From 9010536f9577b80138fd275328b50f02a3575b3e Mon Sep 17 00:00:00 2001 From: Christopher Fenaroli Date: Mon, 10 Jul 2017 13:42:26 -0400 Subject: [PATCH 1/4] Added draft of Model Validation lecture --- .../lectures/Model_Validation/notebook.ipynb | 1031 + .../lectures/Model_Validation/preview.html | 15854 ++++++++++++++++ 2 files changed, 16885 insertions(+) create mode 100644 notebooks/lectures/Model_Validation/notebook.ipynb create mode 100644 notebooks/lectures/Model_Validation/preview.html diff --git a/notebooks/lectures/Model_Validation/notebook.ipynb b/notebooks/lectures/Model_Validation/notebook.ipynb new file mode 100644 index 00000000..f8b782a6 --- /dev/null +++ b/notebooks/lectures/Model_Validation/notebook.ipynb @@ -0,0 +1,1031 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Model Selection and Validation\n", + "By Chris Fenaroli, Max Margenot, and Delaney Granizo-Mackenzie\n", + "\n", + "Part of the Quantopian Lecture Series:\n", + "\n", + "* [www.quantopian.com/lectures](https://www.quantopian.com/lectures)\n", + "* [github.com/quantopian/research_public](https://github.com/quantopian/research_public)\n", + "\n", + "Notebook released under the Creative Commons Attribution 4.0 License.\n", + "\n", + "---\n", + "Linear regression is a technique that models the relationship between a set of independent variables $X_1,\\ldots, X_k$ and a dependent outcome variable $Y$. Simple linear regression with two variables allows us to determine which linear model of the form $Y = \\beta_0 + \\beta_1 X$ best explains the data, while a multiple linear regression allows for the dependent variable to be a linear function of multiple independent variables $X_1,\\ldots, X_k$: \n", + "\n", + "$$ Y = \\beta_0 + \\beta_1 X_1 + \\ldots + \\beta_k X_k + \\epsilon_i $$\n", + "\n", + "More background information on regressions can be found in the [simple linear regression](https://www.quantopian.com/lectures#Linear-Regression) and [multiple linear regression](https://www.quantopian.com/lectures#Multiple-Linear-Regression) lectures.\n", + "\n", + "In many cases, choosing which explanatory variables to include in a model is not trivial. If you include too many variables $X_1,\\ldots, X_k$ you risk overfitting and multicollinearity (correaltion of explanatory variables) which would invalidate your regression results. With too few variables you risk excluding interactions. **Model selection** is the process of determining which combination of explanatory variables maximizes explanatory power and minimizes complexity. \n", + "\n", + "Once we have chosen our model fitted the data using an estimation method like OLS, it would be useful to quantify just how \"good\" our end-result model is. But what exactly makes a model \"good\"? Is it how well it fits the data? It's simplicity/complexity? Or is it how well it performs when applied to out-of-sample data? **Model validation** is the process of determining how \"good\" a model is and whether it is a satisfactory explanation for the given data." + ] + }, + { + "cell_type": "code", + "execution_count": 852, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# Import libraries\n", + "import numpy as np\n", + "import pandas as pd\n", + "from statsmodels import regression\n", + "import statsmodels.api as sm\n", + "import statsmodels.stats.diagnostic as smd\n", + "import scipy.stats as stats\n", + "import matplotlib.pyplot as plt\n", + "import math" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Selection\n", + "\n", + "When presented with many possible explanatory variables, choosing which to include in a regression model can be a difficult task. Luckily, there exists a variety of strategies and criteria that simplify model selection. \n", + "\n", + "As an example, let's attempt to model the US unemployment rate with US inflation rate, QQQ NASDAQ-100 index, IWM Russel 2000 index, gold prices, and USD vs. EUR exchange rate as potential explanatory variables. All of these macro indicators are available as free [Quantopian Data Feeds](https://www.quantopian.com/data).\n", + "\n", + "Let's begin by pulling the above as Blaze expressions." + ] + }, + { + "cell_type": "code", + "execution_count": 994, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "from quantopian.interactive.data.quandl import fred_unrate as unemployment_bz\n", + "from quantopian.interactive.data.quandl import rateinf_inflation_usa as inflation_bz\n", + "from quantopian.interactive.data.quandl import bundesbank_bbk01_wt5511 as gold_bz\n", + "from quantopian.interactive.data.quandl import currfx_usdeur as fx_bz\n", + "\n", + "import blaze as bz\n", + "from odo import odo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's migrate the data into Pandas series using `asof_date` as our index keeping in mind that:\n", + "\n", + "* Both inflation and unemployment data have one month intervals, so data index intervals cannot be anything smaller than monthly\n", + "* Unemployment data is released at the start of the month after the relevant month and inflation rate data is released ~3 weeks after so we must shift both back a month from the asof_date to prevent look-ahead bias\n", + "* Gold prices must be shifted back one day from asof_date to prevent look-ahead bias\n", + "* QQQ and IWM pricing data only goes back to 2002, so we can only consider data from 2002 on\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1026, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "# Start date dictated by QQQ and IWM\n", + "start = '2002-01-01'\n", + "end = '2017-01-01'\n", + "\n", + "# Sample period will be 2002-2012, saving 2012-2017 for model validation\n", + "s = '2002-01-01'\n", + "e = '2012-01-01'\n", + "\n", + "index = pd.date_range(start=start, end = end, freq= 'MS')\n", + "\n", + "# Adjusting data along points mentioned above and putting in Pandas series\n", + "unemployment = odo(unemployment_bz, pd.DataFrame).set_index(['asof_date']).shift().loc[index].ffill()['value'][1:]\n", + "inflation = odo(inflation_bz, pd.DataFrame).set_index(bz.compute(inflation_bz.asof_date) + pd.Timedelta('1 days')).shift().loc[index].ffill()['value'][1:]\n", + "gold = odo(gold_bz[gold_bz.asof_date >= start], pd.DataFrame).set_index(['asof_date'])['value'].sort_index().asof(index).ffill()[1:]\n", + "fx = odo(fx_bz, pd.DataFrame).set_index(['asof_date'])['rate'].sort_index().asof(index).ffill()[1:]\n", + "qqq = get_pricing('QQQ', start_date=start, end_date=end, fields = 'price').asof(index).ffill()[1:]\n", + "iwm = get_pricing('IWM', start_date=start, end_date=end, fields = 'price').asof(index).ffill()[1:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have data for on independent variable:\n", + "\n", + "$$ Y_u: unemployment $$\n", + "\n", + "And 5 predictor variables:\n", + "\n", + "$$X_q: QQQ \\:\\:\\:\\:\\: X_i: inflation \\:\\:\\:\\:\\: X_r: IWM \\:\\:\\:\\:\\: X_f: FX Euro rate \\:\\:\\:\\:\\: X_g: gold$$\n", + "\n", + "The next step is to figure out which predictors to include in our model. We could include every single predictor we have, but we would not be sure if every predictor was significant. Adding many insignificant predictors causes a few different issues. If there are more predictors there is a larger chance that the predictors themselves are correalted with each other which would lead to regression model instability and invalidate our results. Furthermore, including many regressors hurts the predictive power of a model. A solution might be to include as few variables as possible, but we would likely exclude some explanatory effects this way. Let's look at some ways to find this balance and determine which variables to include." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Selection Criteria\n", + "\n", + "There exist a number of metrics we can use to asses the relative and absolute strength of a specfic model. The ones we will focus on are $R^2$, adjusted $R^2$, BIC, and AIC." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Coefficient of Determination ($R^2$)\n", + "\n", + "The coefficient of determination, or $R^2$, is a metric that tells us the proportion of in-sample variance 'explained' by a certain model. For example, an $R^2$ of 0.9 tells us that the magnitude of the model residual variance is about 90% of that of the sample data. The formula for $R^2$ is:\n", + "\n", + "$$R^2 = \\frac{SS_{reg}}{SS_{total}} = 1 - \\frac{\\sum_{i=1}^{n} (Y_i - \\hat{Y_i})^2}{\\sum_{i=1}^{n} (Y_i - \\bar{Y})^2}$$\n", + "\n", + "Where $Y_i$ are sample response values, $\\hat{Y_i}$ are the response values predicted by the model and $\\bar{Y}$ is the sample mean response.\n", + "\n", + "\n", + "\n", + "One major drawback of $R^2$ in model selection is that as the number of explanatory variables increases, $R^2$ will always also increase or stay the same, even if the incremental variables are not adding much predictive insight. To illustrate this, let's find the $R^2$ of five unemployment models, each model having one more predictor than the next. We will do this by defining a function that takes predictor variables $X_1,\\ldots, X_k$ and an independent variable $Y$, runs a regression, and calculates $R^2$ using the `model.rsquared` attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 1055, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ------ R Squared Values ------\n", + "1 predictor: 0.124499233139\n", + "2 predictors: 0.459882090695\n", + "3 predictors: 0.700574522302\n", + "4 predictors: 0.734219660452\n", + "5 predictors: 0.875758340212\n" + ] + } + ], + "source": [ + "def rsquared(X,Y):\n", + " X = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, X).fit()\n", + " return model.rsquared\n", + "\n", + "# Defining variables, making sure to keep data within the sample period [:e]\n", + "Y = unemployment[:e]\n", + "X = [qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]]\n", + "X_str = ['qqq', 'inflation', 'iwm', 'fx', 'gold']\n", + "\n", + "print '------ R Squared Values ------'\n", + "print '1 predictor:', rsquared(np.column_stack(X[:1]), Y)\n", + "print '2 predictors:', rsquared(np.column_stack(X[:2]), Y)\n", + "print '3 predictors:', rsquared(np.column_stack(X[:3]), Y)\n", + "print '4 predictors:', rsquared(np.column_stack(X[:4]), Y)\n", + "print '5 predictors:', rsquared(np.column_stack(X[:5]), Y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, increasing the number of predictors inflates the $R^2$ output. If we only went by the $R^2$ prediction criteria, the best model would always be the one with the most predictor variables. This invalidates $R^2$ as a model selection criteria for models with different amounts of predictor variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### $\\bar{R}^2$ (Adjusted $R^2$)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because regular $R^2$ becomes inflated as more variables are added we cannot use $R^2$ alone for model selection. To account for this effect, there exists an alternate version of $R^2$ which includes a penalty for adding more variables. The formula is below, where $p$ is the number of predictor variables, and $n$ is the sample size:\n", + "\n", + "$$ \\bar{R}^2 = 1-(1-R^2)\\frac{n-1}{n-p-1} $$\n", + "\n", + "Let's repeat the expirement above, this time using $\\bar{R}^2$, to see if it still inflates as more predictors are added." + ] + }, + { + "cell_type": "code", + "execution_count": 1056, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------ Adj R Squared Values ------\n", + "1 predictor: 0.117079735115\n", + "2 predictors: 