Please provide any additional information below:
Versions
- Alphalens version: 0.4.3
- Python version: 3.10.10
- Pandas version: 2.0.3
- Matplotlib version: 3.5.3
Metadata
Metadata
Assignees
Labels
No labels
Activity