0.45064930592\n", + "3 predictors: 0.692830759948\n", + "4 predictors: 0.724975126903\n", + "5 predictors: 0.870309144607\n" + ] + } + ], + "source": [ + "def rsquared_adj(X,Y):\n", + " X = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, X).fit()\n", + " return model.rsquared_adj\n", + "\n", + "print '------ Adj R Squared Values ------'\n", + "print '1 predictor:', rsquared_adj(np.column_stack(X[:1]), Y)\n", + "print '2 predictors:', rsquared_adj(np.column_stack(X[:2]), Y)\n", + "print '3 predictors:', rsquared_adj(np.column_stack(X[:3]), Y)\n", + "print '4 predictors:', rsquared_adj(np.column_stack(X[:4]), Y)\n", + "print '5 predictors:', rsquared_adj(np.column_stack(X[:5]), Y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The $\\bar{R}^2$ are similar to the $R^2$ values, however we can see that the values are slightly smaller due to the predictor penalty. $\\bar{R}^2$ should always be used when comparing models with different amounts of predictors to avoid the predictor inflation effect of $R^2$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Akaike and Bayesian Information Criterion (AIC and BIC)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$R^2$ and $\\bar{R}^2$ provide absolute measures on the quality on a model, meaning they can be calculated on any single regression model. They tell you how \"good\" a model is on its own on a scale of 0 to 1. \n", + "\n", + "AIC and BIC provide relative measures of quality and are calculated with an underlying selection pool of models. Instead of yeidling a metric with an absolute scale like $R^2$ and $\\bar{R}^2$, they return values for every model in the selection pool and determining model quality requires looking at all of the values and comparing them.\n", + "\n", + "AIC is calculated along the following formula: \n", + "\n", + "$$ AIC = 2p + nLog(SS_{resid}/n) $$\n", + "\n", + "BIC is calculated similarly:\n", + "\n", + "$$ AIC = ln(n) \\cdot p + nLog(SS_{resid}/n) $$\n", + "\n", + "Where $SS_{resid}$ is the sum of squared residuals $\\sum_{i=1}^{n}(Y_i - \\hat{Y_i})^2$\n", + "\n", + "Let's use AIC and BIC to compare 5 simple linear regression models for unemployment. We will compute them using the `model.aic` and `model.bic` attributes." + ] + }, + { + "cell_type": "code", + "execution_count": 1057, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " AIC values: BIC values: \n", + "Y = b0 + b1*qqq 481.904294922 487.479278408\n", + "Y = b0 + b1*inflation 464.408261441 469.983244926\n", + "Y = b0 + b1*iwm 497.835819526 503.410803012\n", + "Y = b0 + b1*fx 488.599333286 494.174316772\n", + "Y = b0 + b1*gold 398.65240035 404.227383836\n" + ] + } + ], + "source": [ + "def AIC(X,Y):\n", + " X = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, X).fit()\n", + " return model.aic\n", + "\n", + "def BIC(X,Y):\n", + " X = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, X).fit()\n", + " return model.bic\n", + "\n", + "AICs = pd.Series([AIC(X[_],Y) for _ in range(5)])\n", + "BICs = pd.Series([BIC(X[_],Y) for _ in range(5)])\n", + "\n", + "print \"%-24s %-15s %-13s\" % ('', 'AIC values:', 'BIC values:')\n", + "print \"%-24s %-15s %-13s\" % ('Y = b0 + b1*qqq', AICs[0], BICs[0])\n", + "print \"%-24s %-15s %-13s\" % ('Y = b0 + b1*inflation', AICs[1], BICs[1])\n", + "print \"%-24s %-15s %-13s\" % ('Y = b0 + b1*iwm', AICs[2], BICs[2])\n", + "print \"%-24s %-15s %-13s\" % ('Y = b0 + b1*fx', AICs[3], BICs[3])\n", + "print \"%-24s %-15s %-13s\" % ('Y = b0 + b1*gold', AICs[4], BICs[4])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's plot the AICs and BICs." + ] + }, + { + "cell_type": "code", + "execution_count": 926, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAH6CAYAAADC2EluAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYlFfePvB7GgwwDDDA0FUUBAFplqiJsRcssaGJNTHJ\nbnaTuG5ek9f4JjG/bPLm3SSbtuuaZEuKUdcYWxTsLdGYBKUXKQIWepPeZ+b3x8DIgIJReIDh/lyX\nV3SeMzNn3H2EL99z7iPS6XQ6EBERERERmSBxb0+AiIiIiIiop7DgISIiIiIik8WCh4iIiIiITBYL\nHiIiIiIiMlkseIiIiIiIyGSx4CEiIiIiIpPFgoeIqB/x9fXF+vXrOzz+yiuvwNfX91e/3quvvoot\nW7Z0Omb//v1Yu3btHa9rNBo89NBDeOqpp24738LCQsOfv//+ezz22GMICwvDjBkz8NxzzyEzM/NX\nz/t+ffLJJ9i0aVOHx6OiohAQEIA5c+YgLCwMs2bNwubNm9HU1AQAyM3Nhb+/v9FzDhw4gEWLFmHO\nnDmYMWMGXnrpJRQVFQnyOYiIqGsseIiI+pn09HTU1tYa/tzc3IykpCSIRKIee8/OXvvcuXMICQlB\nZmZmh2/02z7v7NmzeOWVV/Dyyy/jyJEjOHHiBCZNmoRVq1ahrKysx+b+a7m5ueHw4cM4cuQIDh06\nhKtXr2LHjh2G620/086dO/HJJ5/ggw8+wOHDh3H06FEMGjQIq1evRmNjY29Mn4iI2pH29gSIiOjX\nGTt2LI4fP46FCxcCAM6fP4+RI0ciPT3dMObIkSPYunUrNBoN1Go13nzzTXh4eKC8vBwbNmzAtWvX\n4O3tDXNzc8Nzrly5gjfeeANFRUUwNzfH22+/jYCAgC7ns3//fixYsACDBw/Gd999h9/85jeGa23P\ntt6yZQvWr1+P4OBgw2PLli2Dk5MT5HI5amtr8d///d/IyspCc3Mzxo0bh9dffx0SicTo/WJjY/Hm\nm2+irq4OEokEr7zyCsaPH4/c3Fw8+uijeOaZZ7B7925UVlbi5ZdfRlhYGBoaGrBx40YkJCTA3d0d\nnp6ed/V3bWZmhpCQENy4caPDNZ1Oh61bt+K9994zvJ5EIsG6devg5+cHkUiEwsJCbNy4ESUlJWhq\nakJYWBj++Mc/3tV7ExFR92CHh4ionwkLC0NkZKThz5GRkQgLCzP8OS8vD5s3b8bWrVtx+PBhTJo0\nCZs3bwYA/OMf/4BKpcLJkyfx6quv4ty5cwD037w/99xzWLRoEY4dO4Y33ngDzz77LLRabadzqaio\nQGJiIqZOnYrFixfj4MGDtx1XV1eH5ORkTJo0qcO1SZMmwdLSEvv374dSqcThw4dx7NgxmJubIyMj\no8P4zZs348knn8SRI0fw9NNP4/XXXzdcKy8vh0QiwaFDh7Bp0yZ89NFHAIA9e/agtLQUp06dwl//\n+lecP3++08/VqrS0FGfPnsXUqVM7XMvMzERlZSXGjx/f4dq0adMgk8nw1VdfYcyYMYiIiMChQ4eQ\nn5+PkpKSu3pvIiLqHix4iIj6EZFIhAceeAAZGRkoLy9HQ0MD4uLiMG7cOEM35cKFCxg3bhw8PDwA\nAEuXLkVUVBS0Wi2io6MNxZGbmxvGjBkDAMjKysLNmzexePFiAEBISAhUKhViYmI6nU9kZCRmz54N\nsViMoUOHQqFQICUlpcO4yspKAICDg8MdX8ve3h5xcXH48ccf0dTUdMd9Sfv378ecOXMAAKNGjUJO\nTo7hmkajMXwGf39/5OfnAwCio6Mxc+ZMiEQi2NraYsqUKXecR25uLubMmYPZs2dj6tSpGDRokFFX\nqlVFRQVUKtUdX6f1M50/fx7R0dGQSqV45513Ov07ICKi7sclbURE/YxIJMKMGTNw+PBh2NvbY8KE\nCZBIJIa9JWVlZVAqlYbxCoUCOp0ON2/eRHl5OaytrQ3XbGxsAOgLktraWkMhodPpUFNTg/Ly8k7n\nsn//fmRnZ2PPnj3Q6XRobm7G/v374efnZzTOxsYGYrEYhYWFcHFxue1rzZ49G5WVlfj444+RnZ2N\nRx55BC+//DJkMpnRuIiICHz99deora2FRqMxWjYnkUggl8sBAGKx2NChqqioMPrcSqUSNTU1t51H\n6x6e1r+Hbdu24fHHH8eePXuMxtnZ2aGkpARarRZi8e1/frh27VpotVq88cYbKC4uxooVK7Bu3brb\njiUiop7BDg8RUT80Z84cHD9+HMeOHcPcuXONrjk4OODmzZuGP1dUVEAsFsPOzg42NjaoqqoyXGsN\nC1Cr1bC2tsbhw4cNG/Z/+OEHTJ8+/Y5zyMzMRE1NDS5duoSoqChcvHgRp0+fxpEjR6DRaIzGyuVy\njBw5EseOHevwOl9++aVhj8yyZcuwe/duREZGIikpCQcOHDAaW1hYiNdeew1vv/02jhw5gn/+8593\n9felVCpv+7m7IhKJ8NhjjyEpKcno7xQAPD09YW9vj9OnT3d43t///nfcvHkTYrEYv/nNb3Dw4EHs\n2rULBw8exE8//XRX701ERN2DBQ8RUT/S2s0ICQlBYWEhMjIyMHbsWKNrDz74IKKjow1LvXbt2oUH\nH3wQYrEYwcHBOHHiBADg+vXrhiVrbm5ucHZ2NhQkZWVl2LBhA+rr6+84l3379nUoiOzs7ODp6Ykf\nfvihw/j169fj008/Ndo/s3PnTmzbtg1KpRJbt27F3r17AegLMHd39w7pcDdv3oSlpSU8PT3R3NyM\nb775BoB+j1Dbv4P2goODcfr0aWi1WpSVld12fq3av8aJEyfg5ORk6Ia1XheJRFi/fj3eeustJCYm\nAtAn5n344Yc4deoUFAoFNm/ejAsXLgAA3N3duZyNiKgXcEkbEVE/0rYAmDFjhlE8des1JycnvPXW\nW/j9738PjUYDd3d3vPnmmwCAZ555Bi+88AKmT5+OYcOGYebMmYbnv//++3j99dfx0UcfQSKRYO3a\ntYblYe1ptVpERETgb3/7W4dr06dPx4EDBzBlyhSj+Y4fPx4ffvghPv74Y7z55puQSCTw8/PDzp07\nYWNjgwULFmDTpk3417/+BZFIhKCgICxYsMDotX19fTFp0iTMmjULDg4O2LhxI2JiYrB69Wp8/PHH\nd4zPXrZsGS5duoTp06fDzc0NM2fOREVFxW3H5ufnG5b2abVaqNVqfPbZZ4Zla23fY/HixZDL5Xjt\ntddQX18PsViMsWPH4quvvoJMJsPy5cuxefNmvPXWW9DpdJg6deptQw6IiKjniHR3+nFYi6ioKKxf\nvx7e3t7Q6XTw8fHB008/jU2bNqG5uRkymQzvvfce7O3tcfDgQWzbtg0SiQRLly5FeHi4UJ+DiIiI\niIiog7sqeHbs2IGPP/7Y8NjLL7+MSZMmISwsDDt27EB+fr4hznTv3r2QSqUIDw/Hjh07jDbOEhER\nERERCemu9vC0r4lef/11zJo1CwCgUqlQXl6O+Ph4BAYGwsrKCubm5ggNDe0yzpSIiIiIiKgn3VXB\nk5mZiWeffRYrV67EhQsXYGFhYYj73LlzJ+bNm4eSkhKj8whUKhWKi4t7bOJERERERERd6TK0YPDg\nwXj++ecRFhaGGzduYM2aNThx4gTEYjFeeukljB8/HuPGjUNERITR87pYKQdAfxAcERERERFRZ0aN\nGnXPz+2y4HFycjKcyu3h4QFHR0cUFhbir3/9Kzw9PfHss88C0EeItu3oFBYWIiQkpMsJ3M/kiUxF\ndHQ07wWiFrwfiPR4LxDp3W+TpMslbYcOHcKWLVsAAKWlpSgtLcXFixdhZmaG559/3jAuKCgISUlJ\nqK6uRk1NDWJjY3mTEhERERFRr+qywzN16lRs2LABy5cvh06nw+uvv46tW7eisbERq1evhkgkgpeX\nFzZv3owNGzbgySefhFgsxrp166BQKIT4DERERERERLfVZcFjZWWFTz/91Oixhx9++LZjZ86caXSI\nHRERERER9QydToeGhobenka3Mjc3v+Mh0vfqrlLaiIiIiIiob2loaDCpgqenPk+XHR4iIiIiIuqb\nzM3NIZfLe3safRo7PEREREREZLJY8BARERERkcliwUNERERERCaLBQ8REREREd2XiIgIBAQEoLy8\nHACwZcsW7NixAwCg0Wjw/vvvY9GiRVi5ciWeeOIJpKenCzY3FjxERERERHRfIiIiMGvWLBw7dqzD\ntX/+85+oqqrC/v37sWPHDqxfvx7r1q2DVqsVZG4seIiIiIiI6J5VVFTg6tWr+O1vf4uIiIgO17/5\n5hu8+OKLhj+HhIRg7969EIuFKUUYS01EREREZAI+P5SMH+Nzu/U1Hwxyw5Pz/Tsdc/ToUUyePBk+\nPj4oKipCUVGR4Vp1dTXMzc2hUCiMntP+zz2JHR4iIiIiIrpnERERmD59OgBg6tSpOHz4sNF1jUbT\nG9MyYIeHiIiIiMgEPDnfv8tuTHcrLCxEfHw83nrrLQBAfX09rK2tMWnSJAD6To5Go0FZWRlUKpXh\neSkpKfDz8xNkjuzwEBERERHRPYmIiMDKlStx4MABHDhwAEePHkVFRQWuX79uGLNixQq8/fbbhk5P\ndHQ0Nm3ahMbGRkHmyIKHiIiIiIjuSWRkJJYsWWL02MKFC42WtT399NPw8vLCwoULsXr1anz++ef4\n5JNPYGZmJsgcuaSNiIiIiIjuyb59+zo89uyzz+LZZ581eux3v/sdfve73wk1LSPs8BARERERkcli\nwUNERERERCaLBQ8REREREZksFjxERERERGSyWPAQEREREZHJYsFDREREREQmi7HURERERER0T3Jz\nczF//nwEBAQAABobG/HSSy/h+vXrSE9Px8aNGwEA//73vxEZGQkLCwvodDr88Y9/xNixYwWZIwse\nIiIiIiK6Z0OHDsW2bdsAAJcuXcLWrVsxf/58iEQiAMChQ4cQHR2N3bt3QyqV4urVq1i7di0OHjwI\na2vrHp8fl7QREREREdE90+l0ht8XFxfD2dnZ6LHt27fjxRdfhFSq77UMGTIEhw4dEqTYAdjhISIi\nIiIyCV/H7cXPN2K69TXHeYRidfCSTsdkZ2djzZo1aGhoQFFREf71r38hISHBcD03NxdDhw41eo5C\noejWeXaGBQ8REREREd2ztkvasrOz8Yc//AGPP/644Xrbbk9vYMFDRERERGQCVgcv6bIb09M8PT0h\nl8shkUgMj3l4eCAlJQV+fn6Gx9LS0uDl5WU0rqdwDw8REREREd2zth2c8vJylJSUoLm52fDY448/\njnfeeQd1dXUAgKysLLzwwguoqKgQZH7s8BARERER0T27evUq1qxZA51Oh6amJrz22mtGxUxYWBhq\namrw6KOPwsbGBmZmZvjoo4+gUqkEmR8LHiIiIiIiuidubm6Ijo7uclx4eDjCw8MFmFFHXNJGRERE\nREQmiwUPERERERGZLBY8RERERERksriHh4iIiIion2poaOjtKXSbhoYGmJubd/vrsuAhIiIiIuqH\neqI46E3m5uYseIiIiIiISE8kEkEul/f2NPo87uEhIiIiIiKTxYKHiIiIiIhMFgseIiIiIiIyWSx4\niIiIiIjIZLHgISIiIiIik8WCh4iIiIiITBYLHiIiIiIiMlkseIiIiIiIyGSx4CEiIiIiIpPFgoeI\niIiIiEwWCx4iIiIiIjJZLHiIiIiIiMhkSXt7AkRERABQVluOk1nnUXyzCJocCVys1XBWOEImkfX2\n1IiIqB9jwUNERL2qtrEO36UeR2T6KTRqmgAA3/94EQAgEongaKmCq7UTXK2d4GLtBFel/vcqC1uI\nRKLenDoREfUDLHiIiKhXNGuacSLzHPakHEZVQzXsLGzwhP88lOYWwUJtjbyqQuRXFSGvqhBxBSmI\nK0gxer65xAwu1mp9EWQoiNRwVTrBUmbRS5+KiIj6GhY8REQkKJ1Oh59uxOA/id+hsLoYFlI5Hhv5\nCOYOnwZzqRmiy6MxyneU0XNqGmsNxU/rf1t/XS3P6fAeNnKlcRFk7QRXazXUCkdIxRKhPioREfUB\nLHiIiEgwKUXp2B6/H1fKrkIiEiPMewqW+IVBKbfu9HlWZpbwsh8CL/shRo9rdVqU1ZXri6DKwpaC\nSP/f1OIruFycYTReIhJDrXBo0xVSGwojG7mSS+SIiEwQCx4iIupxNyrysCPhAGLyEgEA4z1GYfnI\nR+Bsrb6v1xWLxHCwVMHBUoWRTr5G1xo1TSisLr7VFaq8VQzFVCUiBolG4y1kcrgqnOCivFUIubR0\niORS8/uaJxER9R4WPERE1GPKasuxO+kQzlz9CTqdDn6O3lgVtLhDp6YnmElk8LBxhYeNa4drVQ3V\nHZbG5VcW4npFLjJvXusw3t7CzrA0rnWfkKu1Exwt7SEW84QHIqK+jAUPERF1u9qmOhxMPY6INH3y\nmrvSBSuDFiHUJaBPLBuzNlfA2lyB4Q5DjR7XarUoqS0zLoRaCqOkojQkFaUZjZeKpXBWOLbZJ3Qr\nSU5prhDyIxER0R10WfBERUVh/fr18Pb2hk6ng4+PD55++mm89NJL0Ol0cHR0xLvvvguZTIaDBw9i\n27ZtkEgkWLp0KcLDw4X4DERE1EfcLnntyYD5mDRkHCT9ICxALNbv8VErHBDs4m90rb65AQVVxUb7\nhFp/5VTmd3gthZmVcVeopSBytlbDjGcLEREJ5q46PGPHjsXHH39s+POmTZuwevVqzJw5Ex9++CH2\n7t2LBQsWYOvWrdi7dy+kUinCw8Mxc+ZMKJXKHps8ERH1DTqdDj/nxGBnwu2T10yBXGqOIXbuGGLn\nbvS4TqdDRUOVvgiqNO4KZZVdQ0ZpttF4EURwsFLBtV2ktqu1E1SWthCLuESOiKg73VXBo9PpjP4c\nFRWFP/3pTwCAKVOm4PPPP8eQIUMQGBgIKysrAEBoaChiYmIwefLk7p0xERH1KSlFGdgev8+QvDbb\nezLC/eZ0mbxmKkQiEWzlStjKlRjh6G10TaPVoKim9FZXqE1BFF9wGfEFl43Gm0lkcFGo2wQnOBu6\nQ1ZmlkJ+LCIik3FXBU9mZiaeffZZVFRU4LnnnkN9fT1kMn073t7eHkVFRSgtLYVKpTI8R6VSobi4\nuGdmTUREvS6nIh87EvYjupuT10yJRCxpORxVDWCk0bXapjoUGAUnFCG/shB51UW4VpHb4bVszK3b\nLJFzMgQnOFk5QCrhllwiojvp8l/IwYMH4/nnn0dYWBhu3LiBNWvWoLm52XC9ffenq8fbi46Ovsup\nEpk23gvUX1Q11+B8WQwSK9Ohgw4ecmdMdhgLV3M1ctNvIBc37vs9BtL9YAEJhsEVw8xcAQdAZ69D\ntaYWZY0VKGuquPXfpgqklWQhtSTT6PkiiGArs4adzAYqmQ3szWz0vzezgUJi2SdCIujeDaR7gain\ndFnwODk5ISwsDADg4eEBBwcHJCUlobGxEWZmZigsLISTkxPUarVRR6ewsBAhISFdTmDUqFFdjiEy\nddHR0bwXqM/TJ6+dQET2STRqmuCmdMbKwEUY5TqyW7+p5v1wZ02aJhTWlLScKVTUJkmuEFm1N5DV\nrtiUS82Nu0KGJDk1LGTyXvoUdLd4LxDp3W/h32XBc+jQIVy7dg3PP/88SktLUVpaisWLF+Po0aN4\n5JFHcOzYMUycOBGBgYF49dVXUV1dDZFIhNjYWLzyyiv3NTkiIup9zZpmnMw6jz3JkahsqIad3AZr\nQ+Zhsuf4fpG8ZkpkEhnclS5wV7p0uFbdWGM4YLVtcEJOZQGyb3bsutlZ2LQrhPSFkaOVPf93JSKT\n0mXBM3XqVGzYsAHLly+HTqfDG2+8AV9fX2zcuBG7d++Gq6srFi1aBIlEgg0bNuDJJ5+EWCzGunXr\noFDwDAIiov5Kp9Phl5xY7Ew4gIKW5LVHA+Zjrs80yKXmvT09akdhZgVve09423saPa7VaVFae/NW\nEVR5qyuUUpSB5KJ0o/ESsQTOVo5tghNuxWorza25RI6I+p0uCx4rKyt8+umnHR7//PPPOzw2c+ZM\nzJw5s3tmRkREveZycQa2x+1DRmvymtdkLPEPg42cRw30N2KRGI5W9nC0skeQs5/RtcbmRhRUFxsf\ntNpSEOVWFXR4LSuZhaEj5GKtNgQnOCvUJhM/TkSmh7EuRERkkFOZj53xB3ApLwEAMM4jFMtHLmhJ\nGSNTYyY1wyBbNwyydTN6XKfToaqh2pAe1/aw1ezyG7hSdrXDazlYqowOWG1NknOwtOPZQkTUq1jw\nEBERyurK8W1SJE5n/widTocRjl5YGbgIwx2GCvL+Op0O0alFOPhDJmprqpCQlwxXRwXc1Qq4OlrB\nVmHOpVQCEolEUMqtoZRbw9fRy+iaRqtBcW1ZS3BCm85QVRESC1ORWJhqNF4mlsK53dK41l8Kcysh\nPxYRDVAseIiIBrDW5LXItFNo0DT2WPJaZzJu3MSXESlIuFJieCwt94rRGCu5FG5qhb4IclTATa2A\nm6MCLg5WkJvxS5mQJGIJnBWOcFY4AggwulbfVI/86mLkVRV0SJK7UZHX4bWszRVwNRy0euuXk8IB\nMolMoE9ERKaOXyWIiAagZq0GJzPPGSWvPR6yFFMETF4rKK3B14cv44c4/SGbo0c44fG5frielQoH\n12HILapGbvGtX1m5FUi/Xt7hdRxsLQxFkKujFdwdreHqaAVHO0tIxOwKCUkuk8PTzgOedh5Gj+t0\nOpTXV95aGtcmSS6j7CrSSrOMxotEIqgt7eGqdIKLQr9XqHXvkMrClt0+IvpVWPAQEQ0grclr/0n4\nDvnVRZBLzQVPXqusacQ3J9Nw+MdsNGt08HK3wdr5/gj0cgQAlOZJ4OdpDz9Pe6PnaTRaFN2su1UE\ntSmI4jKKEZdRbDReJhXD1cHq1tI4B/1/3dQKWFtyg72QRCIR7CxsYGdhA3/1cKNrzZpmFNWUtAlO\nKGpZKleE2PxkxCLZaLy5xOzW0jilE1wULf+1VsNSZiHkxyKifoIFDxHRAHG5OAPb4/cjozQbEpEY\ns7wmIdx/jmDJaw1NGhz8IRN7T2egpr4ZTipLrJkzAg8FuUF8F50YiUQMFwcruDhYYfQIJ6NrdQ3N\nyDN0g2r0xVCJvii6VlDV4bWsLc0M+4PcDHuFFHB1sIJMyjNohCSVSOGqdIar0rnDtZrG2nYHrN76\n/dXynA7jbeVKo7OFWpPk1FYOkPJsIaIBiwUPEZGJy6nMx86E73ApNx4AMM49FMsDhUte02h1OHPp\nBnYcvYySinpYW8rw9IIAzJkwpNuKCwtzKYa522KYu63R4zqdDjerGjp0hHKLqpF2/SYuXy0zGi8W\nAY52lnBT6/cKte4ZcnVUwMFWzqVUArMys4SX/RB42Q8xelyr06KsrrzDPqH8qkJcLr6ClOIMo/ES\nkRhqhUO7g1b15wzZyJX835XIxLHgISIyUTfrKvBtUgROtSSv+ToMw6qgxYInr30VmYKr+ZUwk4oR\nPtUbS6Z6Q2EhzIZ0kUgElVIOlVKOkcMcjK41a7QoKK1BXnENctrtF4pJLUJMapHReHMzCdwcWrpC\nLaEJrb+sBPo8pCcWieFgqYKDpQqBziOMrjVqmlBQVYT86qIOBVF0VSKARKPxFjI5XBVObYIT9Mvl\nnK3VPGCXyESw4CEiMjF1TfU4lHYCh1JP6pPXrJ2xMmghRrkGCvaT7Cs3yvFFRDISrpRAJAKmjxmE\nFbN84WjXd/ZYSCViuKut4a62xlh/42vVdU1tlsjd6g7lFFcjK6+iw2vZWpsbFUCty+Wc7a0glfAM\nGiGZSWS3PVsIgOFsIUMR1BKtfa0iF5k3r3UYb29hB1el2rBPqHWZnKOlPcRi/u9K1F+w4CEiMhHN\nWg1OZZ7HnuRIVDRUwVauxOMh4ZjiOUHQ5LXtR1Lxfax+f8UoXzUen+sHT1cbQd6/uygsZBg+yA7D\nB9kZPa7V6lBaUY+8luKnbUGUkl2K5KxSo/FisQjOKkvjjlDL7+2sebaQ0KzNFfAxV8DHYZjR41qt\nFiW1ZW2CEwoNwQmJhWlILEwzGi8VS+GscGwTnHArSU5prhDyIxHRXWDBQ0TUz90ueW1ZwHzMEzh5\nbffJdET+mI1mjRbD3G2wdp4/grwdBXl/oYjFIjjaWcDRzgJBw40/W2OTBvmlNUZ7hVqXy11MKcRF\nFBqNt5RL4eqogJtDaxFkZSiK5Ob88iwksVi/x0etcECwi3G7r765AQVVRchr6Qq1PWw1pzIfyDV+\nLYWZldEhqy5tlsiZ8Wwhol7Bf1GJiPqx1OIr2B6/H+mlWZCIxJjp9TDC/efCVsDktUPnsrDnVDpq\n6puhVlliTdgITAy+u+Q1U2Imk2CwsxKDnTv+3VfWNOq7Qu32Cl3Lr8SVGx3PFrK3kXfoCLk5KqBW\n8Wwhocml5hhi54EhtzlbqKKhqs2ZQreS5DLLriK9/dlCEMHBSmVUBLX+UlnaQiziEjminsKCh4io\nH8qtLMDOhAO42JK89oB7CJYHLoCrtVMXz+weGq0OZ6NvYPuRW8lrTz0SgLkPdl/ymilRWplBaaWC\n7xCV0eMarQ7FN2uNlsblFdcgp7gaCVdKkHClxGi8VCKGi4Ol0X6h1oJIaWXGJXICEolEsJUrYStX\nwk/tbXStWatBUU2Jfq9QpXFXKL4gBfEFKUbjzSQyuCjUbYIT9L+adRohPxKRyWLBQ0TUj5TXVWB3\nciROZ/0IrU4LH4dhWC1w8lpMWhG+jLiVvLZkihfCpw0XLHnNlEjEIjjb68MNRvkaF6v1Dc3IL9Uv\niTPsGWrpEN0orO7wWgoLWYf0ODe1Ai4OVjCXsQgVklQsMRQto1xHGl2rbapDvuFw1cJbSXLVRbhW\nYbw+Tm1mj5DgYJhJeVAu0f1gwUNE1A/ok9dO4lDaSTQ0N8DV2gkrgxZhtJDJaznl+DIiGfEZ+uS1\naWM8sHLWiD6VvGZK5OZSeLradAh80Ol0KK9uMIrTbl0ud+VGOdKu3TQaLxIBjrYWt10i52BrMeCW\nHvY2S5kFhqkGY5hqsNHjOp0ON+sqkFdVoI/QzktEbH4ydiUdwprgJb00WyLTwIKHiKgPa9ZqcDrr\nPL5NapOIFwmsAAAgAElEQVS8FryEyWsDmEgkgp21HHbWcvgPtTe6ptFoUVhWi5w2RVBrQRSbXozY\n9GKj8WYyCVwdrNoUQq2/t2bHTmAikQgqS1uoLG0R4OSLh4eMw/qDmxGZdgpj3AIxwtG76xchotti\nwUNE1AfpdDpE5cZhZ8IB5Fe1Jq/Nw7zh0yCXyQWZQ2VNI749lY6I822S1+b6d0gno75DIhHD1VEB\nV8eO0ci19U2G/UG5bZbJ5RVX42p+ZYfxNgqz2+4Vcra3gkzKDfY9TS41xxz1JOzMi8DWX7bhvVmv\nCHbvE5kaFjxERH1ManEmtsfvQ3ppFsS9lLwWcS4L37ZJXlsdNgIPD8DkNVNiKZfBy8MWXh62Ro/r\ndDqUVdYb7RXKK9bHa6deLUNKdpnReLEIcFJZwa3lcFX3NsWQSilncEI3crdwwiM+M/Bd6nF8Hb8P\nvxm9orenRNQvseAhIuoj2ievjXUPxoqRC+CqdBbk/Q3Ja0dTUVJeB4UFk9cGApFIBHsbC9jbWHQ4\nN6mpWYOC0lpDMZTbskwur6Qaly4XApeNX0tuJoGro8JQBLX+3tXRCpZyLpG7F8sC5iEmLxEnMs9h\njFswgl38entKRP0OCx4iol5WXleBb5MjcapN8tqqoEUdToPvKTqdDrFpxfgiIhlX8ysha01em+oN\nhSXToQYymVQCDydreDhZd7hWXdtoiNPOaYnTzi2uRk5hFbJyKzqMVynN4eZore8KtQlOcFJZQiLh\nErk7kUlkeH7cWvzPiT/j04tf4y+zX4XCzKq3p0XUr7DgISLqJfVN9TjYLnltReBCjHELEmxZUGZO\nOb6MSEFcRjFEImDqaA+snO0LtZ2lIO9P/ZfC0gw+g1XwGWx8tpBWq0NJeZ1hf1Bu0a29QklZJUjM\nND5bqDWau7UIcnVUwL1luZytwpxL5AB42nlgif9c7E46hC9jvsXz457o7SkR9SsseIiIBKZPXvsR\n3yZHoqK+EjZyJdYELcHUocIlrxWW1WL7kcs4G6NPXgv1UeOJeUxeo/snFougVllCrbJEqI/a6FpD\nkwb5JTUtRVCVYa9QTkunqD0rubTd0jh9MeTiYAW52cD6FmbhiFmIzk3AD9d+wVj3YIx1D+7tKRH1\nGwPrXwsiol6k0+lwMTceOxL2I7+qCOZScyz1n4v5PtMFS1+qqm3E7pO3kteGutlg7Tw/BA9Xd/1k\novtkLpNgiIsSQ1yMAzh0Oh0qaxqN9gq1/srKrUD69fIOr+Vga2HYH+SmVsC9Zbmco50lJCYYriEV\nS/DcA49j4/G38Y9LO+DrMAxKecelhkTUEQseIiIBpJVkYnvcPqS1Jq8Nexjh/nNgayFMR6WxSYOI\n81nYfSoDNXVNUNtZ6JPXQtyZvEa9TiQSwUZhDhuF+W3PFiq6WXerCCq6VQzFZRQjLsP4bCGZVAyX\nlrOF3NUKuDq0LpFTQGnVv/ekudu4YHngAmyL24t/RO/Ehgm/5ZI/orvAgoeIqAflVRZgZ8J3iMqN\nAwCMdQvGikDhkte0Wh3OxuRg+9HLKL7ZmrzmjzkTPGEmY/Ia9X0Sib6AcXGwwugRTkbX6hqab3WE\niqqRW1yD3OIq5BZX43pBVYfXsrY0M+wPanu+kKuDVb9JIpzjPRUXc+MRlROH89cuYuKQsb09JaI+\njwUPEVEPKK+vxJ6kSJzMOq9PXrMfipVBi+HrKEzyGgDEpBXhy4hkZOfpk9cWT/bC0mlMXiPTYWEu\nxTB3Wwxz73i20M2qBqNuUOtyubTrN3H5asezhRztLA3nCbm12TNkbyPvU11QsViMZ8euwYvH/hef\nx+yCv3o4VJa2XT+RaABjwUNE1I3qm+pxKO0kDrYkr7lYq7EycJHwyWuRKYhLZ/IaDUwikQgqpRwq\npRwjvRyMrjU1a1FYVtOmGKoxFEUxqUWISS0yGm9uJoGbw629QobOkKMCVha9c7aQk8IRa4KW4J/R\nO/Hpxa+x6eHnubSNqBMseIiIuoFGq8HprAvYnRxhSF5bHbQYU4c+CKlAyWtFZbX4+uhlnI1m8hrR\nncikYrirreGuvs3ZQnVN7ZbItXSHiquRldfxbCFba3OjAsitpShytreCtIfPFpo+7CFE5cYiriAF\np7LOY/qwiT36fkT9GQseIqL70Jq8tjPhAPKqCvtG8pqrDZ6Y54cQHyavEf0aCgsZhg+yw/BBdkaP\na7U6lFbUt+wPqjEqiFKyS5GcVWo0XiwWwVllvESu9fd21t1ztpBIJMLvxqzGhqNv4qu4vRjp5Asn\nheN9vy6RKWLBQ0R0j9onr80YNhFL/ecKnLyWjd2n0pm8RtSDxGIRHO0s4GhngeDhxtcaW88Wahun\n3VIMXUwpxEUUGo23MJfqO0GO1i1F0K0ABbn5r/u2zN7SDk+GPootv3yJrVFf4/Upf4RY1LOdJaL+\niAUPEdGvlFdViJ0JBxCV03eS156c74+5DzJ5jUhoZjIJBrsoMbjd2UIAUFnTaLQ0rvXX1fwqXMnp\nuETO3kZu1BGy1DV3+f4TB49FVE4conLjcDj9DOb5TOuWz0VkSljwEBHdpfbJa8Pth2KVwMlrsWlF\n+DIiBVl5FUxeI+rjlFZmUHqqMMJTZfS4RqtD8c3aDnuFcotrkHClBAlXSgAAFmZijA6ph53yzstj\nRSIRfjN6OVJLruA/CQcQ7OIHd6VLj34uov6GBQ8RURfqm+oRkX4KB1NPoL4leW1F4EKMdQsWLBkp\nK7cCX0QkG5LXpoxyx6rZI6BWMXmNqL+RiEVwtreCs70VRvkany1U39CMvJIanI/PxbenMvC3b+Pw\n2pMPdPpvjY1cid+MXoH3f/wH/v7LV3hr2kuQCBSWQtQfsOAhIrqD1uS1b5MjUF5fCRtza6wKWoSp\nQx8SNHlt+9HLOBuTA50OCBnuiCfm+WOoG5PXiEyR3FyKoW42GOKixKWk67iYUohTF69j+tjBnT7v\nAfcQTBw8FueuReHA5WNY4j9HoBkT9X29XvAcv/I9gl0CoLay7+2pEBEB0CevXcpLwM74A8itKoC5\nxAzhLclrFgIlr1XXNmL3qQxEnM9CU7MWnq5KPDHPH6FMXiMaEMRiERaMs8NnR0vwjwNJCPRy7LKj\nuzZ0GZKL0rEnORKjXEdiiJ2HQLMl6tt6veD5V/QuAICbtTOCXfwR4uKPEY5ekEl65zAvIhrY0kuy\nsD1+H1JLMiEWiTG9JXnNTsDktcgfs7H7ZDqq65rg2JK8NonJa0QDjq2VFL9dGICPv4nDx9/E4s1n\nJnT674DCzAq/G7Mab//wN/ztly/x5xkv8/spIvSBguep0McQW5CM5MI0RKafQmT6KZhLzBDg5IMQ\nF392f4hIEHlVhfhPwnf4JScWADDGLQgrAhfCTcDkte9jc/D1EX3ympWFDGvn+WPeQ0xeIxrIpo0Z\nhAuJ+biYUojDF7Ix76GhnY4PdvHD9GETcTLzHL5NjsSKwIUCzZSo7+r1gmeW9yTM8p6ERk0TUouv\nIDY/GXH5yYjOS0R0XiIAdn+IqOeU11diT3IkTmWeh0anhbe9J1YHLYavo5dgc4hLL8IXESnIyq2A\nVCLGopbkNWsmrxENeCKRCM8vDcbz753GFxEpCPVRw9VR0elzVgctRkJBCr5LPY7RroEY7tB5kURk\n6nq94GllJpEh0HkEAp1H4PGQcBRVlyA2P/m23R9/Jx+EsvtDRPehvrkBEWmncDD1uD55TaHG8sAF\neMA9RLDktey8CnxxKBmx6cUAgMktyWtOTF4jojZUSjl+vyQI7359CR/+JwZ/fn4iJJ0sbbOQyfHs\n2MfxxpkP8fdfvsI7s/4Hcqm5gDMm6lv6TMHTnlrhcMfuT0xeImLY/SGie6DRanAm+wJ2J+mT15Tm\nCqwMXIRpwwRMXrtZix1HU3Em+gZ0OiDY2xFPzPPDMHdbQd6fiPqficFu+CkxH+ficrH/7BWET/Xu\ndLyf2htzh09FRPop7Ew4gCdDHxVopkR9T58teNpi94eI7pdOp0N0XgJ2GCWvzcF8nxmCJq99eyoD\nh5i8RkT34HeLA5GUWYIdR1MxeoQThrgoOx3/2MhHEFuQjKMZZzHWLQgBTr4CzZSob+kXBU977P4Q\n0a+RUZqN7fH7cLn4Sp9IXnOw1SevTQ5l8hoR3T2llRmeXxaMN//9Cz7cGYO/rH8YMqn4juPNpGZ4\nbuzjePXUe9ga9TX+MutVWJpZCDhjor6hXxY8bd2u+xNXkIyY/Nt3f0Kc9QWQWuHQ21Mnoh6WX1WE\n/yR8h59zYgAAo92CsCJwAdyVLoK8v1arww8tyWtFTF4jom4w1s8ZM8YOwomo6/jmZBpWzR7R6Xgv\n+yFYNGI29qYcxldxe/D7sasFmilR39HvC5721AoHzPSahJle7P4QDVQV9ZXYk3wYJzPP9ZnktYWT\nhmHZ9OFMXiOi+/b0ggDEZRTj21MZGOvnjOGD7Dodv8QvDDF5iTiTfQFj3YMxynWkQDMl6htEOp1O\n11tvHh0djVGjRgn2fq3dn9j8ZCQVpqFB0wgA7P5QrxP6XjBV7ZPXnBWOWBG4UPDktS8jUhCTVgSA\nyWv3gvcDkV5n90J8RjFe/fQC3NUKfPRfk2HeRdf4enkuXj7xZyjMLPH+7Ndgbd55tDVRX3K/XxdM\nrsPTmbbdnyZNEy7fofvjau2EYBd/hLoEsPtD1A/ok9d+wrdJEbhZXwGluQIrAhdi+rCJvZa8FuTt\ngCfm+cOLyWtE1AOCvB0x7yFPRJzPxvYjl/HUIwGdjh9k64ZlAfOwM+EA/h29C3+c8LRAMyXqfQOq\n4GlL1n7vT00p4vKTDN2fw+mncTj9NLs/RH2YIXkt4QByK/XJa0v85mC+73RYyoTZmFtd14Q9p9Jx\n8Jw+eW2IixJr5/kjxMdRsK4SEQ1Mj8/1Q0xqEb77IRMP+DsjYFjn36M84jMDl3ITcOFGNMZeD8aE\nQaMFmilR7xqwBU97ait7dn+I+pG2yWsikQjThj6EpQFzobIQpqPS1Hwrea2qtjV5zReTQj06PRCQ\niKi7yM2keGF5KDZuOYePdsXirxsmw1J+5+9LxGIxnnvgcbx07C38K3oXRjh6C5ZWSdSbWPDcBrs/\nRH1XQVURdiZ+h59vtCSvuQZiReBCuNsImLwWl6tPXiurhZVciifm+mHexKFdrqEnIupuvkNUWDzF\nG3tOZ+CLiBQ8Fx7U6XgXazVWBS3G5zHf4LNLO7Dxod+zG00mjwXPXWD3h6j3VdRXYm/yEZzI/AEa\nnRZeqiFYFbQYfurOTxvvTvHpxfgiMhmZObeS15ZOGw6lFZPXiKj3rJjlg0uXC3H0p6sYH+CCUN/O\nDzOe6fUwonLiEJOXiLPZP2HK0AnCTJSol7Dg+ZXY/SESVn1zAw6nn8Z3l4+jrrm+95LXIlMQk9qS\nvBbqjlVhTF4jor5BJpXgheWh+K+PvsfH38Ti7y9NgaKTCHyxSIzfj12NF4++hS9jv0WAkw8crewF\nnDGRsFjw3KfbdX/i8vXR17fr/ujP/fGGGbs/RJ3SaDU4m/0TdrdJXlse+CimD30IUokw/3QV36zD\njmOXcfqSPnkt0MsBa+f5w8uDyWtE1LcMdbPB8pk+2H40FZ8dSMSGFZ1H+Dpa2eOJkKX45OLX+CTq\na7w6+Q8Qi8QCzZZIWL1e8HywMxqjfJ0Q4qPu98tC2nZ/1rD7Q3RP9MlridiZcAA5lfkwk8iw2C8M\nj/jOEDx57dC5LDS2JK89Mc8PoT5qrnUnoj4rfKo3fkkuwNnoHIwPcMGEQNdOx0/2HI9fcvVL245f\n+QGzvScLM1EigfV6wXMmOgdnonMgFgHeg+wwytcJo3zV8HK3hbifJx3dsftTwO4P0e1cKb2Kr+P3\n4XJxRi8mr13F7pNp+uQ1GzlWhY3A5FFMXiOivk8iEeOF5aFY/8FZbN0bDz9Pe9ham99xvEgkwjOj\nV2LD0TexPX4fAp1HwNXaScAZEwlDpNPpdL315tHR0bBz9kJ0aiGiU4tw+WoZtFr9dGwUZgj1UZtM\n96e99t2fBk0jALD7M0AN9JPlC6qL8Z+E7/DTjWgAwCjXkVgZuKhXk9eWThvO5LVeMtDvB6JW93ov\nHPg+E/8+mIRxAc74nyfGdtmZvnA9Gh/99C9423vizakvQizm0jbqW+7368JddXgaGhowb948PPfc\nc3B3d8cHH3wAqVQKS0tLvPfee7C2tsbBgwexbds2SCQSLF26FOHh4Xc1gaFuNhjqZoOl04ajuq4J\n8enFLQVQIbs/YPeHTFtlfRX2pBzGiSu9mLyWUYwvIm4lry14eBiWTWfyGhH1X49MHIqfk/Lxc1IB\nzsbkYMooj07HTxg0ClE5sbhwIxoH005g4YhZAs2USBh3VfBs3boVtra20Ol0+L//+z988MEHGDx4\nMD777DPs2rULq1atwtatW7F3715IpVKEh4dj5syZUCqVv2oyCgsZHgxyxYNBrtDpdMjOqzTq/qRd\nu4mdx1JhozBDiI8ao02k+2O09wdd7P1RDzcUQE4Kx96eOtE9aWhuRGT6KUPympPCESsCF2Cce6hg\ne2Su5lfiy4hkRLckr00KcceqMF8421sJ8v5ERD1FLBbhj4+FYN1fzuCzfQkYOcwBDrad74F8atRj\nSCnOwO6kCIS6BGCQrZtAsyXqeV0WPFlZWcjOzsakSZMAAA4ODigrK8PgwYNRUVGBoUOHIj4+HoGB\ngbCy0n+jEBoaipiYGEyePPmeJyYSiTrt/pyNzsHZgdj9yU9CTH4SAHZ/qP/RaDX4/urP+CbpEG7W\nVcDaXIEnmbxGRNTtnO2t8NQjAfj7nnj8bXcc/t9vxnX6AyVrcwWeGbMK75zbii2/fIm3p28U7N9l\nop7W5f+T3333XWzevBn79u2DSCTCxo0bsXr1aiiVStja2uKll15CZGQkVCqV4TkqlQrFxcXdOlF2\nf9p2f/SHniYWsftD/YNOp0NMfhJ2xO9vk7w2G4/4zhQ0eW3v6Qwc/CGTyWtENCDMGjcYPyXmIyat\nCEd/voaw8UM6HT/KdSSmeE7AmewL2JtyBI+OnC/MRIl6WKehBQcOHEBpaSmeeuopbNmyBW5ubjh4\n8CDWr1+P4OBgvPvuu3Bzc4ONjQ2SkpLw8ssvAwA++ugjuLm5YenSpZ2+eXR0dLd8iLpGLbIK6nEl\nrx4Z+fWortPqP5wIcFOZwctVDm9XOVxUMohN6BubZp0GOXUFyKq9gayaHJQ2lRuuqWQ2GGrpgaFW\n7vCQO0Mq5k9pqHfk1RfhbEkUbtQXQAQRRiqH4yFVKKylwiwda9bocDGjGj8kVaGuUQulpQRTApUI\nGmLZ77vBRERdqazVYGtkATQ64PdznKBSdP79QIO2EZ9f34eq5hqsdn8ELnL+AJX6hh4LLfj++++R\nk5OD48ePo7CwEDKZDJWVlQgODgYATJgwAREREViyZAnOnDljeF5hYSFCQkJ6fPJtPdTyX51Oh6v5\nlbh0+Vb3J6e0EWcTK02u+wMAD7T5ffvuz6WKJFyqSGL3px8wxVQqQ/Jajv4HG6GuI7EycCE8bDo/\nF6K7aLU6nIvLxdcnLqOwrBaWciken+uL+Uxe6/NM8X4guhfddS+ILG/g/Z0xOJXUhP/9/dguY/aV\ng+zwp7Mf41TFL3jngU0wk/b/75eof7vfJkmnBc+HH35o+P2WLVvg7u6OL774ApmZmRg2bBgSExMx\naNAgBAYG4tVXX0V1dTVEIhFiY2Pxyiuv3NfE7pVIJIKnqw08XQfq3p+HMdPr4U73/rhYqxHiEsC9\nP9QjKuursDflCI5n/gCNVoNhqsFYHbQYfurhgs0h4UoxvjiUjCs5FZBKRHjk4aFYNm04bBR3Po+C\niMhUTQp1x4XEfPyUmI9D5zKxcJJXp+MDnHwx23syjmacxa7Eg1gTcnfJu0R91a9e5/TGG2/g1Vdf\nhUwmg62tLd5++22Ym5tjw4YNePLJJyEWi7Fu3TooFIqemO+v1n7vT/vuT/u9P6N8nRBqAt0f7v0h\noXVIXrNywPLAhRjvIWzy2leRKbh0uRAA8HCIG1aHjWDyGhENaCKRCM+FByEluxTbDl/GKF8neDhZ\nd/qclYGLEJ+fgsj00xjtFiTocQFE3a3XDx7tzWUL7bs/ZZUNAPR7f4abWPenrSZNE1JLMhGbl4TY\ngmTkVhYYrrH70zt6+164H1qtFmev/oxvkg4aktfC/eZgxrCJgiX8lJTXYcfRVJy6dN2QvPbEPD94\ne9gJ8v7Uvfrz/UDUnbr7XvgpMR9vfxkFLw9bvLduIqSSzg8YTS/Jwmun/wJHSxXem/UqLGTybpsL\n0a8hyMGjpmogd39GOvlipJMv1iAcxTWliGX3h34lnU6H2JbktRstyWuLRszGAt+ZsDQTJnmtpq4J\ne89k4Lvv9clrg52t8cQ8f4zyZfIaEVF740e6YMood5yJzsGe0xl4bIZPp+OHOwzFAt+ZOHD5GL6O\n34ffjl4h0EyJuteALnjautu9PyIRMNzDDqN81Rg1wskkuj+O7fb+tO3+dNj74+yPYJcA+KnZ/RnI\nrpRexY6E/UguSodIJMJUzwlYFjAfKkthzrJpatbiyIVs7DqRjqraRtjbyLFqti+mjB7U5WZcIqKB\n7LeLApFwpQS7jqdhzAgnDHPv/N/tpf5zEZOXhJOZ5zDWLRjBLn4CzZSo+wzoJW1363bdH61W/9fW\ntvsTMtzR5DZFt+/+NDTrl/2ZSWQIUPuw+9NN+su9UFBdjF0J3+HCjZbkNZcArAhcKNiJ3FqtDj/G\n52HbkRQUlOqT18KnemP+xKGQm/HnN6aiv9wPRD2tp+6FmLQivP6PnzDY2RofvjAJMmnnyZVXb97A\nphN/hlJujfdnvwaFGfdFkrC4pE0A7P606/60FEDs/gwclQ3V2Jd8GMfaJK+tCloMfwGT1xKvlODz\niGRcuVHO5DUiovsQ6qNG2PghOPLTVew4moon5vl3On6InQfC/efim6RD+CJmN9aNWyvMRIm6CQue\ne9Dl3p/rN7HzeJrJdX+M9v4EL+m49yfjDA5nnGH3x4Q0NDficPppHEg9hrqm3kleu5ZfiS/bJq8F\nu2H1HCavERHdj7Xz/RGbXoT9Z6/gAX8XjPBUdTp+4YhZuJSXgHPXojDWPRgPuN/deYtEfQGXtHWz\nTpPfTKz701b77k9OZb7hGrs/Xetr90Jr8trupEMoqyuHtZkVlvjPwcxhDwuavLbzWCpOXbwOrQ4Y\nOcwBa+czeW0g6Gv3A1Fv6el7ITmrFJu2noezvRX++l+TITfv/N/33MoC/Pfxt2EhNcf7s1+DjVzZ\nY3Mjaut+7wUWPD2Ie39uv/fHX+2DEHZ/jPSVe0GfvJaMHQn7caMiDzKJDPOGT+vV5LVBztZYy+S1\nAaWv3A9EvU2Ie+HfB5Nw4PtMzHvQE88sDuxyfETaKWyL24MxbkF48cFn+O8yCYJ7ePow7v25/d6f\n2PwkxHLvT5+TWXYN2+P3GZLXpnhOwLKAebC3FKaj0tSsxZGfsrHrOJPXiIiEsjpsBKJTCxHxYzbG\nBbggaHjnP4icM3wKLubG42JuPM5di8LDQx4QaKZE944dnl7SWfdHaWWGUF/T7v7E5acgNj+J3Z8W\nvXkvFFYX4z+JB3Hh+iUAwiev6XQ6nI9j8hrdMpC/NhC1JdS9kHHjJl786zmolHJseXEKrCw6/+Fj\nUXUJNhx7CxKRGO/Pfk2wH4zRwMUlbSaipq4JcRnFiG4pgMoq6wFw789A6f70xr3QIXnNbjBWBi1C\ngFPnB9F1p8QrJfgiIhkZLclrcyZ4Ytl0Jq8NdPzaQKQn5L2w42gqdp1Iw/Qxg7D+sa4DCU5mnsM/\nLu1EkPMI/M/D67i0jXoUl7SZCCsLGR4MdMWDgZ0nv5la9+d2yW9tuz9tk99auz/BLv5wHkDdn+7W\n2NyIwxlnsP/yUdQ11UNtZY/lgQsw3mMUxCKxIHO4VlCJLyNuJa9NDHbD6rARcHFg8hoRUW9YNn04\nolIKcPLidYwf6YKx/s6djp829CFE5cQhriAFJzPPY4bXRIFmSvTrscPTD7D7Y/rdHyHuBa1Wi++v\n/ozdSREorbtpSF6bMWwiZAL9/ZVW1GHH0VvJawHD7LF2nj+GD+JyCLqFXxuI9IS+F67lV+KPH34P\nhaUMW16c0uUPVctqy7Hh6J/QrNPivVmv8IeR1GO4pG2A6XLvj48ao3zVCPFR9/vuT3uG7k9BMhIL\nU2+796e/dn968l7Q6XSIK0jG9vhbyWtzh0/FQt9Zwiev/ZCFxiYNBjlb44m5fhg9wonLIKgDfm0g\n0uuNe2Hv6Qx8GZmCh4JcsXHNmC7Hn7sahb/98gVGOHrh9ckvQCwWZqUADSxc0jbAtE9+a9/9ORuT\ng7Mxppv8NsNrImZ4TWTy213KKruG7fH7kVSUBhFEmOw5Ho8GzBc0ee3oT1ex60QaKmsaoVLKsWrR\nSEwdw+Q1IqK+aOFkL/ySXIDz8XmYEJuLiSGdB9g8NHgMfsmNRVROHA5nnMY8n+kCzZTo7rHDY0LY\n/em/3Z/uvheKqkvwn8Tv8GNL8lqISwBWCp28Fp+Hrw9fRn5pDSzM9clrjzzM5DXqGr82EOn11r2Q\nV1KNP7x/FmZSMba8NBUqpbzT8ZX1Vfivo39CXVM93pn5P3C3cRFopjRQcEkb3RH3/txm749CjWAX\nf4T0se5Pd90LVQ3V2JtyBMeufA+NVoOhdoOwKmgRApx8u2GWdycxswRfRiQj/bo+eS1sgiceZfIa\n/Qr82kCk15v3QuT5LHy6PxGjRzhh81MPdLn8OConDn/58TMMsxuMN6e/BKlYItBMaSDgkja6o1+V\n/GZC3Z87Jr8VJCOpMBVHMs7giIklv7Umrx24fAy1TXVQW9njsZELMGGQsMlrX0Wm4GIKk9eIiPq7\nsAme+CkpH5cuF+Jk1HXMeGBwp+PHugfj4cEP4Idrv+DA5WMI958j0EyJusaCZ4D4NXt/vD1sMdrX\nyeCJDpIAACAASURBVGS6P233/jRrmpFacgWx+cktv9rs/emj3Z/OaLVa/HDtF3yTeAildTehMLPC\n48HhmOn1sKDJazuPpeFk1DUmrxERmQixWIQ/PBqCdX85g39+l4RAb0c4qSw7fc7a0GVIKkrD3uRI\nhLoEYKhqkECzJeocl7TRgN77U1JTpi98Wro/9b209+fX3gs6nQ7xBSnYHr8f1ytyDclrC3xnwsqs\n8y9I3aW2vgl7z1zBge8z0dikgYeTNZ6Y54cxTF6j+8SvDUR6feFeOBl1HR9/E4tALwe8+cyELn8I\nGl+Qgv/9/m/wULrgzzM3CfbDNzJtXNJG920gd38crFS/svvjDz9Hb5hJzXptzrdLXlsWMA8OlipB\n3v92yWsrF43EtNEekEgYR0pEZEqmjfHAT4n5iEopQOSP2Zg/cWin44Oc/TBj2EScyDyH3UkRWBm0\nSKCZEt0ZCx7qoKu9P+nXy01y749UIkWAky8CnHyxOnhJh+5Pb+/9Kaouwa7Egzh//SIAIMTFHysC\nF2Kwrbsg76/T6fBjQh62Rd5KXlsdNoLJa0REJkwkEuH5pUF47r0yfBmZglBfNdwcFZ0+Z3XQYiQU\nXMbBtBMY7RYIH4dhAs2W6Pa4pI1+lc6S37w9bDHK1wmjfNXw8rAzqXNW2nZ/4vKTceO2yW/33v3p\n7F6oaqjGvpSjOHblezRrm+Fp54HVQYsFTV5LyizBFy3JaxKxCGEThuCxGT79vsilvolfG4j0+tK9\ncD4+F+9suwSfwXZ457mHuuzoXy7OwP87/SGcFA54d9YrkEv59YLuHZe0kaBu1/2JTi3CpcuFhu7P\nf9j96ZbuT/vkNUcreywXOHntekElvoq8jKiUAgDAQ0GuWD1nBFwdOv/pHhERmZaHgtzwU3A+fojL\nxb6zV7B02vBOx49w9MZcn2mISDuJnfEH8OSoRwWaKVFHLHjonrXd+xM+1bvLvT+m1P25096fuG7Y\n+3O75LU1weGY1YvJa/5D7bF2nh98BguzT4iIiPqe3y0JRGJmCXYeS8XoEU7wdLXpdPxjIx9BbH4S\njl45izHuQRgp4MoEora4pI16xO26P0x+k8FfPRzBzvoCyNlabXhOdHQ0QkNDEV+Qgh3x+3GtIhcy\nsRRzhk/FwhGzBE1e23fmCvYbktcUeGKuP8b4MXmNhMOvDUR6ffFeuJhSgD/9+xd4uirx/vpJkEk7\nX3GQWXYNr5x8F3YWNnh/1muwNLMQaKZkSu73XmDBQ4Lg3p/O9/5cz7qO+KY0JBbqk9ceHvIAHg2Y\nDwcr4ZLXjv2sT16rqG6ESmmOFbNGYPoYJq+R8Pi1gUivr94Lf/0mFieiruPR6cOxKmxEl+N3Jx3C\nnuTDmOw5Hs+OXSPADMnUsOChfqdt9yc6tRCXs8ugaen+WFvquz+jR5hu9yeuQB97nfj/2bvz+Kjq\nu/3/18xk30kghLCEnbBkBQKiyKKAAirKjgQErFYWN+yvtt8u9932bq1tRarEpW5hDYQlIqigCGiL\nEMgGYd8hQEISICEh+8zvDyrVKjMgySGZvJ5/kcn7zLnig4/MlXPmM9+6+vON6JBuejTqYUN3Xtu2\n+5wSP96ncwVXd14bPaijHrq7gzzcueMVtwf/NgBX1de1cKW8SnP+ulkFReX6y5z+Dj9ourqmWv/v\n85d1/NJp/X93PaVeLSMNSgpnQeFBg8fVn706mHNE43o9qMgQx78pqy17jxXq/Y/26uCpi1d3Xruj\nrcYP6aIAX+cqmWh4+LcBuKo+r4XdR/L1/97YppbNfDR/7kC5u1rszp+6dEYvfvaSvN289Lf7fi0/\ndza/wY1jlzY0eNfb+e2bqz/f7PzmbFd/vr3zW1pNmmFl53TeZSWu36cde6/uvHZnVKim3N9VoQ4+\nVwEAgG9EdmymB/q310dfHdOij/fr8Yd62J1vE9BS43s8oCW71+jdtCQ91+9xg5ICFB7UM452ftua\nkaOtGc6581tdu1BcrqUbDuizHey8BgC4dVOGd1X6gTyt/eqo+vQIUUSHpnbnH+hyr3adydLXp9MU\ndypKd7bpbVBSNHYUHtRrN3v1p2fXYMU6wdWf2nSlvEqrtxxRytajqqhk5zUAQO3wcHPRsxNj9fPX\nvtKrSRl6be5AeXlc/+MTzGazZvWZqp9t+D+9k5akbs06q4mn/a2tgdpA4UGDwdWfm1NdY9WGr09o\n2bd2XvvJQz10b+827LwGAKgV4WGBGj24k5I3HdZ7H+3V7LHRdudDfIP1aNTDei99ud7auVg/7z+T\nX76hzlF40GBx9eeHfbPz2sKP9+lsQak83S2afF84O68BAOrExKFdtHNfnjZsP6k7IlqoZ3hzu/ND\nO96tnWcylX4uW5uPf63B7fsZlBSNFa9+4BR+6OpP1uF87dqfp/SDjefqz95jhXp/3V4dPHl157UR\nd7bTBHZeAwDUIVcXi56fFKvnX92qvy/P1IKfDZKPl9t1580ms57qPUVzN/xeiRnJ6tG8i4K9gwxM\njMaGwgOn5O3pqn6RoerXSK7+fG/ntchQTRnOzmsAAGO0C/XXhKFdtPiTA3przR7NfdT+FsJNvQM1\nLWacElIX6o3Uhfr1wGdkNnG7NeoGhQdO73pXf74pQN+++tOx1dWrP726NoyrP/+981q3doGa9kB3\nhbPzGgDAYGMGdVLq3lxtSc9R34gWujMy1O78gLZ9tSMnQ2ln92jD4a26v/Mgg5KisaHwoNFxdPXn\n8OlLSvqsfl/9uVJepTVbjmrN1iOqqKxRq2AfPTaim+K6h/DmTwDAbWGxmPXshFg9+8oWJazMUrd2\ngWri63HdeZPJpCd7Paq5n/5eS3avUVSLbgr1tf/+H+DHoPCgUWtoV3+qa6zasP2kkjYe1KWSCjXx\nddfjD/bQkDh2XgMA3H6tm/tqyohueufDbCWszNIvH4uz+4u4AE9/Pd5rouZte0cLdiTqd4PnymK2\nGJgYjQGFB/iW+nr1x2azaduec1q4/j87rz16X7hGsfMaAKCeeeCu9tqefU7bs3O1OS1Hg3u1tjt/\nR+ue2tEmU9tO7dJHBz/XqK7DDEqKxoJXSsB1/JirPz27BqtTLV/92XusUB+s26sD/955bXi/tpow\ntIvd2wQAALhdzGaTnhkfo6f/tllvr9mtiA5N1ayJp91jHo+doH3nD2l59keKadFdYQGtDEqLxoDC\nA9yg/776czL3snbtz6uzqz+n8y5r4cf7tD376s5r/SJbaMrwbmrJzmsAgHouJMhbMx7sodeTs/T3\nFRn63RN32L21zcfdWz/tPVkvfZWg13ck6k/3/lwuFl6monbwNwn4EUwmk9q28FPbFn4aM7iTrpRX\nKfNQ7Vz9uVhcrqUbD2rjjpOyWm1Xd14b2V3hbdl5DQDQcAztE6av95xT2oHz+vTrE7q/Xzu787Gh\nERrcrp++OL5NK/d9rAkRDxoTFE6PwgPUAi+PW7/6c6W8Silbj2rNliMqr6xRy2Y+emxkN/Vh5zUA\nQANkMpk0Z1y0Zv9ls977aK+iOwerRVNvu8dMiRmjPXkHlLJ/g3qFRqpjUFtjwsKpmWw2m+12nTwt\nLU09e9r/YCqgofvvqz+FReWS9J2rPxcLc7XjUPm1ndcmDQtn5zU0WvzbAFzlLGthS3qO/rYkTd3a\nBeqPM+9yeKdDdt5B/W7Lqwr1ba6Xh/5Sbi5uBiVFfXWra4ErPEAdu5GrP5Lk6W7RpGHhGjWggzzZ\neQ0A4CQGxLTU13vOatvuc1r75VE9PLCj3fkezbvo/k6D9MnhzVq2Z62mxowxKCmcFa+qAANd970/\nuw9p8kN92XkNAOB0TCaTZo6O0r5jF7Tok/2KDQ9WWIif3WMmRY5SZu5efXzoC/VuGaluwZ0NSgtn\nxP0ywG107epPV1/KDgDAafn7uGvmmChVVVv16rJ0VddY7c67u7hpVtxUySQtSF2osqpyg5LCGVF4\nAAAAUOfuiGihwb1a60hOkZI3HXY437lpez0UPlT5pYValLnKgIRwVhQeAAAAGOInoyLU1N9Dyz87\nqCP/fg+rPWO7j1CYf0t9fuyfyjiXbUBCOCMKDwAAAAzh4+mqOeNjVGO1aV5SuiqrauzOu1pcNavP\nY7KYLXozdbFKKkoNSgpnQuEBAACAYWK7BOv+fm11Kveylm444HC+bZNWGtt9hC6WF+m9jBUGJISz\nofAAAADAUNNGdleLIG+t3nJE+44XOpx/KHyoOga21T9Ppmr76XQDEsKZUHgAAABgKE93Fz0zIUaS\n9OqyDJVXVNudt5gtmtVnqlwtrvpH2jJdKi82IiacBIUHAAAAhuvePkijBnTUucJSfbB+n8P5ln4h\nmhTxkC5XlOgfu5bKZrMZkBLOgMIDAACA22LyfeFq3dxX6/91XJmHzjucv7/zIHVr1kk7z2TpyxM7\nDEgIZ3BDhaeiokJDhgxRSkqKqqurNXfuXI0dO1bTpk3T5cuXJUlr167VmDFjNH78eK1cubJOQwMA\nAKDhc3O16PmJsTKbTZqflKHSsiq782aTWTPjpsjDxV3vZ6xQwZULBiVFQ3ZDhSchIUEBAQGSpBUr\nVigoKEjJyckaPny4du3apbKyMiUkJCgxMVELFy5UYmKiiou5txIAAAD2dWwdoPH3dlZBUbn+8eEe\nh/PBPk01JXqMrlSV6c3UxdzaBoccFp5jx47p+PHjGjBggGw2mzZv3qwHHnhAkjR27FgNGjRIWVlZ\nioyMlLe3t9zd3RUbG6v0dHbQAAAAgGPj7u2sDq38tWnnae3IPudw/p72dyqmRXftztuvz45+aUBC\nNGQOC8/LL7+sF1988drXZ86c0datWxUfH6+5c+eqqKhIBQUFCgwMvDYTGBio/Pz8ukkMAAAAp+Ji\nMeu5ibFysZj1enKWikoq7M6bTCY92XuyvN28tChztXJLeN2J63Ox982UlBT17t1boaGh1x6z2Wxq\n3769Zs+erTfeeENvvfWWunXr9p3jbubSYlpa2k1GBpwTawH4D9YDcFVjWwuDInz1WWaR/vjOVo29\nK1Amk8nu/OAmcfoob4te3rRAE1uOkNnEflz4PruFZ+vWrcrJydHGjRuVm5srd3d3NW3aVHFxcZKk\nu+66S6+//roGDRqkzZs3XzsuLy9PMTExNxSgZ8+etxAfcA5paWmsBeDfWA/AVY1xLUTH2JRz6Z/a\nd+KCSs0hGhDbyu58rC1W+duKtT0nXed8LunB8CEGJYWRbrX4263B8+bNU3JyspYvX66xY8dq5syZ\nGjRokL788uq9knv37lW7du0UGRmp7OxslZSUqLS0VBkZGY1ugQIAAODWWMwmPTsxRu5uFr25ercK\ni8rszptMJj3ec4L83X2VtGetThedNSgpGpKbvu43ZcoUbd26VZMmTdKmTZv0xBNPyN3dXXPnztX0\n6dM1Y8YMzZkzRz4+PnWRFwAAAE4stKmPpo3srpKyKr2enOXwrRJ+Hr56ovejqrZWa8GORFVbawxK\niobC7i1t3zZ79uxrf54/f/73vj906FANHTq0dlIBAACg0Rrer622Z5/Trv152rjjlIb1DbM737tl\nlAa07autJ7Zrzb5PNLbHSIOSoiHgnV0AAACoV0wmk54eFyMvDxe9u3aP8i5ccXjMYzFjFeTZRKv3\nfaJjF04akBINBYUHAAAA9U6zJp56YlSEyipqND8pQ1ar/VvbvN289NO4yaqxWbVgR6Iqa6oMSor6\njsIDAACAemlwr9bq0z1Ee44WaN2/jjmcjwrppqEd7tbp4nNakf2RAQnREFB4AAAAUC+ZTCbNGhsl\nXy83Ja7bp5zzlx0eMznqYTX3aaaPDnyuA/lHDUiJ+o7CAwAAgHqria+HZo2JUmW1Va8uy1BNjdXu\nvIerh2bFTZEkLUhNVHl1hRExUY9ReAAAAFCv3RkVqgExrXTw1EWt3nLE4Xx4s44a2eUe5ZXka0nW\nGgMSoj6j8AAAAKDee/KRCAX6uWvphgM6frbI4fz4iAfVyq+FNhzZqt25+w1IiPqKwgMAAIB6z9fL\nTXPGxai6xqZXlqarqtr+rW1uFlfN7jNVZpNZb6Qu0pXKMoOSor6h8AAAAKBB6NW1uYb1DdOJc8VK\n+uygw/n2gWF6pNv9Kiy7qA8ykg1IiPqIwgMAAIAGY/oD3RUc6KWVmw7p4MkLDucf6Xa/2jVprS0n\nvtauM1kGJER9Q+EBAABAg+Hl4apnx8fIapPmLUtXeWW13XkXs0Wz+zwmF7OL3tq5RMUVJQYlRX1B\n4QEAAECDEtGxqR68u73O5Jdq0SeONyRo7R+qCREPqKjist7ZtUw2m82AlKgvKDwAAABocKYM76aW\nzXy09stj2nOkwOH8yM73qkvTDtqek65/ndplQELUFxQeAAAANDjurhY9NzFGZpP0alK6rpRX2Z03\nm82aFTdF7hY3vZuepAtllwxKituNwgMAAIAGqUtYoMbc01nnL5bpvY/2OpwP8Q3W5KhHVFp5RW/t\nXMKtbY0EhQcAAAAN1oQhXdS2hZ82bD+pXfvzHM4P7Xi3Ipt3Vca5bH1x7F8GJMTtRuEBAABAg+Xq\nYtbzk2LlYjHptRUZunyl0u68yWTST+Mmy9PVQ4mZK3W+tNCgpLhdKDwAAABo0NqF+mvSsHBdKK7Q\nW6v3OJxv6hWoaTHjVF5doTdSF8pqsxqQErcLhQcAAAAN3iMDO6pLmybampGjf2WddTg/oG1f9WoZ\npb3nD+nTw1vqPiBuGwoPAAAAGjyLxaxnJ8bIzdWiBSuzdPFyud15k8mkJ3pNkq+bt5bsTtHZ4lyD\nksJoFB4AAAA4hVbBvpo6oqsuX6nUguQsh7uwBXj46Se9JqmqpkoLdiSqxlpjUFIYicIDAAAApzHy\nzvaK6NBUO/bm6otdpx3O920dq7va9NbhCyf04YGNBiSE0Sg8AAAAcBpms0nPTIiRp7uL3k7Zo/yL\nZQ6PmR47Xk08/JW8d71OXMwxICWMROEBAACAU2ke6KXHH+qhK+XV+vvyDIe3tvm4e+vJ3pNVY63R\ngh0fqLqm2qCkMAKFBwAAAE5nSFwb9eraXJmH8/XxthMO52NDe+ie9nfpZNEZJe9dX/cBYRgKDwAA\nAJyOyWTS7LFR8vF01fvr9upsQYnDY6ZEj1Yz7yClHNigw4XHDUgJI1B4AAAA4JSC/D311OhIVVTW\n6NVlGaqx2r+1zdPVQzPjpshms+n1HR+oorrSoKSoSxQeAAAAOK3+0S11Z1So9p+4oA+3HnE43z24\ns4Z3Hqxzl89r2e4UAxKirlF4AAAA4LRMJpOeeiRSAb7uWvTJAZ3MLXZ4zKSIhxTq21wfH96s7LyD\nBqREXaLwAAAAwKn5+7hr9pgoVddYNW9ZuqprrHbn3VzcNKvPVJlMJr2RulBlVeUGJUVdoPAAAADA\n6fXp0UL39G6tozlFWvH5IYfznYLa6eGuw5R/5YISM1cakBB1hcIDAACARuEnD0WoaYCnln9+SEdO\nX3I4P6bbCIX5t9QXx/6l9LPZBiREXaDwAAAAoFHw9nTVM+OjZbXa9MqydFVW1didd7G4aHbfx2Qx\nW/TWzsUqqSg1KClqE4UHAAAAjUZ052CNuLOdTudd1uJPDzicDwtopXHdR+pieZHeTU8yICFqG4UH\nAAAAjcpjI7qpRZC3UrYe0d5jhQ7nHwwfok6BbfWvU7v09ek0AxKiNlF4AAAA0Kh4uLvo2YkxkqRX\nk9JVVlFtd95itmhWn6lys7jqnV3LdKnc8dbWqD8oPAAAAGh0urUL0iMDOyq38IreX7fX4XyoX4gm\nRY7S5cpSvb1ziWw2mwEpURsoPAAAAGiUJg0LV5sQX32y7YTSD553OH9fp4HqHtxZu87u1tYT2w1I\niNpA4QEAAECj5OZq0XMTY2Uxm/Ta8gyVlFXZnTebzHoqboo8XNz1fsYKFVy5YFBS3AoKDwAAABqt\njq0CNH5IFxUUlesfKXsczgd7B2lq9BiVVZXrjdRFstqsBqTEraDwAAAAoFEbe08ndWzlry92ndb2\n7HMO5we3v1MxLXpoT94BfXbkKwMS4lZQeAAAANCouVjMem5irFxdzFqQnKWikgq78yaTSU/2flTe\nbl5anLVauZcdv/8Htw+FBwAAAI1emxA/xd/fVZdKKpSwKsvhLmyBngGaETtBFTWVWpC6UFYrt7bV\nVxQeAAAAQNKDd3dQt3aB2rb7nLZmnHE4f2ebXurbOlYHC45q3aHPDUiIH4PCAwAAAEiymE16dkKs\nPNwsenP1bhUWldmdN5lMerznRPm7+yppz0c6XXTWoKS4GRQeAAAA4N9aNPXW9Ae6q7SsSq+tyHR4\na5ufu4+e7P2oqq3Ven3HB6q21hiUFDeKwgMAAAB8y313tFV052ZKO3BeG3ecdDjfq2WUBra9Q8cv\nntbqfZ8YkBA3g8IDAAAAfIvJZNIz42Pk7eGid9dmK7ew1OExj8WMVZBXE63e94mOXXBckmAcCg8A\nAADwX5oGeOqJhyNVVlGj+cszZLXav7XNy81TT/WOl9Vm1es7ElVZU2VQUjhC4QEAAAB+wKCerdS3\nR4iyjxbqo38eczgfGdJVwzoOUE7xOS3fs9aAhLgRFB4AAADgB5hMJs0aEy0/bzctXL9Pp/MuOzzm\n0aiH1dynmdYd3KQD+UcMSAlHKDwAAADAdQT4umvWmChVVlv1alK6amrsf8Coh4u7ZsVNlSQt2JGo\n8qpyI2LCDgoPAAAAYEe/yFANjG2lQ6cuaeXmww7nw5t10APhQ5RXWqDFWWsMSAh7KDwAAACAA08+\nHKFAPw8lbTyoY2eKHM6P6zFSrf1aaOPRL5WVu8+AhLieGyo8FRUVGjJkiFJSUq499tVXXyk8PPza\n12vXrtWYMWM0fvx4rVy5svaTAgAAALeJj5ebnh4freoam+YtS1dVtf0PGHWzuGpWn8dkMZn1Zupi\nlVZeMSgp/tsNFZ6EhAQFBARc+7qyslJvv/22goODJUllZWVKSEhQYmKiFi5cqMTERBUXF9dNYgAA\nAOA26BneXMP6hunEuWIt23jQ4Xz7wDYa3X24Cssu6v2MFQYkxA9xWHiOHTum48ePa8CAAdcee/PN\nNxUfHy9XV1dJUlZWliIjI+Xt7S13d3fFxsYqPT297lIDAAAAt8H0B7qreaCXVn1xWAdOXnA4P6rr\nfWrfpI2+PLFDqTmZBiTEf3NYeF5++WW9+OKL174+ceKEjhw5oqFDh157rKCgQIGBgde+DgwMVH5+\nfi1HBQAAAG4vLw9XPTMhRjZJry5LV3lltd15F7NFs/s8Jlezi/6xa6mKyx1vbY3a5WLvmykpKerd\nu7dCQ0MlSTabTS+99JJ+85vfXPv6h1zv8R+SlpZ2w7OAM2MtAP/BegCuYi3UX306+2j7wRL99f2t\nur9XgMP5u5rEanNhql7+PEGjQu6RyWQyICUkB4Vn69atysnJ0caNG5WbmytXV1dZLBY9//zzstls\nys/PV3x8vJ5++mlt3rz52nF5eXmKiYm5oQA9e/a8tZ8AcAJpaWmsBeDfWA/AVayF+q1HZI2efWWL\ndhwq0YP3RCqyYzO78zHWGJ3bXKgDBUdV3syqu8LiDEra8N1q8bd7S9u8efOUnJys5cuXa+zYsZo9\ne7Y2bNigpKQkLV++XM2aNdOiRYsUGRmp7OxslZSUqLS0VBkZGSxQAAAAOC13V4uemxgrs9mk+UkZ\nulJeZXfebDZrZp+pcndx17tpSbpQdsmgpLilz+H55lKcu7u75s6dq+nTp2vGjBmaM2eOfHx8aiUg\nAAAAUB91btNEYwd30vmLZXrnw2yH8yE+zRQf9YhKq8r0Zuqim3obCH48u7e0fdvs2bO/99imTZuu\n/Xno0KHf2cgAAAAAcHbjh3TRzn15+iz1lO6IaKHe3ULszg/p0F+pOZnKzN2nTcf+pXs73GVQ0sbr\nlq7wAAAAAI2Zq4tZz02KlYvFpNdWZKq4tNLuvMlk0lNx8fJy9dTCzJU6X1JgUNLGi8IDAAAA3IK2\nLfw0aVi4Ll6u0FurdzucD/Jqoumx41VeXaGE1IWy2qwGpGy8KDwAAADALXpkYEd1CWuiLzPP6KvM\nMw7n+4fFqXfLKO3LP6xPDm12OI8fj8IDAAAA3CKLxaznJsbKzdWiN1bt1sXicrvzJpNJT/SaJF93\nHy3d86HOFOcalLTxofAAAAAAtaBlMx89NqKbLl+p1OvJWQ53YfP38NMTvSapqqZKC3YkqsZaY1DS\nxoXCAwAAANSSEXe2U2THpkrdl6tNO087nO/TKkZ3hcXpyIUT+vDARgMSNj4UHgAAAKCWmM0mPTM+\nRp7uLvrHh3t0/uIVh8dMjx2nJp7+St67XicuOi5JuDkUHgAAAKAWBQd66ScP9dCV8mr9fXmGrFb7\nt7b5uHnrqd7xqrHW6PUdiaqqqTIoaeNA4QEAAABq2b1xbdSra3NlHS7QJ9uOO5yPbtFd97a/S6eK\nzih573oDEjYeFB4AAACglplMJs0ZFy1fL1e9v36fzuaXODwmPnq0gr2D9OGBjTpUcMyAlI0DhQcA\nAACoA4F+HnrqkShVVNbo1aQM1Ti4tc3T1UMz46ZINmlBaqIqqisNSurcKDwAAABAHekf01J3RYVq\n/4kLStlyxOF8t+DOGt55sM5dPq+lu1MMSOj8KDwAAABAHXpqdJQCfN21+NMDOnmu2OH8xIgH1dI3\nRJ8c3qzsvIMGJHRuFB4AAACgDvl5u2nO2GhV11j1yrJ0VddY7c67ubhpVp+pMpvMeiN1oa5UlRmU\n1DlReAAAAIA6Ftc9RPf2bqNjZ4q0/LNDDuc7BrXVqK7DlH/lghZmrDQgofOi8AAAAAAG+MmoHmrW\nxFMrNh3S4dMXHc6P6TZcYQGt9MXxbUo/u8eAhM6JwgMAAAAYwMvDVc+Mi5HVatO8ZemqrKqxO+9i\ncdHsPlNlMVv05s7FulzheGtrfB+FBwAAADBIVOdmGnlnO53OK9GiT/Y7nA8LaKXxPR7QpfJiwf+Y\nuwAAIABJREFUvZu+3ICEzofCAwAAABho6shuCm3qrQ+/PKq9xwodzj/Q5V51Cmqnbad2adupNAMS\nOhcKDwAAAGAgDzcXPTshViZJryalq6yi2u68xWzRrD5T5WZx1btpy3SprMiYoE6CwgMAAAAYrGu7\nQD08sKNyC6/o/Y/2OpwP9W2uRyMf1uXKUr21a4lsNpsBKZ0DhQcAAAC4DR69L1xhIb765OsTSj9w\n3uH8sE4D1D24s9LO7tHWE9vrPqCToPAAAAAAt4Gri0XPTYyVxWzS31dkqKSsyu682WTWzLgp8nTx\n0PsZK1RQesGgpA0bhQcAAAC4TTq0CtCEoV1UWFSut9fsdjjfzDtIU2PGqqyqXG/sXCirzWpAyoaN\nwgMAAADcRmMGd1LH1gHanJajr/ecdTg/qN0dim3RQ3vyDmrjkS8NSNiwUXgAAACA28jFYtbzE2Pl\n6mLWgpVZKiqpsDtvMpn0ZO/J8nHz1pKsNTp32fH7fxozCg8AAABwm7Vu7qspw7uqqKRSC1ZmOdyF\nrYmnvx7vOUEVNZVK2JEoq5Vb266HwgMAAADUAw/076Du7YP09Z5z2pqe43C+X5teuqN1Tx0sPKaP\nDn5uQMKGicIDAAAA1AMWs0nPToiRh5tFb67Zo8KiMofHzOg5Qf4eflqe/ZFOXTpjQMqGh8IDAAAA\n1BMhQd6a/mAPlZZV6e8rMh3e2ubn7qMnez2qamu1FuxIVHVNtUFJGw4KDwAAAFCP3Nc3TLFdgpV+\n4Lw2bD/pcL5Xy0gNbHeHjl86rdX7PzEgYcNC4QEAAADqEZPJpKfHR8vb01Xvrs1WbmGpw2Meix6r\npl6BWr3vUx294LgkNSYUHgAAAKCeCfL31JMPR6i8skavJmXIarV/a5uXm6eeiouX1WbV6zs+UGV1\npUFJ6z8KDwAAAFAPDYxtpTsiWmjvsUKt/eqYw/mI5uG6r+NAnSnOVVL2RwYkbBgoPAAAAEA9ZDKZ\nNHN0lPx93LTw4306nXfZ4TGTokYpxKeZ1h/cpP35hw1IWf9ReAAAAIB6KsDXXTNHR6mq2qp5y9JV\nU2P/A0Y9XNw1q89UySQl7Fio8qpyg5LWXxQeAAAAoB7rFxmqgT1b6fDpS1r5heOrNl2adtCDXYYo\nr7RAi7JWG5CwfqPwAAAAAPXck6MiFOTvoWUbD+rYmSKH8+N6jFRr/1B9dvQrZZ7bZ0DC+ovCAwAA\nANRzPl5uenpcjGqsNr2yNE1V1TV2510trprd5zFZTGa9uXORSiodb23trCg8AAAAQAMQGx6s++5o\nq5O5l7V0w0GH8+2atNbo7iN0oeySPkhPNiBh/UThAQAAABqI6Q90V/NAL63efFgHTlxwOD+q6zB1\naBKmL0/uUGpOpgEJ6x8KDwAAANBAeLq76NkJMbJJmrcsXeUV1XbnXcwWzeo7Va5mF729a4mKyouN\nCVqPUHgAAACABqRHh6Z66O4OOltQqsSPHW9I0MqvhSZGPqTiihL9I22ZbDabASnrDwoPAAAA0MDE\n399VrZv7aN0/jyvrcL7D+eGdBqtrs45KzcnUP0/uNCBh/UHhAQAAABoYN1eLnp0QK7PZpPnLM1Ra\nVmV33mw2a2bcFLm7uOu99CRduHLJoKS3H4UHAAAAaIA6t2misfd0Uv7FMr27NtvhfHOfZpoSNVql\nVWV6Y+eiRnNrG4UHAAAAaKDG39tF7Vv667PUU0rdl+tw/t4OdykqpJuycvdp07F/GpDw9qPwAAAA\nAA2Uq4tZz02MlYvFrNdXZKq4tNLuvMlk0lO94+Xt6qnEzFXKK3H8/p+GjsIDAAAANGBtW/jp0fvC\ndfFyhd5cvdvhfKBXgKbFjldFdYUSUhfKarMakPL2ofAAAAAADdzDAzsqPKyJvso8o68yzjic7x8W\np7iW0dqff0QfH9psQMLbh8IDAAAANHAWs0nPTYyVm6tFb6zO0sXicrvzJpNJP+k1UX7uPlq2O0U5\nxecMSmo8Cg8AAADgBEKb+WjayG66fKVKryVnOtyFzd/DTz/pNUlV1mot2J6oGmuNQUmNReEBAAAA\nnMTwfu0U1ampdu7L06adpxzO92kVo/5hcTp68aRS9m8wIKHxKDwAAACAkzCbTXp6fIw83V30dkq2\nzl+44vCYabHjFOgZoJV71+vExdMGpDQWhQcAAABwIsFNvPTEqB4qq6jW/OUZslrt39rm4+atn/aO\nV43Nqtd2fKCqmiqDkhrjhgpPRUWFhgwZopSUFOXm5mratGmKj4/X9OnTVVhYKElau3atxowZo/Hj\nx2vlypV1GhoAAADA9d3Tu43iuoVo95ECfbztuMP56BbddG+H/jpddFbJe9cbkNA4N1R4EhISFBAQ\nIEl69dVXNW7cOC1atEj33HOP3n//fZWVlSkhIUGJiYlauHChEhMTVVxcXKfBAQAAAPwwk8mk2WOj\n5OvlqvfX7dPZ/BKHx8RHPaJg7yB9eGCjDhUcMyClMRwWnmPHjun48eMaMGCAJOm3v/2thg0bJkkK\nDAzUpUuXlJWVpcjISHl7e8vd3V2xsbFKT0+v2+QAAAAArquJn4eeGh2lyqoazVuWrhoHt7Z5unpo\nZtxUySYt2JGo8uoKg5LWLYeF5+WXX9aLL7547WtPT0+ZzWZZrVYtXbpUI0eOVEFBgQIDA6/NBAYG\nKj8/v24SAwAAALgh/aNb6u7oljpw8qLWbDnicL5bcCeN6DxY50rOa+nuFAMS1j0Xe99MSUlR7969\nFRoaKknX9vK2Wq362c9+pjvuuEN9+/bVunXrvnOcoz2/vy0tLe1mMwNOibUA/AfrAbiKtYDa0LeD\nVekHzFr8yT552QrVPMDV7nxna2sFuQbo08NbFFDqpTCvUIOS1g27hWfr1q3KycnRxo0blZubK3d3\nd4WEhCglJUXt2rXTzJkzJUnBwcHfuaKTl5enmJiYGwrQs2fPW4gPOIe0tDTWAvBvrAfgKtYCapNH\nQK5+9+4Obcgs11+fiZOri/0bvZq2b65fbfqLPr+0XX/t8yt5uXkalPT7brX42/1J582bp+TkZC1f\nvlxjx47VzJkzVVBQIDc3N82ePfvaXFRUlLKzs1VSUqLS0lJlZGSwQAEAAIB6one3EA2Ja6NjZ4u0\n/PODDuc7BrXVw13vU8GVC0rMbNg7MNu9wvNDlixZosrKSsXHx8tkMqljx476zW9+o7lz52r69Oky\nm82aM2eOfHx86iIvAAAAgB/h8Yd6KPNwvpI3HVZctxB1btPE7vzobvcr/ewebT6+TXGtotUzNMKg\npLXLZLuZN9zUMi7VAlexFoD/YD0AV7EWUBd2H8nX/3tjm1oF++jV5wfK3dVid/7UpTN68bOX5OPm\npb/d92v5uht/UeNW18INfQ4PAAAAgIYvsmMzPdC/vXLOl2jxJ/sdzrcJaKlxPUbqUnmx3k1LMiBh\n7aPwAAAAAI3IlOFdFdrUWx9+eVTZRwsczj/YZYg6B7XXttNp2nZqlwEJaxeFBwAAAGhEPNxc9Nyk\nWJkkvZqUoSvlVXbnzWazZvWZKjeLq95JS9LFsiJjgtYSCg8AAADQyISHBWr04E7Ku3BF76/b53C+\nhW+wJkc9opLKUr21a8lNfe7m7UbhAQAAABqhiUO7qG0LP3369QmlHzjvcH5ox7vVI7iL0s/u0Zbj\nX9d9wFpC4QEAAAAaIVcXi56bGCsXi0nzl2eo5Eql3XmzyayZcVPk6eKhDzKSlV9aaFDSW0PhAQAA\nABqp9i39NWFoF10oLtdbKXsczjf1DtRjMWNVVl2uN1IXyWqzGpDy1lB4AAAAgEZszKBO6tQ6QFvS\ncrRt91mH8wPb3aHY0Ahlnz+ojUe+NCDhraHwAAAAAI2YxWLWcxNj5eZiVsKqLF26XGF33mQy6ae9\nHpWPm7cWZ63W2ct5BiX9cSg8AAAAQCPXurmvpozopqKSSi1YmelwF7YAT3893nOiKmuqtGBHoqzW\n+ntrG4UHAAAAgB64q716dAjS9uxcbUnPcTjfr01P9WvdU4cLj2vtwc8MSPjjUHgAAAAAyGw26Znx\nMfJws+it1btVcKnM4TEzek5QgIefVmSv06lLZwxIefMoPAAAAAAkSSFB3prxYA+Vllfr78szHN7a\n5uvuoyd7T1a1tVqv7/hA1TXVBiW9cRQeAAAAANcM6xum2PBgZRzK16fbTzqc7xkaoUHt+unEpRyt\n2veJAQlvDoUHAAAAwDUmk0lPj4uWt6er3lubrXMFpQ6PmRozRk29ArVm/6c6Unii7kPeBAoPAAAA\ngO8I8vfUTx+OUHlljeYvz1CN1f6tbV6unpoZFy+rzaoFOxJVWV1pUFLHKDwAAAAAvmdAbCv1i2yh\nvccK9dFXRx3O92gervs6DdSZy7lK2rPWgIQ3hsIDAAAA4HtMJpNmjo6Sv4+bFn68X6dyix0e82jk\nw2rhE6z1h77QvvOHDEjpGIUHAAAAwA/y93HXrDHRqqq2al5Shqpr7H/AqLuLm2b1mSqZpITUhSqr\nKjco6fVReAAAAABc1x0RLTS4V2sdOX1JK7847HC+c9P2eih8qM6XFmpR1moDEtpH4QEAAABg109G\nRSjI30NJGw/qSM4lh/Nju49QG/+W+vzoV8o8t9eAhNdH4QEAAABgl4+nq54eH6Maq03zlqWrqrrG\n7ryrxVWz+0yVxWTWGzsXqaTS8dbWdYXCAwAAAMCh2C7Bur9fW53Kvawlnx5wON+2SWuN6T5CF8uK\n9H76CgMS/jAKDwAAAIAbMm1kd4UEeWnNliPaf/yCw/lRXYepQ2CYvjqZqh05GQYk/D4KDwAAAIAb\n4unuomcnxMomaV5Susorqu3OW8wWze7zmFwtrnp711IVlTve2rq2UXgAAAAA3LDu7YM0akBHnSso\nVeL6fQ7nW/qFaGLEQ7pcUaK3dy2VzWYzIOV/UHgAAAAA3JTJ94WrdXMfrfvXcWUdync4P7zzIHVr\n1kk7z2Tpq5OpBiT8DwoPAAAAgJvi5mrRcxNjZTab9OryDJWWVdmdN5vMmhk3Re4u7novfbkKr1w0\nKCmFBwAAAMCP0Kl1E42/t7MKLpXpnQ+zHc4H+zTV1OjRulJVpjd3LjLs1jYKDwAAAIAfZdy9ndW+\npb8+33lKqXtzHc7f0/4uRYd0U1bufn1+9J8GJKTwAAAAAPiRXCxmPT8xVi4Ws15LzlRRSYXdeZPJ\npJ/2jpe3q6cWZq1Sbonj9//cKgoPAAAAgB8trIWf4u8P16XLFXpz9W6H84FeAZoeO0EV1RV6I3Wh\nrFZrneaj8AAAAAC4JQ8N6KiubQP1z6yz+irjjMP5u8J6K65VtPbnH9HHh7+o02wUHgAAAAC3xGI2\n6dmJMXJ3s+iN1Vm6UFxud95kMumJnpPk5+6jZbs/VE7RuTrLRuEBAAAAcMtCm/po2sjuunylSq+t\nyHS4C5ufh6+e6PWoqqzVWrAjUdXWmjrJReEBAAAAUCvuv6Otojs10679efo89ZTD+bhW0bo7rI+O\nXjyplP0b6iQThQcAAABArTCbTXp6fIy8PFz0jw+zlXfhisNjpsWOU6BngFbtXa9jFxyXpJvOVOvP\nCAAAAKDRatbEU0+MilBZRbX+vjxDVqv9W9u83bz0VFy8amxWLdjxgapqqmo1D4UHAAAAQK0a3Ku1\n+nQP0e4jBVr/r+MO56NCumlIh/46XXxOK7LX1WoWCg8AAACAWmUymTRrTJR8vdz0wfp9OpNf4vCY\n+KhH1Ny7qdYe/EwHC47WWhYKDwAAAIBa18TPQ7PGRKmyqkbzlqWrpsb+B4x6uHpoZp8pkk1asCNR\n5dUVtZKDwgMAAACgTtwZFaq7Y1rq4MmLWr3liMP5rs06aUSXe5Rbkq+lWSm1koHCAwAAAKDO/PSR\nSAX6uWvphgM6frbI4fyEiAfV0i9Enx7Zoj15B275/BQeAAAAAHXG18tNc8bFqLrGpnnL0lVVbf/W\nNjeLq2b3eUxmk1kJqQtv+fwUHgAAAAB1qlfX5hraJ0zHzxZr+WcHHc53CAzTI93uU+GVi7d8bgoP\nAAAAgDo348HuCm7iqeQvDuvQKcdF5pFuw9UuoPUtn5fCAwAAAKDOeXm46tkJsbJabXplaboqqmrs\nzruYLfrlgNm3fF4KDwAAAABDRHRsqgf7t9eZ/BIt+ni/w3l/D79bPieFBwAAAIBh4od3Vctm3lr7\n1VHtOVpQ5+ej8AAAAAAwjIebi56bGCuTpFeTMnSlvKpOz0fhAQAAAGCoLmGBGj24k85fuKL3Ptpb\np+ei8AAAAAAw3MShXdS2hZ82bD+pXfvz6uw8FB4AAAAAhnN1sej5SbFysZj02ooMXb5SWSfnofAA\nAAAAuC3ahfpr4tBwXSiu0Ntr9tTJOSg8AAAAAG6b0YM6qkubJtqSnqN/7T5b689/Q4WnoqJCQ4YM\nUUpKinJzcxUfH6/JkyfrueeeU1XV1V0V1q5dqzFjxmj8+PFauXJlrQcFAAAA4HwsFrOenRgjNxez\nElZm6eLl8lp9/hsqPAkJCQoICJAkzZ8/X/Hx8Vq8eLHatGmjVatWqaysTAkJCUpMTNTChQuVmJio\n4uLiWg0KAAAAwDm1CvbV1BHdVFxaqYSVWbLZbLX23A4Lz7Fjx3T8+HENGDBANptNO3fu1KBBgyRJ\ngwYN0rZt25SVlaXIyEh5e3vL3d1dsbGxSk9Pr7WQAAAAAJzbyLvaK6JDU23PztXmtNO19rwOC8/L\nL7+sF1988drXZWVlcnV1lSQFBQXp/PnzKiwsVGBg4LWZwMBA5efn11pIAAAAAM7NbDbpmQkx8nS3\n6O01e5R/saxWntfF3jdTUlLUu3dvhYaG/uD3r3ep6WYuQaWlpd3wLODMWAvAf7AegKtYC2iM7o3y\n00epF/WHd7YqflBTmUymW3o+u4Vn69atysnJ0caNG5WXlydXV1d5eXmpsrJSbm5uysvLU/PmzRUc\nHPydKzp5eXmKiYm5oQA9e/a8pR8AcAZpaWmsBeDfWA/AVawFNFaxsTadLd6utAPnlV8ZpGD3C7f0\nfHZvaZs3b56Sk5O1fPlyjRkzRrNmzdIdd9yhTz/9VJK0YcMG9e/fX5GRkcrOzlZJSYlKS0uVkZHB\nAgUAAABw00wmk+aMi5aPp6ve/WjvLT/fTX8Oz9NPP62UlBRNnjxZxcXFevjhh+Xu7q65c+dq+vTp\nmjFjhubMmSMfH59bDgcAAACg8Qny99RPH4lURWXNLT+X3Vvavm327NnX/vzee+997/tDhw7V0KFD\nbzkQAAAAANwd01Kpe3Nv+Xlu+goPAAAAANQ1k8mk5x+99bfJUHgAAAAA1EsW863t0CZReAAAAAA4\nMQoPAAAAAKdF4QEAAADgtCg8AAAAAJwWhQcAAACA06LwAAAAAHBaFB4AAAAATovCAwAAAMBpUXgA\nAAAAOC0KDwAAAACnReEBAAAA4LQoPAAAAACcFoUHAAAAgNOi8AAAAABwWhQeAAAAAE6LwgMAAADA\naVF4AAAAADgtCg8AAAAAp0XhAQAAAOC0KDwAAAAAnBaFBwAAAIDTovAAAAAAcFoUHgAAAABOi8ID\nAAAAwGlReAAAAAA4LQoPAAAAAKdF4QEAAADgtCg8AAAAAJwWhQcAAACA06LwAAAAAHBaFB4AAAAA\nTovCAwAAAMBpUXgAAAAAOC0KDwAAAACnReEBAAAA4LQoPAAAAACcFoUHAAAAgNOi8AAAAABwWhQe\nAAAAAE6LwgMAAADAaVF4AAAAADgtCg8AAAAAp0XhAQAAAOC0KDwAAAAAnBaFBwAAAIDTovAAAAAA\ncFoUHgAAAABOi8IDAAAAwGlReAAAAAA4LQoPAAAAAKdF4QEAAADgtCg8AAAAAJwWhQcAAACA03Jx\nNFBeXq4XX3xRhYWFqqys1FNPPSUfHx+98sorcnFxkZeXl/7yl7/I19dXa9eu1cKFC2WxWDR27FiN\nGTPGiJ8BAAAAAH6Qw8LzxRdfKCIiQjNmzNDZs2c1bdo0+fr66m9/+5vCwsL01ltvKSkpSZMnT1ZC\nQoJWrVolFxcXjRkzRkOHDpWfn58RPwcAAAAAfI/DwjN8+PBrfz579qxatGghd3d3XbhwQWFhYSoq\nKlL79u2VlZWlyMhIeXt7S5JiY2OVnp6ugQMH1ll4AAAAALDHYeH5xoQJE3T+/Hm9+eabcnFxUXx8\nvPz8/BQQEKCf/exnWr9+vQIDA6/NBwYGKj8/v05CAwAAAMCNuOHCk5SUpAMHDuiFF15QYGCgFixY\noOjoaL388staunSp/P39vzNvs9lu6HnT0tJuLjHgpFgLwH+wHoCrWAvArXNYeLKzsxUUFKQWLVoo\nPDxcNTU1Sk1NVXR0tCSpX79+WrdunUaPHq3NmzdfOy4vL08xMTF2n7tnz563GB8AAAAArs/httS7\ndu3S+++/L0kqKCjQlStX1KlTJx09elSStGfPHrVp00aRkZHKzs5WSUmJSktLlZGRQaEBAAAAcFuZ\nbA7uPauoqNAvf/lL5ebmqqKiQnPmzJG/v7/+/Oc/y9XVVQEBAfrjH/8oHx8fbdy4Ue+8847MZrPi\n4+M1YsQIo34OAAAAAPgeh4UHAAAAABoqh7e0AQAAAEBDReEBAAAA4LQoPAAAAACcFoUHqAVfffWV\nkpKSfvB7x44d07Bhw7RkyRLFx8fryJEj132eL774QtXV1SooKNBvf/vbuooL3Db21grQ2FVXV2vc\nuHH6xS9+cbujAPXOmjVr9Oc///l7j48ePVpnz561e+wNf/AogOvr37//db+3e/duDRw4UI8++qg+\n/fRTu8/z/vvvq2/fvmratKn+93//t7ZjAredvbUCNHbnz59XVVWV/vSnP93uKEC9ZDKZbuix/1an\nhaekpERz5sxRZWWl+vTpo5SUFD3zzDN65513FBoaKi8vL919990aMmTI9+a++OKLuowG1Ko1a9Zo\n8+bNunjxolq3bq0DBw6oe/fueu655/TWW2+pvLxcLVu2vLYo8/Ly9MILL8hsNqu6ulovvfSS0tPT\nlZWVpSeeeEJ/+MMfNHfuXK1atUo7duzQvHnz5OrqqpCQEP3f//2f1q9fr7S0NF24cEEnTpzQjBkz\nNHr06Nv8XwFw7Ju18vjjjysyMlKPP/647rzzTk2bNk1vv/22goODtWDBAo0dO1YbNmxQWFiYunfv\nrk8//VRhYWH661//ert/BKDOvPTSSzp16pR++ctfasCAARo2bJh+9atfqV+/fho+fPjtjgfUiZKS\nEj399NOqqKjQ3XffrRUrVuhPf/qTXnnlle+89vm2P/zhD8rKylLbtm1VVVXl8Bx1ekvbhx9+qK5d\nu2rJkiXq2LGjJGn+/PlavHixEhISdOTIEZlMpu/N3UhTA+qjvXv36oUXXtCqVau0ZcsWubm56Ykn\nntD999+vKVOm6Jtd4PPz8zV79mwlJiZq9OjRWrp0qR566CE1a9ZM77zzjlxdXa+tg//5n//R/Pnz\ntWjRIvn7+2vdunWSpMOHDyshIUGvv/66Fi1adNt+ZuBm7dixQ1lZWbJarbJYLNqzZ48kKT09XX37\n9lVNTY0iIiK0atUqpaenq3Xr1kpOTlZaWppKSkpuc3qg7vz85z9Xu3bt9POf/1zvvvuudu/erfPn\nz1N24NRSUlLUsWNHLVmyRL6+vrLZbNd97SNJR48eVWZmppKTkzV37lwdP37c4TnqtPAcO3ZM0dHR\nkqS4uDhdvHhR3t7e8vf3l8ViUc+ePX9wDmiowsLCFBgYKJPJpObNm+vy5cs/ONe0aVMtWrRIkydP\n1gcffKBLly5Jkmw2m7790VhFRUUym81q3ry5pKvrY9++fZJ0bc2EhITwIhANSp8+fZSZmalDhw6p\na9euKi8vlyQVFBQoJCREkhQRESFJCgoKUteuXSVJgYGB111TgDPx9/fXuHHj9NRTT+nXv/717Y4D\n1KmjR48qNjZWknTPPfeoqKjo2uso6buvfSTpyJEjioqKknT1NVDr1q0dnqNOC4/NZrv2W2qLxSLp\nu/fZffPYtx//9mNAQ/Ptv7//XV6+bf78+erfv78WL16sWbNmXff5TCaTrFbrta+rqqquneO/zwU0\nFC1bttS5c+eUnp6u2NhYhYaGauvWrQoPD7828+2/3/xdR2OUn58vb29vFRYW3u4oQJ2y2Wwym/9T\nSUwm03f+X//t1z7fzH+7T9TU1Dg8R50Wnvbt2yszM1OS9PXXX6tJkya6fPmyiouLVV1drdTU1O/N\nbdu2rS4jAfXCpUuX1KZNG0nS559/fu3+U7PZ/J2F6+fnJ7PZrNzcXElSamqqevTo8b3n40UgGpoW\nLVpo06ZNio6OVmRkpBYuXKg+ffrc7lhAvZCTk6Nt27bpgw8+0B//+Mfv/OILcDZt2rRRdna2JOnL\nL7+Un5+fTCbTdV/7tGvX7tr8mTNnlJOT4/AcdVp4HnroIe3Zs0fx8fHav3+/TCaT5syZo8mTJ+up\np55S27ZtJUkPPvjgd+aAhui/33tmbyeR8ePH63e/+51mzJihESNGaOfOndq2bZvi4uI0ceJEXbx4\n8doxv/vd7/T8889rypQpqqmp0YgRIxyeG6jPTCaT4uLilJubKz8/P0VHR+vrr7++Vni+/ff5en8G\nnNkf/vAHvfDCCwoNDVX//v31wQcf3O5IQJ15+OGHtXPnTk2ZMkUXLlyQi4uLfv/731/3tU+XLl3U\nuXNnTZgwQX//+9+v3fZsj8lm0K+Gr1y5opEjR35n97U///nP6tKli0aNGmV3DgAAAIDzOXv2rI4f\nP64777xTmZmZeu211/Tuu+/W6jkM/RyeG/kNuL3HAQAAADgPX19fvffee3r99dclSb/61a9q/RyG\nXeEBAAAAAKPV6Xt4AAAAAOB2ovAAAAAAcFoUHgAAAABOi8IDAAAAwGlReACgETpz5ozCw8OVnJz8\nncfT09MVHh6unTt33vBzJScn6xe/+IXdmfj4eH399dffyxAREaEpU6YoPj5eEydO1AviXPwTAAAE\n3UlEQVQvvKCSkpIb/0HsZJk7d67Onz9/3dmMjIwb+sA6AEDDRuEBgEYqLCxMH3744XceW7t2rdq3\nb29YhqCgIC1cuFCLFi3SsmXLFBwcrISEhFp57r/97W8KDg6+7vdXr16t06dP18q5AAD1l6GfwwMA\nqD+Cg4NVVVWlnJwctWrVStXV1dq1a5ciIyOvzaxcuVLLly+Xp6enmjZtqt///vfy9vbWkiVLlJSU\npBYtWqhZs2bX5g8cOKCXX35Z1dXVqq6u1m9+8xuFh4ffcKbevXtr+fLlkqTBgwdr+PDhOnXq/2/v\n/kGbWsM4jn9T8q9F0uLQMxhLJikY/6SlduikDqJgRlEKGupQB8GhKCalCaUBCXYxKFS7xMRA3KKD\nBAehDbgKrS1uwatgoUYLrVFomjhIDkm57S33wqVNf58l8Lw5eZ/3bE+e95z3L+LxOK9evSKdTgNw\n8OBBotEo7e3tW+Zy5swZnj59itvtJhqN8v79eywWC4FAAKvVSi6XY35+nmAwiGEYRCIRKpUKlUqF\nkZERenp6CAaD2Gw2CoUCk5OTGIbxX2+7iIj8z9ThERHZx/x+P9lsFoCZmRkGBgbMw5+/fPnCw4cP\nSSaTJJNJDMMgkUiwtrZGPB4nnU7z5MkTvn//bv7e7du3GR8fJ5lMEg6HCYVCO85lY2OD169f09fX\nZ8Y8Hg/xeJylpSUeP35MIpEgnU7T19fH1NTUtrnUvHz5kmKxyPPnz5meniabzXL27Fm6u7u5e/cu\n/f39TExMMDg4SCqVIhKJcOfOHfP6X79+kUqlVOyIiOxR6vCIiOxTFouFCxcuMDg4yM2bN3nx4gXD\nw8M8e/YMgIWFBbxeL62trQD09/eTyWT4+PEjbrcbl8tlxj98+MC3b98oFAqMjo5SO9O6VCqx3fnW\nxWKRq1evmt/p7e3l2rVr5rjP5wP+PG+zvLzM9evXqVarrK+v43a7t8yl3tzcHKdOnQL+nOg9NTVl\njtXmnZub48GDBwAcOXKEHz9+sLKy0pCDiIjsTSp4RET2sY6ODjweD/l8nk+fPnH06FFzzGKxNBQr\n1WrVjNW6QACVSgUAu92Ow+EgmUzueP7aMzxbsdvt5ufx48cbihXA3Ka2OZd6m9fxd1paGjc81K/R\nZrNtvwgREdnVtKVNRGSf8/v93Lt3j3PnzjXEvV4vi4uLlEolAN6+fcvJkyfp6uri8+fPrK2tUa1W\nzbevHThwgEOHDjEzMwNAoVDg0aNH2879T4VIzbFjx5ifn+fr168A5HI53rx5s2Uu9Xw+H/l8HoDV\n1VUuXbpEuVympaWFcrkMwIkTJ5idnQVgcXGRjo4O2tvbd5SbiIjsburwiIjsc6dPnyYcDnPx4sWG\nuGEY3Lp1i0AggMPhwDAMRkZGcDqd3LhxgytXrnD48GHcbjc/f/4EIBaLEY1GmZ6eplwum6+Iru/C\n1Nsqvnmss7OT0dFRhoeHaWtrw+l0EovFcLlcW+ZSu/78+fO8e/eOy5cvU6lUGBoawmq1MjAwQCQS\nIRQKMTY2RjgcJpPJsLGxwf379//9DRURkV3FUt3p32siIiIiIiJ7jLa0iYiIiIhI01LBIyIiIiIi\nTUsFj4iIiIiINC0VPCIiIiIi0rRU8IiIiIiISNNSwSMiIiIiIk1LBY+IiIiIiDSt3wUhm1Mr8AWD\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "AICs.plot(title = 'Model AICs and BICs', label = 'AIC');\n", + "BICs.plot(label = 'BIC');\n", + "plt.xticks(range(5), X_str);\n", + "plt.xlabel('Model Predictor');\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The \"best\" model according to AIC and BIC is the one with the smallest value. In this case, both the Akaike and Bayesian information criterion point to the same conclusion; they are both at their minimum with the model $Y = b_0 + b_1 \\cdot gold$ meaning gold is the best single predictor for the model on this sample\n", + "\n", + "### AIC vs BIC\n", + "\n", + "In this test the two criteria pointed to the same model as the best, but this is not always the case as the two criteria have a few key differences. \n", + "\n", + "* The BIC imposes a harsher penalty on additional regressors than the AIC does and will usually select \"smaller\" models with less parameters\n", + "* AIC is more suitable for selecting models that serve as the best predictors\n", + "* BIC is best used to select a model that best explains the behavior in-sample" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Selection Methods\n", + "\n", + "Now that we have a handful of criteria to quantify model quality we need to have a method to cycle through and search for the possible models.\n", + "\n", + "The first idea that might come to mind is to simply pool all possible models together and test them all. While this might work for a situation in which there are a small number of potential regressors, when dealing with big data sets and many possible predictors it becomes a more difficult issue. The number of predictor combinations begins to rise quickly as more possible predictors are added making cycling through every combination not possible.\n", + "\n", + "### Step AIC/BIC\n", + "\n", + "If the number of possible predictors large, the best for selecting the \"best\" is likely iterating through a stepwise linear regression. Broadly, the method builds a model by selecting regressors one at a time, at each step choosing the one that minimizes the model's AIC or BIC. The process ends when adding another variable can no longer decrease the AIC/BIC or when the algorithm exhausts the predictor set and there are no more potential predictors to add.\n", + "\n", + "Let's use a step-forward AIC algorithm to select a set of unemployment predictors to use in our model. Some print statements have been added to show the iteration process but can and should be deleted if you would like to use the function elsewhere." + ] + }, + { + "cell_type": "code", + "execution_count": 927, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def forward_aic(response, data):\n", + " # This function will work with pandas dataframes and series\n", + " \n", + " # Initialize some variables\n", + " explanatory = list(data.columns)\n", + " selected = pd.Series(np.ones(data.shape[0]), name=\"Intercept\")\n", + " current_score, best_new_score = np.inf, np.inf\n", + " step = 1\n", + " \n", + " # Loop while we haven't found a better model\n", + " while current_score == best_new_score and len(explanatory) != 0:\n", + " \n", + " \n", + " scores_with_elements = []\n", + " count = 0\n", + " \n", + " # For each explanatory variable\n", + " for element in explanatory:\n", + " # Make a set of explanatory variables including our current best and the new one\n", + " tmp = pd.concat([selected, data[element]], axis=1)\n", + " # Test the set\n", + " result = regression.linear_model.OLS(response, tmp).fit()\n", + " score = result.aic\n", + " scores_with_elements.append((score, element, count))\n", + " count += 1\n", + " \n", + " # Sort the scoring list\n", + " scores_with_elements.sort(reverse = True)\n", + " # Get the best new variable\n", + " best_new_score, best_element, index = scores_with_elements.pop()\n", + " print '--- Step', step, ' ---'\n", + " step += 1\n", + " print 'Current Best AIC:', current_score\n", + " print 'Best New AIC:', best_new_score\n", + " print 'Variable to Add:', best_element \n", + " \n", + " if current_score > best_new_score:\n", + " # If it's better than the best add it to the set\n", + " explanatory.pop(index)\n", + " selected = pd.concat([selected, data[best_element]],axis=1)\n", + " current_score = best_new_score\n", + " print 'Chosen Model Predictors:', selected.columns.values[1:], '\\n'\n", + " else:\n", + " print 'Best new AIC did not beat current best. The new variable to add is rejected and the algorithm is finished.\\n\\n'\n", + "\n", + " # Return the final model\n", + " return selected" + ] + }, + { + "cell_type": "code", + "execution_count": 928, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--- Step 1 ---\n", + "Current Best AIC: inf\n", + "Best New AIC: 398.65240035\n", + "Variable to Add: gold\n", + "Chosen Model Predictors: ['gold'] \n", + "\n", + "--- Step 2 ---\n", + "Current Best AIC: 398.65240035\n", + "Best New AIC: 307.741249417\n", + "Variable to Add: iwm\n", + "Chosen Model Predictors: ['gold' 'iwm'] \n", + "\n", + "--- Step 3 ---\n", + "Current Best AIC: 307.741249417\n", + "Best New AIC: 258.210706106\n", + "Variable to Add: inflation\n", + "Chosen Model Predictors: ['gold' 'iwm' 'inflation'] \n", + "\n", + "--- Step 4 ---\n", + "Current Best AIC: 258.210706106\n", + "Best New AIC: 253.653929589\n", + "Variable to Add: qqq\n", + "Chosen Model Predictors: ['gold' 'iwm' 'inflation' 'qqq'] \n", + "\n", + "--- Step 5 ---\n", + "Current Best AIC: 253.653929589\n", + "Best New AIC: 255.596196199\n", + "Variable to Add: fx\n", + "Best new AIC did not beat current best. The new variable to add is rejected and the algorithm is finished.\n", + "\n", + "\n", + "Selected Predictors: ['gold' 'iwm' 'inflation' 'qqq']\n" + ] + } + ], + "source": [ + "# Reformatting the data to work with the forward_aic function\n", + "Y_series = pd.Series(Y).reset_index(drop=True)\n", + "data_df = pd.DataFrame(np.column_stack((X[0],X[1],X[2],X[3],X[4])), columns = X_str)\n", + "\n", + "predictors = forward_aic(Y_series, data_df)\n", + "print 'Selected Predictors:', predictors.columns.values[1:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `forward_aic` algorithm selected gold prices, the IWM index, inflation rate, and the QQQ index as the most appropriate combination of predictors. The model is now:\n", + "\n", + "$$ Y_{unrate} = \\beta_0 + \\beta_1 X_{gold} + \\beta_2 X_{iwm} + \\beta_3 X_{inflation} + \\beta_4 X_{qqq} + \\epsilon_i $$\n", + "\n", + "Let's fit this model using OLS to determine the beta coefficients and graph both the model's prediction for unemployment and its actual values." + ] + }, + { + "cell_type": "code", + "execution_count": 929, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Intercept 7.180962\n", + "gold 0.003986\n", + "iwm -0.093050\n", + "inflation -0.386373\n", + "qqq 0.067445\n", + "dtype: float64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAHBCAYAAABkCVTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4lfX9//HnOSebEUJCwgwbQlhKwhJEEHCAs1oHCFpH\nnXV8rVKttVhrHa0/axUH7oGziAIqKghCZYdNEiADElYSkhCy1zm/P26CYNbJyclZeT2uK9cd7/nm\nJrTnlc8y2Ww2GyIiIiIiIh7K7O4CREREREREGqLQIiIiIiIiHk2hRUREREREPJpCi4iIiIiIeDSF\nFhERERER8WgKLSIiIiIi4tHsCi3JyclMnTqVBQsWnNr33nvvMWTIEEpLS1usOBERERERkUZDS2lp\nKc8++yzjxo07te/LL7/kxIkTREZGtmhxIiIiIiIijYaWwMBAXn/9dSIiIk7tu/DCC/nDH/7QooWJ\niIiIiIiAHaHFbDYTEBBwxr7g4OAWK0hEREREROR0GogvIiIiIiIeza85F5tMJrvOS0hIaM5jRERE\nRESklYiLi6u1r1mhxWazYbPZHH64/CIhIUHvyAF6b47Tu3Oc3p3j9O4co/fmOL07x+ndOU7vznH1\nNXY0Glq2b9/OY489Rl5eHhaLhU8++YT4+Hg2b95MTk4O11xzDfHx8cydO9fZNYuIiIiIiDQeWoYP\nH86SJUtcUYuIiIiIiEgtzeoeJiIiIiLiyWw2G+Xl5S5/bllZmcuf6W0CAwPtHiOv2cNERERExGeV\nl5e7PLQMHjzYpc/zRk39e1FLi4iIiIj4tMDAQIKCgtxdhjSDWlpERERERMSjKbSIiIiIiIhHU2gR\nEREREfFwq1at4pFHHqn3+Msvv8yCBQtcWJFrKbSIiIiIiIhH00B8EREREZEWtmjRIjZu3Eh+fj6p\nqancf//9LF26lLS0NP75z3+ybds2vvnmGwAmT57Mbbfdxt69e5kzZw4dOnSgR48ep+61YMECli5d\nisViYcqUKdx0001u+lO5jkKLiIiIiLQuvXrVvX//fuecX4+MjAwWLFjA559/zvz58/nyyy9ZuHAh\nr732GkePHmXhwoVYrVZ++9vfctFFF/HKK69w7733MmnSJObOnQvAwYMH+e677/j4448BuO6667jo\noouaVIc3UmgREREREXGBIUOGANCpUycGDhyIyWQiIiKCPXv2MGHCBEwmExaLhREjRpCcnExqaipn\nnXUWAKNGjWLNmjXs2LGDAwcOMHv2bGw2G6WlpRw8eNCdfyyXUGgRERERkdaliS0kTT6/HhaLpc7v\nCwoKsNlsp/67oqLi1ErxZrMxBL3meEBAABMnTuSJJ544497r1693So2eSgPxRURERETcaOrUqWzb\ntg2r1UpVVRU7d+5k8ODB9O7dm507dwKwYcMGAAYPHsyGDRsoKyvDZrPx1FNPUVFR4c7yXUItLSIi\nIiIibnbNNdcwc+ZMbDYbv/3tb+nSpQt33HEHjzzyCB988AHdunWjsrKSLl26MHv2bGbOnImfnx9T\npkwhICDA3eW3OIUWEREREZEWduWVV576fuLEiUycOLHW9zNmzDjjmtjYWL766qta95oxY0atc++5\n5x7nFuxh1D1MREREREQ8mkKLiIiIiIh4NIUWERERERHxaAotIiIiIiLi0RRaRERERETEoym0iIiI\niIiIR1NoERERERHxUWPGjHHr8zdv3kxeXl6z76PQIiIiIiLio0wmk1ufv3DhQnJzc5t9Hy0uKSIi\nIiLSwhYtWsTevXuZM2cOJSUlXHLJJfj5+XHttdeycuVKKisreeeddwgKCuIvf/kLBw8epKqqinvv\nvZfRo0cza9YsRo8ezdq1azGbzVxxxRUsWrQIi8XCe++9x7x58zh69ChHjhwhJyeHhx9+mPHjx596\n/p49e3jyyScxm820adOGZ555hrlz53LNNdcwduxYKioqmDZtGk8++SQLFizAYrGQlJTE7bffzpo1\na0hKSuLhhx9m8uTJ/PDDD7z99tv4+fkxZMgQ5syZw6JFi0hISCAvL4/9+/dz880307VrV5YvX05K\nSgovvfQSnTt3dvj9KbSIiIiISKvx9pLd/Lz9kFPvOW54N26+dHCj5/261aO6upq+fftyyy238OCD\nD7Ju3TqKioqIjIzkqaeeIj8/nxtvvJHFixcDEBUVxUcffcT111/PiRMnWLBgATfccAN79uwBIDs7\nm7feeutUODo9tPzjH/9gzpw5DB06lHfeeYf333+fK664giVLljB27Fh+/vlnJk6ciMViITk5mWXL\nlrFx40YeeughfvzxR7Zs2cKCBQsYO3Ysr776Kp9++in+/v7cf//9bN26FYB9+/bx6aefkpaWxoMP\nPsiiRYuIiYlh7ty5zQosoNAiIiIiIuI28fHxAERGRlJYWMi2bdtISEggISEBm81GRUUFlZWVAAwd\nOhSATp06MWjQIAA6duxIUVERAGPHjgVgwIABZGdnn/Gc1NTUU9ePGjWKefPmcdddd/HMM89QWVnJ\nDz/8wLXXXkt5eTkxMTH4+fnRqVMnevXqRWBgIBERERQWFpKSksLhw4e55ZZbsNlsFBcXc/jwYQDO\nOussADp37kxhYeGpZ9tstma/J4UWEREREWk1br50sF2tIs52eitLVVXVqe8tFssZ5wUEBHDnnXcy\nbdq0Wvfw8/Or8/uaUGC1Wu2qpbKyErPZjMViYcKECaxcuZKUlBSGDx/Oxo0bz6jp9O9tNhsBAQEM\nGTKEN99884x71nRV+3VNzqKB+CIiIiIiLaxt27anWj8SEhLqPW/48OEsX74cgNzcXF544QW7n1Fz\n3+TkZLp27Qr8Eh4GDBjA9u3bAdi4cSNDhgwB4PLLL+f5558/oytZQ3r16kVaWtqpGcFeeumlWq06\npzObzWeENEeppUVEREREpIWNGTOGV199ldmzZ58aO3J6a0RNS8zFF1/MunXruO6667DZbPzhD384\n43hD37dt25Y777yTQ4cO8ec///mM43/+85954oknMJvNtG/fnqeffhqA2NhYbDYb06dPt+vPERQU\nxCOPPMJtt91GYGAgsbGxREZG1nv+yJEjue+++3jllVfo27evXc+oi8nm7LabOiQkJBAXF9fSj/Fq\nekeO0XtznN6d4/TuHKd35xi9N8fp3TnOV95dWVkZYHzY9mUvv/wyYWFhzJw5s0nXpaam8ve//513\n3nmnhSqrW31/L/X93KmlRURERESkFfroo4/4/PPPee6559xdSqMUWkREREREvNw999zT5GtmzJjB\njBkzWqAa59NAfBERERER8WgKLSIiIiIi4tHUPUxEREREfFp5ebm7S5BfKS8vJzAw0O7z1dIiIiIi\nIj4rMDCwSR+OnWH37t0ufZ43aurfi1paRERERMRnmUwmt0x37FNTLGdmwsqVMHu220pQS4uIiIiI\niNTv7rvhxhth3z63laDQIiIiIiIidXvoIcjIML7/8ku3laHQIiIiIiIitVmt8MILUFICZrNbQ4vG\ntIiIiIiISG15eVBdDUOGQNeusHo1HD0KnTu7vBS1tIiIiIiISG1HjxrbqCi44gqw2WDxYreUopYW\nERERERGpLSvL2EZFwZVXGmNbxoxxSykKLSIiIiIiUtvpoaVnT/h//89tpah7mIiIiIiI1BYXB//5\nD0yY4O5K1NIiIiIiIiJ1GDjQ+PIAamkRERERERGPptAiIiIiIiJNU13t0scptIiIiIiIiH0OH4ZR\no+Cuu1z6WIUWERERERGxT1QU7N8PX37p0tYWu0JLcnIyU6dOZcGCBQAcPXqUWbNmccMNN/DAAw9Q\nWVnZokWKiIiIiIgLWa0weza89NKZ+y0WuOwyyM6G9eubds/KSvjkE+PeTdRoaCktLeXZZ59l3Lhx\np/a9+OKLzJo1iw8//JDo6GgWLlzY5AeLiIiIiIiHys+HDz6AFStqH7vySmO7aFHT7vnKK3D99fDM\nM00up9HQEhgYyOuvv05ERMSpfRs3bmTSpEkATJo0ibVr1zb5wSIiIiIi4qFOX1jy1yZPhrZtjS5i\nNpt998vNhblzITQUfv/7JpfTaGgxm80EBAScsa+0tBR/f38AwsPDycnJafKDRURERKTlrd91hDXb\nDrm7DPE2DYWWoCC4+GKoqgJ7c8DcuXD8OPz1r3BaY4i9mr24pM3OdJWQkNDcR/k8vSPH6L05Tu/O\ncXp3jtO7c4zem+Na87vLKajk1W+ysNpgzaZkpp4ditlksvv61vzumsvb313YunX0ATLKy8mp489i\nvucerCEhkJlpfDUgKDWV2FdfpTw6msSxY7E58G4cCi1t2rShoqKCgIAAsrKyiIyMbPSauLg4Rx7V\naiQkJOgdOUDvzXF6d47Tu3Oc3p1j9N4c15rfnc1mY+4b67HaIKxdIOuSi/APCuX+68/C38/S6PWt\n+d01l0+8uzVrAIgeOZLo5v5Z3n0XqqsJmjePEWPGNHhqfWHPoSmPx44dy3fffQfAd999x7nnnuvI\nbURERESkhWxKzGLLnmzOGtCJeQ+fz6BeHVm97RBz31hPcalmfpVGXHghvPmmsSZLc/3737B4MUyf\nboyBWb0ali9v0i0abWnZvn07jz32GHl5eVgsFj755BPeeust/vSnP/Hpp5/StWtXrqyZQUBERERE\n3K6yqpo3F+/CbDZx2+VDaBcSwJN3nMPzCxJYt/MIf5r3P+beNobw0GB3lyqeatAg46spbDaoq/uh\nxQKXXvrLOZdeCj16wK5ddt+60dAyfPhwlixZUmv/22+/bfdDRERERMR1Fq9O48ixYi49tw/RndsD\nEOhvYc7skbzx5U6+/jmdP/5nDU/cNubUcZFmOXQIrrgCXnwRzjmn/vNMJhgwAHbuNBantDTeVRGc\nMBBfRERERDxH/okyPl2+h3YhAcy4YOAZxyxmE7dfOZSIDsG893Uif/zPaiLDQuq8T7BfJX0HlNOh\nXWCz6kk+kMfbi3dTUlZ3l7ShfSO4/TfDmvUM8QDbt8PWrcasYitWQHx8/ecOGACbNxsD+Hv1suv2\nDo1pERERERHP9N43iZSWVzPr4hjahgTUOm4ymbj6/P7834wRtAkOIO9EWa2vY8dLST5Yxh//s5rM\nrEKHa/nf9kP8+ZWfST6QV+dzDh8rZunP6c16hniIadNgwQIoKoILLoBNm+o/d8AAY7t3r923V0uL\niIiIiI/Ym5HPik2Z9O7angvG9Grw3ElxPZgU16POYzabjeffXclPuwp56KU1PHrTSIb162R3HTab\njS9WpvDu14kEB1p49HdjiIupvd7H/7Yf4tn3N/P9hgPcctkQu+8vHuraa6G8HG680RjAv2ABzJhR\n+7zTQ8sFF9h1a7W0iIiIiPgAq9XG/EU7AbjtiqFYzPavx/JrJpOJScNCeeD6symvqOKv89exYlOG\nXddWVVuZ99/tvPt1IuGhQTx7z7l1BhaA0YM70y4kgJUJmVRWWR2uV5ysoACuvBJefbXp186eDW+8\nAZ07Q33LogwbZtw/Otru2yq0iIiIiPiAVVsOsicjn3HDuzK0b9NXHK/L+fHR/O335xAY4Me/P9nK\nh8uSGlxYvLi0kr+9uZ7v1h+gT7dQnr9vAr27htZ7vr+fhUnx3SkoqmBT4lGn1CxOcOQIfPmlMUbF\nEbfeCocPw5QpdR8fPBi++AIuu8zuWyq0iIiIiHi5krJK3vt6NwF+Zm6+ZLBT7z20XwT//MO5dA4P\n4dMf9vL8gi0UFJVTVFJxxtfB7ELmvLyGrXtziB8UxTN3j7drSuULRvUE4IeN9rXkiAtkZRnbqLpb\nyOxS19THzaAxLSIiIiJe7r8/7iPvRDnXXzCQyI51zwbWHD2i2vGveyfw97c38NPWg/y09WC9514y\nrje3NqF7Ws8u7RkQ3YEtyVnkFpR6xdoxHy5LYsWmTOY9NImQIH93l+N8zggtTqbQIiIiIuLFsvNK\n+PKnVMJDg/jNpH72X/j11/DII/DZZxAT0+jpoW0D+fud4/j4u2QO5RTVec6o2M5MHd3T/hpOmjqq\nJ3szjrN8UwbXThnY+AVuZLPZWLExg2MFZSQfyGfEwHrGbXizoye76im0iIiIiIgzvP9NEpVVVmZP\niyUowM6Pdps3wyWXGN//9JNdoQWMBSpvcnL3M4AJZ3fjzcW7WL4xg9+ePwBzMyYRaGkZWYUcKygD\nIDE91zdDiwe2tGhMi4iIiIiX2nMgj5+2HqRf91Amjuhu30UHDsCllxrff/QR3H57yxVop5Agf8YN\n68rR3BJ2pR1zdzkN2pKcfer7pPQ8N1bSgmbNgo8/NgbMt5ScHHjtNVi50q7TFVpEREREvJDNZuOt\nxbsBuOWyIfa1ThQUwPTpRvefF1+E669v4Srtd8HJbmU/bPDsAfk1oSU8NIg9GflUVfvgVM0xMXDd\ndRAe3nLPyM6GO+80wpEdFFpEREREvNDPOw6TtD+PsUO7MMTeKY6LioxZnf7wB7j33pYtsIlie3ek\nW6c2rN1xmKLSSneXU6ey8ip2peXSp2soI2M7U15RTfrhAneX5Z369jV+Fvfutet0hRYRERERL1NZ\nVc27SxPxs5i46ZJY+y/s1g3WroUXXmi54hxkMpmYMqonFVVWftpS/+xk7rQz9RhV1VZGxEQyqFdH\nABJ9tYtYSwsKgp49FVpEREREfNWSNelk5ZUwfVwfuka0bdrF7dqBxdIyhTXT5PgemM0mfth4wN2l\n1Kmma9iImEhiexuhxWfHtbhC//7GQpaFhY2eqtAiIiIi4kUKisr5dPke2oX4c93UAc2/YUVF8+/h\nJGHtgxg5KIrUgwWkHjzu7nJqSdiTTXCgHzE9OxLVMYSO7QNJTM/FZrO5uzTvNODkz+++fY2eqtAi\nIiIi4kU+/n4PJWVVXHfBQNqGBDR8cmMfpi+5xOimU1XlvAKb6dSA/I2eNSD/8LEijhwrZnj/CPz9\nzJhMJgb1Cie/sJysvBJ3l+c8Bw7ABRfAW2+1/LOmT4fHHoOOHRs9VaFFRERExEtkZhXy7br9dOvU\nhmnn9G78ghdegKuvhszMuo+3aWMEm5wcp9bZHHExkXRsH8iqLQcpr6x2dzmnbD3VNeyXtUtquoj5\n1LiWjAz44QdIS2v5Z118MTz5JPTq1eipCi0iIiIiXsBqtfHW4l1YrTZ+d8lg/CyNfIwrL4d//Qu+\n+w7a1jPuJfLkwojZ2XUfdwOLxcz58dEUl1aybucRd5dzypY9RrA7fTHJQadCS65bamoRR48aWw9a\nWBIUWkREREQ8XnllNc9+sImE5GyG9Ytg1ODOjV/04YfGIOc77oCwsLrPqflg6kGhBWDq6GhMJvjv\nir1UW90/XqSyqpodKTl0j2xLVMeQU/v7dA0lKMBC0n4famnJyjK2Ci0iIiIiYq/jheX8+ZWfWbvj\nCEP6hvOnG0diMjWykGR1NTz3HAQEwAMP1H9eTUtLzQdVD9E1oi1TRkZz4Gghyz1gJrHE9DzKKqoZ\nERN5xn6LxcyA6DAyjhZSWOI5Exo0i0KLiIiIiDRFZlYhD/5nNXsy8pkU152//X4s7RobfA/w5ZfG\n+hezZkHXrvWfFxVlLPBX4HkLJM68KIagAAsfLkumpMy9i03WTHUcN7D2B/maLmLJvtLaotAiIiIi\nIvbakZLDQy+tITuvhBkXDOSB60fgv3cPHDvW+MVHjkD79vDQQw2fN326MeXx3Xc7p2gnCg8N5qrz\n+3O8sJyFK1PcWsuWPdkE+JkZ3De81rHY3sY+nxmM/+CD8NVXdg2Od4qff4Z774Xduxs8TaFFRERE\nxMMs35jB46+vo7yiigeuH8H1F8ZgysiA4cONKWIbc889RnAZOLDh8/z8jC8PdcV5fQkPDeLLVSlk\n57tnWuHcglL2HznBkH4RBPrXXpQzpmcYZhO+M65l4EC47DIIDnbN8xIT4aWXYNOmBk/z3J9SERER\nER+1M+UYH3+/h/LK2uujVFttpB4soE2wP3++aRRD+0UYB157zVhPZfRo+x4SEtL4OR4uKMCP2dNi\neeHjLXzwTRIPzoxz6D5phwp4d+luiuvpZta3WwduvmwwQQG1Pxr/0jUsstYxgJAgf3p1CWVfRj6V\nVdX4+9UONtKAmgUm9+5t8DSFFhEREREXWr31IC98vIVqqw3/eqYt7t21PQ/dEE+PqHbGjrIyePNN\nYxG+665zYbXuN3FEd5asSWXVloNcem4fBkTXMxNaPTYnZfHs+5soq6gmwK/2+7babOzNOE7qoeM8\ndvNowtoFnXE8YU/N+ix1hxYwxrWkHS4g9WABMb0aXyhRTtO/v7Hdt6/B0xRaRERERFxk0aoU3l6y\nm5AgP/78u1EM69fJvgs/+8wYy/Lww67rtuMhzGYTN182hEdf+Zk3v9rFs/eMb3z2tJO+/jmd+Yt2\n4Gcx86cbRzJuWO1JCSqrrLz8+TZ+3JzJH19czV9vHUN05/YAVFdb2bY3h8iOIXTrVM9aNxiLTH79\nczqJ6XkKLU3VpYuxyGkjLS0a0yIiIiLSwqxWG298tZO3l+ymY/sgnrl7vP2BBWDePGOWrzvuqH2s\npMRY1b7CwSl3bTY4ftzYeqihfSMYO7QLSfvzWGvHgpPVJxfifO2LHbRvE8g/7hpXZ2AB8Pczc/91\nZzPzohiy80t5+KU1bN9rLCS5N+M4xaWVxLWtaDAoDepVMxjfhxaZdBWTyegitm8fWK31nqbQIiIi\nItKCKiqr+eeHm1m8Oo0eUe34573n0rtrqP03qK6Gyy+H3/8eevc+81hmJsTHw/PPGzMwnXuuMQC/\nKX7zG2PxSQ+c9vh0N02Pxc9i4t2lu6msqq73vLKKKp59fxNf/pRKj6i2/PPecxnYs+HWD5PJxHVT\nB/LgjBGUV1r56+v/44c3l5KQbEz/e/ZLT8LGjfVe3yksmIgOwSTtz8PmweGvUVu2wPjxxsKkrvTo\no/DWWw2GFnUPExEREWkhRaWVPPXOBnal5jK4TziP/W4Ube1ZZ+V0Fovxoa4+J04YUxv7+UHPntCp\nCS04AOEnp/HNyoIOHZp2rQt17dSW6eP68NXqVJasSePSc/vWOudEcTlPvbORfZnHGdYvgkduHNmk\n9z0xrgcRR/bzj2/285+k9gSnpWExwfDMHfDXv8K339Z7bWzvjqzeeohDOUWO/PE8Q3q6MQXx1Ve7\n9rl2PE+hRURERKSF1ASWccO68n8zRhBQx5S5zdKjh/FBevz4M8NLU0SeHGCend34FMludt3UAfy4\nOYN3libyztLEes+bPLIHd199Fv51DLxvzJB5/+Cf63fwxD2vcaSkiiF9wwkZNwaWLYO1a+Gcc+q8\nLraXEVqS0vPo6K2fsD10YUlQaBERERH5xfz5sG6d0VXF3Lxe9Nn5JadaWB6aFY/FbN/g8SYbOhRW\nrDDCy003Nf36mg+oNR9YPVjbkAD+cM3ZfLs2nfo6YY2MjeLS8X3sHqx/hnXrYNkyuk2cyD/nXMAn\n3+9hwtndYegTsHKl0dryww91Xhrbx2ixStqfx7h+TX+0R1BoEREREfECt99ubGfNgvPPb9atEk6u\n7zF+eNeWCyw14uONL0ec3tLiBcYO7cLYoV1a5uZz5xrbJ54gtG0gt/9mmPHfvc+FqVONwLJuHYwd\nW+vS6M7tCQnyIzE9l3H9mjYts8fw4NCigfgiIiIiYEwpXOOtt5p9u82JxgfA+EEOfgA8dqzBgclO\nExVlTKNcVtbyz/Jkx47Brl1GWJ0wofbxp582BqiPGlXn5RaziZieHTmUU0xxWf0TBXg0hRYRERER\nD2c2wz//aXy/cCHk5Tl8q4rKaran5NA9si2dw9vUPqGyEnIbmR535kyIiWn5Wb0mTYLiYvi//2vZ\n53i6iAhITYX33qv7eFyc8XdiqX9c0qDexixlGTkOTj/tbv/6Fyxfbixi6mrPP2+0ZtVD3cNERERE\nwPig9sc/GkHB3x9CmzAt8a/sSsulvKL6l1aW/Hx46inYs8dYRC8tDaqq4Ior4JNPIDDwzBvs3Qvf\nf29MYdyMOuziyNgPXxUUBN27O3z5oJMLS2YeK3dWRa7Vt6/x5Q47dxqBqR4KLSIiIiKnu+SSZt8i\nIelk17CYk6ElMND4TTIYUwyPGgXl5cYaLL8OLACvvGJs77mn2bWI6wyMDsPPYmJbWgl7M/IZEO2l\nY1vcYcCABg+re5iIiIiIk21KyiI40HJqRilCQmDTJmPcxLFjxloYmzbBggW1Ly4qgnfegS5d4Mor\nXVu4NEtQoB+3XzmM0gorj7zyM2t3HHZ3Sd5DoUVERETEdQ7nFHHkWDFnDYg8c52Q+PhfFnIEo1tW\nu3a1b/DZZ0Zwuf12o5uatJwjRyApqenXVVUZ4z8++6zWoYvG9uK6CeGYTfDM+5tYtCoFm62+CZrl\nlAsugH376j2s0CIiIiLiRJtPdg2Li3FwBqbx46FtW/j9751YVSMqKuDQIaO7WmuxeTOMHAnTpjV9\nsoNDh+Dxx43ue3VM2DCwWzDP3D2esHZBvL1kN68u3EF1tQtmgvNm7dtDv/oXuFFoEREREZk7F268\n0Rgwf7rsbGMa3CbYVDOeZeEbsHFj02sJDYUNG4zuYa5y883GAPTDraQ70yefGJMcHD4Md95pfGBu\nip49jZ+ZnBx4+OE6T+nbvQPP3zeBXl3a8+26/Tz59gZKyiqbXXqL+e47GDECvvjC3ZXUSaFFRERE\nZOFC4+v07lq5udCjB9xxh923KS2vYldqLn3amgj/11PGPZsqKsqYwcyVahaYrFmnw1dZrfDnP8P1\n1xtd75YsMUKHIzOoPfAADBtmrOmzenWdp0R0CObZe8YzIiaShORs5rz8P/JPeOh6OOnpsHUrlJa6\nu5I6KbSIiIhI61ZQALt3G12F/E6bWDU8HM47zxg0n5xs16127MuhqtpKXEGasePii1ug4BZQE1qy\ns91bR0tbtQr+8Q9jWt/162H6dMfv5e8P8+cbgef2243Z4OoQEuTP4zeP5uKxvdh/5ARvLm5ay53L\nePDCkqDQIiIiIq3dpk1gs8GYMbWP3XqrsX3rLbtutTnZ+NA/8uelRqvNuHHOqrJl1XxQ9fWWlvPP\nN/4uN2yj1TwIAAAgAElEQVSA2Njm32/0aLjrLujcuXbXwtNYLGbu+M0w+nQLZfXWQ6QfbuEFQx2h\n0CIiIiLiwdavN7Z1hZbLLzdaXN57zxis3gCbzcbmxKO0C7QwIGElTJniPbN/tZaWFjDG75w+i1tz\nPf88/PijEVwaYDabmD1tEAAffmtfy51LKbSIiIiIeLCa0DJ6dO1jgYEwa5Yx4Hrp0gZvc+BoIccK\nyjjbcgKLzeo9XcPA+MAdEeHuKrxTYKDdY2JGDIxkcJ9wNiYeJXl/7VnH3CorCywW5wY6J1JoERER\nkdbtnXdg2bL6f1N+663G9MONDI6vmep45ITBMG8eXHKJsyttOXFxRjCbM8fdlfg0k8nErIuN1pb3\nv0nyrPVbPv7YCPAWi7srqZNf46eIiIiI+LBOneDCC+s/PngwvP56o7fZnJSFyQRnj42BqcOdWKA0\nS0UFBAS4u4pTBvcJJ35QFJuTsti2N4ezB0Y2+R5FJRW8vWQ3Mb06csHonnZdU1ll5cNvkwgO8uO3\nkwdgMf+qdahHD+PLQ6mlRURERKSZikoqSNqfx4DoMELbBrq7HDndgw/CwIGQluaa5x08SPiXXzZ4\nyg0XGa1273/b9NaWnPxSHn75f/ywMYOXPtvGG1/tpNra8D1Kyir525vr+WJVCguWJfP0uxspK69q\n0nPdzaHQYrPZePzxx7nuuuuYPXs26enpzq5LRERExGts3ZuD1Wpj5CDPHMTcatls8PXXcPSo61oR\npk+nxwsvNDhxQ9/uHRg/vCspmcdZt/OI3bfef+QED720msysQi4c05MeUe1YvDqtwRCSd6KMP837\nH9v25TAqtjPD+0ewYfdRHnn1Z89dM6YODoWWFStWUFRUxCeffMLf//53nnnmGWfXJSIiIuI1asaz\nxCm0eJY9e4xFEy+4wHUzuU2ahKW4GNasafC0mRfFYDab+HBZUqMtJQA7UnKY8/IacgvKuPnSwdx9\n9XCe+8O5DYaQzKxCHvrPatIPn+Cisb149KaR/PXWsUwZGU1K5nEe/M9qDhw50aw/rqs4FFr279/P\nsGHDAIiOjiYzM9OzBhKJiIiINKaqqt4FARu0eTPs2HHqP61WG1uSswlrF0ifzu2cWKCLFRbC3r2N\nTu3sVb75xthOm+a6Z9ZMwLBkSYOndY9sx+T4HmRmFfHTlswGz12z9RB/nb+eispq/jgzjisn9sNk\nMtE22L/eEJKYnsucl9eQnV/KDRfHcNdVw7BYzPj7mbn32rOYdfGgk13N1rB1j+dPde1QaOnfvz9r\n1qzBarWSlpbGkSNHyG9gQR0RERERj7N+PbRvD//v/9l/zb59MGoU3HYbWK0ApBw8zvGicuJtuZi7\ndoGVK1uo4Bb28MPG2I99+9xdifPUhBZXTj89YQLVbdoYoaWRX+pfd8FA/CxmFny3h8oqa53nfPlT\nCs99uJkAfzNzbxvLeSO6n3G8rhDy8XfJ/OW1tRSXVXHftWdz7ZSBmE6bltlkMnHNlAH8cWYcFZVW\nnpi/lu+n3GAstOqhHJo97LzzziMhIYGZM2dy9tlnExkZqZYWERER8S7r1xutCt262X9N//5w7bXw\nySfGgpO/+x2bEk92DUtea0wb3L9/CxXcwk5fYHLwYPfW4gzV1VBQYEzn3MjCj04VEMCJMWMIW7HC\n6J7WwFTZkWEhTDunF4vXpHH1n5bUXu/FZsNqg47tg5h72xh6dw2t8z41ISSqYwj//mQrH32/h6AA\nC3+5aRTxDXRZPG9EdyI6BPPUSyt4afhvmffpYfhssd1/VBNwxXl9uemSlv95MdmamTaqqqqYMGEC\na9eurfechISE5jxCRERExOn6PPwwYT/+yM4lS6jo0sXu6/yzshh81VVYg4PZtXAhL6wqpqi0mvdf\nvRFLVASJn37aglW3nE6ffUb0c8+R9tRT5Dc0BbSXMZWVYQsKcukzQ9esoc3OneRcdRWVjawwX1xW\nzVfr8ymtrLulpW2QhQtHhNKhjX1tDRk55axLLmJ8bDu6hds31XO7+x/h0/CRHB11Djaz/R2xck9U\nUVph5faLIukc5rxppePi4mrtc6ilJTk5mQ8//JC///3vLFu2jFGjRjn0cPlFQkKC3pED9N4cp3fn\nOL07x+ndOUbvzXENvrs9e6BzZ4ZOn273iuanPP44lkcfJeCrVeRbRnB+FzNtiwrgzt9779/Vydlg\n+7RtC3Fx+rlrhgSg3/33Y28UnjDOec+OA668qIkXHUjmL/uT4MunmnRZQnIWc99Yz//2VvOPO0ec\n0QXNUfU1djg0pmXgwIFUV1dzzTXX8PHHH/PII480qzgRERERlzp4EA4dgjFjmh5YAP7v/6BfP1ak\nFQNw/sGTH7RcOXbC2Wq6h2VlubcOca3ycuPfQ9++Tb40LiaKkbFR7ErNZe0O+6dudoRDLS0mk4mn\nn37a2bWIiIiIuMb+/dCxoxFaHBEYSNlHn/K/Lw7TqU0AQ/elQ1gYjHPir8xdrUsXiI6G4GB3VyKu\ndOCAMWFAnz4OXX7rZUPYuiebt5fsIj42ikB/i5MLNDgUWkRERES82vjxcOxYs6b3XWfuRGlFJped\n1wPzY+9BWRkEOK9fv8v17298gJXWpX//Zv1b6NqpLZed25cvVqWwaFUK100d6OQCDQ51DxMRERHx\neiYTBAY6fPmKTRkATI6PNna4eLC3NGD+fGN2OGmcyQTh4UZLm4OunTqADu0C+XzFPnLyS51Y3C8U\nWkRERESaKDuvhB0pxxjcJ5wuEW3cXU7rUlkJJxpYxT0/H+66yxh35G6LF8OwYfDTT+6upEWFBPlz\n47RYKiqreXfp7hZ5hkKLiIiISBOtTMjEZoPJ8T3cXUrrc/fd0KmTsU5OXb7/3lijZfp019ZVF39/\n2LkTli51dyUt7vz4HvTv0YHV2w6xOy3X6fdXaBERERFpApvNxopNmQQGWBg3vKu7y2ldrFb47jtj\n/MVNN8Gf/mTsO9033xjbadNcXl4tkyZBSEjjoWXXLmPBUi9mNpv4/ZVDAZj/5U6qrc5deF6hRURE\nRFqXvDxITISSEocuT0zP40huMecM7UJIkL+Ti3OzvDzYtg2Ki91dSd3MZmPmtzVrjAHkzz4Lv/kN\nFBUZx61W+PZbY3zGWWe5tVTAGOc0dSokJ0NKSv3n3Xij8VXz53AVm61Zk1H8WkzPjkyK607aoQKW\nb8xw2n1BoUVERERam6VLYfBg+PBDhy7/cXMmcNoAfF/yzDNw9tlGlyZPZTIZs79t2ACTJ8OOHVB6\ncvB3QgLk5Bjr5ThhoUOnuOQSY9tQa8tFFxnhYdUql5R0Sna2McX17bc77ZY3To8lKMDCB98mUlRa\n6bT7KrSIiIhI61IzrW/Pnk2+tKyiijXbDhHRIZih/SKcXJgH8KYFJsPCjFaVVauMMS4APXrA888b\nrRaeomZszbZtv+yz2YywVePCC43td9+5ri6A1FSjdap9e6fdMjw0mGumDKCgqILPlu912n0VWkRE\nRKR1yTjZbSW66S0l63ceobS8isnxPTCbPeQ3+c4UFWVss7PdW4e9/P3P/Hvs3NmYNWzCBPfV9Gtd\nuhhd2t5995d9H38Mw4fDvHnGf48dC+3awbJlrq0tLc3Y9u3r1NtePqEvkWHBLFmTxtFc53Q1VGgR\nERGR1qWmpcWB0LJik9E17PyRPjprmDe1tHiT01v18vLg/vuNblk1kwX4+xtd3VJSjNYPV6kJLX36\nOPW2Af4Wbpo+mKpqK+9+neiUeyq0iIiISOty4ABERECbpq2vkp1fwvaUHGJ7d6RrRNsWKs7NPLWl\nZetWmDsXMjPdXUnzzZljjLuZOxd69/5l/003GftCQlxXS01AcnJoARh/VlcG9gzj5+2HSUxv/hTI\nCi0iIiLSuvTsCWPGNPmyU2uzjPTBAfg1OneGQYOMFdI9yZtvwhNPwO6WWbjQZdasMf4sw4bBAw+c\neezyy+Gvf23WyvRNlpcHFotD47saYzKZuPWyIQC8tXgX1mZOgeznjKJEREREvMb33zf5EpvNxo+b\nMgnwtzDel9dm6dzZmA4ajJm4PEFFhbGGSVQUTJni7mqa5/HHjVnN5s83uoS525IlxvTWLVRLTK+O\nnHtWN9ZsO8TqbYeYOKK7w/dSS4uIiIhII/YfOcHhY8WMGdzZ99Zm8XTffGO0CMycCX5e/vv2L76A\nBQtg9Gh3V/KLJnaTbKobp8fi72fmva8TKa+sdvg+Ci0iIiIijdicZAxMHzm4s5sraYXef9/Yzprl\n3jqcISwMrr/e3VW4VFTHEC47tw/HjpeyeLXjkwwotIiIiIg0IiE5G5MJRgyMdHcprUtBAXz9NQwd\nakwRLF7pt5MH0L5NAJ+v2Et+YZlD91BoEREREWlAUUkFSfvzGBgdRvs2Ae4up3UJDTVmDnv5Zc9Z\n4b6lvfEGDB4MR464uxKnaRPsz8yLYigtr2bBsmSH7qHQIiIiIq3H+vXGAHOb/TMZbd2Tg9VqIz42\nqgUL8yBZWfDzz1gKC91diSE21rMWi2xpJ04YkyE4MGEEAAcPwkcfQVVVw+dlZUFJiWPPcMCFo3vS\nI6otP2w4wP4jJ5p8vUKLiIiItB533AHnndekSzYnG+NZ4mNaSWh54w0YP54Qb59e2FtddJGxXbas\nadclJ8PNNxtrrsycCW+/3fD5t9xiDMIvKHCsziayWMzcfOkQrDZ4+bNtFJVUNOl6hRYRERFpPTIy\nIDra7q5GVquNhOQsOrYPpE+30BYuzkNEGuN2/PPy3FxIKxUbC926wQ8/QLWds23961/Gde+8Az16\nGPuWL2/4mrQ0Y2KAUNf9XMfFRHLe2d3Zk5HPQy+t4Whusd3XKrSIiIhI61BYCPn5TVpIL+XgcQqK\nKoiLicLUWsZUnAwtfgot7mEyGa0tubmwZYt910yYACNHGlMq79sHK1fCe+/Vf77VaoSWPn2cU7Od\nTCYTD8wYwRXn9eVgdhF//M9q9hyw7+dMoUVERERahwMHjG0TQkvNVMfxg1pJ1zAwFnHEzS0tubmw\ne7f9LQ2+pqaL2Lp19p0/apQxXuvKK8FshokTITi4/vOPHIHycujbt9mlNpXFbOKWy4Zw51XDKCyu\n4NFXfubnHYcbvU6hRURERFqHmtASHW33JZuSsrCYTZw1oFMLFeWBalpa8vPdV8PixTBkiDG+pjW6\n+GLYvx/uvbf2sfoG2DelJTAtzdi6uKXldNPO6c1fbhmDxWLimfc28cXKfdgamCBDoUVERERahzZt\nYOpUGDbMrtPzC8tIyTzO4D7hhAT5t3BxHiQqCuLjqejsxoU0ExKMbVyc+2pwpzZtarcI2mzw2GNw\n2WVQ0bRB7LUUFUH37m5paTld/KAonrn7XMJDg3hnaSKvLNxR77l+LqxLRERExH0mTjS+7LQlORto\nZV3DANq2hU2bOJKQQFd31bB5M/j5GYtKihFYHngAXnzRCBrHjkHXZvztXHwxZGY6r75m6NMtlOfv\nm8Df3tzAsnX7GdO7e53nKbSIiIiI1GFTaxzP4gmqqmD7dqN7WFCQu6txv+pqY6ruN980Zghbvhy6\ndLHv2txcqKwEd7aa2SE8NJhn7hnPt2vTgbrXcFH3MBEREZFfqaq2sm1PNpEdQ+ge2dbd5bQuiYlQ\nVgbx8e6uxP0qK2H2bCOwjBgBP/1kf2DZsAE6dYLnnmvZGp0kONCP30zqX+9xhRYRERGRX0nen0dx\nWRUjB7WiqY49RVmZMYXv+PHursT9rFajK9g558CPP0JEhP3XDh8OgYGNr9fiJdQ9TERERORXWuVU\nx55i1CijRUGM0LFokRFe2jaxxS8oyAh/338PR496fBexxqilRURERHxfXh589BHs2WPX6ZuTsgjw\nMzOkb3gLF+ahrFbabdwIn3/u7kokJKTpgaXGlCnG9vTWlvx8Y9HKwsLm1+ZCCi0iIiLi+7Zvh5kz\n4YMPGj01O7+EA0cLGdovgqCAVtopxWSi92OPwX33GTNXiXeaOtXYnh5aVq0yppJ+/XW3lOQohRYR\nERHxfRkZxvbXa1/UIeHkVMcjW3PXMJOJwrg4Y+X0vXvdXY04atgwYwD/6V3DahaWdPMaLU3VSn99\nICIiIq3KgQPG1o7QsjnRGM8S15pDC1AYF0fHH36AlSth4EB3lyOOMJt/WaizRk1o6dPH9fU0g1pa\nRERExPfZGVoqKqvZnpJD98i2dA5v44LCPFfhyJHGNytXuu6hixfDf/9rzCAmLSM11dh6WWhRS4uI\niIj4vprQEh3d4Gm70nIpr6jWrGFAeXS0ser6qlXGuBZXTP389NOweTOcqHuBQXGCtDRj/ZZ27dxd\nSZMotIiIiIjvmzjR6NcfHNzgaZrq+DQmEzz8sNHFqLISAgJa9nlVVcaECYMHN/r3JA6y2WDAAK98\nvwotIiIi4vsee8yu03amHCPA30Js71Y61fGv3Xef656VlASlpcbMVtIyTCZYutTdVThEY1pERERE\ngLLyKjKyCunbLRR/P31EcrmaAeMKLc5XUAAvvAALFri7EofpX6SIiIgIkHqoAKvVxoDoMHeX0jop\ntLSshx6Cl192dxUOU/cwEREREWBfZj4AA6I7uLmSVurCC41xLcOGubsS3xMaCqNHw/r1RqtLaKi7\nK2oytbSIiIiIAHszjgPQv4daWtzikkvg1Ve9cpC4V5g6FaxW105h7UQKLSIiIuLbvvkG3noLCgsb\nPG1fZj7tQvzpHB7iosK8RHk53HAD3H67uyuR5pgyxdg+/bR763CQQouIiIj4ttdeg1tvNabtrUdB\nUTlHc0voHx2GyRXrkXiTwEBYtw4+/RSqq91djThq9Ghju3Gje+twkEKLiIiI+LYDB6BtWwirv9vX\nvsyarmEaz1KnSZOMsRDbtrm7EnGUv7+xDs6ePe6uxCEKLSIiIuLbMjIgOrrBFd1rQotmDqvHpEnG\n1kvHQ8hJw4YZi0t6IYUWERER8VnmoiI4fhx69mzwvL0ZxsxhammpR01o+fFH59+7qgquvhrefNP5\n9xafodAiIiIiPivg6FHjmwZCi81mY19mPp3CgglrF+SiyrxM164wcCCsXev8cS3JybBwoXFvkXoo\ntIiIiIjPsrZpYyyqd+GF9Z6Tk19KQVEFAzTVccM+/9wYH2SxOPe+WlRS7KDFJUVERMRnVXTpAs89\n1+A5e7WopH2GDm2Z+yq0iB0cCi0lJSXMmTOHgoICKisrufvuuxk/fryzaxMRERFpcVpU0s0SEozW\nm+HD3V2JeDCHQsuiRYvo06cPDzzwANnZ2dx44418++23zq5NREREpMXtzcjHZIK+3UPdXUrrU1UF\nW7dCbCwEB7u7GvFgDoWWjh07sufkHM8FBQV07NjRqUWJiIiIuEK11UbqweP0iGpHSJC/u8vxPlYr\nJCUZrSWzZtU9rfTevdChA0RG1j5mMsEPP0BJScvXKl7NodBy8cUXs2jRIi644AIKCwuZP3++s+sS\nERERaXEHswopq6jWIPymyMqChx+Gw4eN1dVPnDD2jx8PffrUPn/cODh2DAYPhquuMqY3HjLECCwW\ni3FcpBEmm81ma+pFixcvZvPmzfztb38jOTmZv/zlL3z++ef1np9QM8BKRERExEVMFRV0ffVVioYP\np2DixDrP2ZJazOIN+Uwf2YGR/du6tkAvZC4uZthFF2EpLQWgrGdPioYOpXjIEPKnTKG6w68mM7DZ\n6PGvfxGYmUm7zZsxV1QAUNq7N0kffYTNX61bUltcHZMyONTSsmXLFs4991wAYmJiOHr0KDabDVMD\nK83W9XD5RUJCgt6RA/TeHKd35zi9O8fp3TlG781BqanwwQfGb/QffLDOUzakbwfymTJuOP20sOQZ\n6v25W77caF0ZPZqgsDCCgAig3pVwPvnE2BYWwjffwMKFBJeVMWLMmJYp3APo36zj6mvscCi09OzZ\nk23btjF16lQOHTpESEhIg4FFRERExOUOHDC2DSwsuTczH38/Mz27tHdRUT7gnHMcu65dO7j2WuOr\n6R19pJVzKLRce+21PProo8yaNYvq6mqefPJJZ9clIiIi0jwZGca2ntBSXlnN/sMn6Ne9A/5+Wm/b\npfTLbmkih0JLSEgI//73v51di4iIiIjzpKcb23pCS/qhAqqtNvprUUkRj6dfK4iIiIhvSk01tv36\n1Xl4b2Y+AAOiNXOYiKdzqKVFRERExOPNmMGRoCC69OhR5+F9GccB6K8B+CIeT6FFREREfNO0aRyO\niqKLxVLn4b0Z+bQJ8qNrhKY6FvF06h4mIiIirU5RSQWHjxXTv0cYZrMGhYt4OoUWERERaXX2ZZ7s\nGqZB+CJeQaFFREREWp2aQfj9e2gQvog3UGgRERGRVqdmEP4AtbSIeAUNxBcRERHf8+9/Q1oa5quu\nqnXIZrORfCCPiNAgwkOD3VCciDSVWlpERETE93zxBcybhy0wsNahw8eKKSiqILZ3uBsKExFHKLSI\niIiI70lJgehobP7+tQ4lpecCMKh3R1dXJSIOUmgRERER31JcDEeOQL9+dR5OTM8DYFAvhRYRb6HQ\nIiIiIr4lLc3Y9u1b5+HE9DyCA/3o1aW9C4sSkeZQaBERERHfkpJibOtoaSkoKudQThEDe4Zhsehj\nkIi30OxhIiIi4ltGj4aPPoKzzza6ip0mab/RNUyD8EW8i37FICIiIr6la1e4/nqIial1KOnkeJZY\njWcR8SoKLSIiItJqJKbnYjabGNAzzN2liEgTKLSIiIhIq1BRWU3KwQL6dG1PcKB6yIt4E4UWERER\naRX2ZR6nqtqq8SwiXkihRURERFqFRC0qKeK1FFpERETEd6xaBVOmwLff1jpUM3OYFpUU8T4KLSIi\nIuI7duyAFSvgxIkzdlutNpLS84jqGEJ4aLCbihMRRym0iIiIiO+oZ2HJg9mFFJVWEquuYSJeSaFF\nREREfEdNaOnb94zdiSfXZxmkQfgiXkmhRURERHxHaiqEh0OHDmfsrhnPokUlRbyTQouIiIj4hqoq\nSE+v1TUMICk9jzbB/vSIaueGwkSkubSykoiIiPgGsxk2boSKijN2558o40huMfGDojCbTW4qTkSa\nQ6FFREREfIPZDGedVWt3Yk3XMA3CF/Fa6h4mIiIiPu3UopIazyLitRRaRERExKclpefhZzHRPzrM\n3aWIiIMUWkRERMRnVVRZST1UQN/uHQj0t7i7HBFxkEKLiIiI+KxDuRVYrTZitT6LiFdTaBERERHv\nZ7MZUx3fdtsZuzNyjJnENJ5FxLsptIiIiIj3O3LEWFjy+PEzdmfklAOaOUzE2ym0iIiIiPdLSTG2\npy0sWW21cfBYBd06tSG0baCbChMRZ1BoEREREe9XR2jJOHqC8kqNZxHxBQotIiIi4v1SU41t376n\ndiWmG4tKajyLiPdTaBERERHvV0dLS1JNaNF4FhGvp9AiIiIi3u/dd2H3buja9dSuxP25hASa6dap\nrfvqEhGnUGgRERER7xccDLGxYDY+2uTkl5KTX0qPTgGYTCY3FycizaXQIiIiIj4naX8uANGdNGuY\niC9QaBERERGfUzOeJToiwM2ViIgzKLSIiIiIz0lMzyPAz0yXjgotIr5AoUVERES8W1XVGf9ZUlbJ\n/iMF9I8Ow8+i8SwivkChRURERLzb734HERFw6BAAyQfysdogVlMdi/gMhRYRERHxbqmpUFAAUVHA\naeuzaFFJEZ+h0CIiIiLeLSUFevUCPz8AEtONmcNiFFpEfIZCi4iIiHivEycgJwf69QOgqtrK3ox8\noju3o12IBuGL+AqFFhEREfFeGRnGtlcvANIPF1BWUa2uYSI+RqFFREREvFdeHphMEBkJ/DKeJbZ3\nuDurEhEn83Pkov/+97989dVXmEwmbDYbu3fvZsuWLc6uTURERKRhEyZAZaXxBSTurwktamkR8SUO\nhZarr76aq6++GoBNmzaxbNkypxYlIiIiYjeLBSwWbDYbSem5dGwfSFTHEHdXJSJO1OzuYfPmzeOu\nu+5yRi0iIiIiDsvKKyHvRDmDeoVjMmlRSRFf0qzQsnPnTrp06UJ4uPqNioiIiHslpqtrmIivMtls\nNpujFz/++ONceumljBw5ssHzEhISHH2EiIiIiF2WbMwnIaWY2y6MpFu4pjsW8VZxcXG19jk0pqXG\nxo0befzxxx1+uPwiISFB78gBem+O07tznN6d4/TuHKP31oDiYggJAZOJt3/8kcAAC9Mmj8bPYnQm\n0btznN6d4/TuHFdfY4fD3cOys7Np06YNfn7Nyj0iIiIijhs9Grp0oaikgoyjhQyMDjsVWETEdzj8\nrzonJ0djWURERMS9cnIgNJSkk1MdD9J4FhGf5HBoGTx4MPPnz3dmLSIiIiL2s1ohNxc6dToVWrSo\npIhvUvupiIiIeKf8fKiuhk6dSEzPw2yCmJ5h7q5KRFqAQouIiIh4p+xsACo7RbEvI59eXUIJCfJ3\nc1Ei0hIUWkRERMQ7nTgBwcGkhvekosqq8SwiPkyhRURERLzT6NFQUkLi1KsALSop4ssUWkRERMSr\nJR3IB2BQLw3CF/FVCi0iIiLitWw2G0n784joEEynsGB3lyMiLUShRURERLzW/iMnKCiqUNcwER+n\n0CIiIiJea2XCQQDOGdbVzZWISEtSaBERERGvVH0sl5WbM2gX4s+o2Ch3lyMiLUihRURERLzSlmvv\n4HhRBeed3R1/P4u7yxGRFqTQIiIiIl5pRcdYACaPjHZzJSLS0hRaRERExOucKCpnQ7eh9CzOpm/3\nUHeXIyItTKFFREREvM6a9alUWfyZXJyGyWRydzki0sIUWkRERMTrLN+cidlazUT/fHeXIiIuoNAi\nIiIiXuXA0ROk5JQRd2gXYVFh7i5HRFzAz90FiIiIiDTFj5syAZj82K2g9VlEWgW1tIiIiIjXqK62\nsjIhk7bBWptFpDVRaBERERGvsXVvDvmF5Zw3QmuziLQmCi0iIiLiNZZvygBg8sgebq5ERFxJoUVE\nRHnKQ0sAACAASURBVES8QmFJBRt2HSW6czv6de/g7nJExIUUWkRERMQrrN56iKpqK5PjozEdOQLH\nj4PN5u6yRMQFFFpERETEK6zYlIHZbGJiXHe47DLo0sXdJYmIiyi0iIiIiMc7cPQE+zKPM2JgJB3b\nB0FODnTqBCaTu0sTERdQaBERERGPt3KzsTbLlJHRxo6a0CIirYJCi4iIiHi8DbuPEhhgYWRsFJSU\nQGmpQotIK6LQIiIiIh7taG4xB7OLOKt/JwL8LUYrCyi0iLQiCi0iIiLi0RKSsgCIGxRl7Cguhuho\n6KG1WkRaCz93FyAiIiLSkE01oSUm0tgRGwsHDrixIhFxNbW0iIiIiMcqq6hiZ8oxenZuR2RYiLvL\nERE3UWgRERERj7UrNZeKKivxNV3DRKRVUmgRERERj7Up8SiAQotIK6fQIiIiIh7JZrOxOTmbNkF+\nxPTq6O5yRMSNFFqcqagIfvzR3VWIiIj4hIPZRWTnlXD2wEj8LKd9ZElPh0OHwGZzX3Ei4lIKLc50\n/fUweTJ88YW7KxEREfF6mxKNWcNqdQ2bMQN693ZDRSLiLgotzrJqFSxdanzvI4tdVVVb+WnLQU4U\nV7i7FBERsde2bfDdd65phTh4sEVvn5BshJYRNVMd18jJgYgIMJla9Pki4jkUWpyhqgruu8/4fuNG\nOPdc99bjJJ8t38u/FiTwxxdXcyinyN3liIiIPZ54Ai66CDZtatnnZGUZrR0339wity8pq2R3Wi79\nenQgrF3QmQdzcnzmF4QiYh+FFmeYPx927DD+h3vkSHdX4xS5BaUsXJlCYICFI7nFPPSf1exOy3V3\nWSIi0pC0NPjqK4iPN/7/aNcuuPxy2L7d+c/68EPjl3Znn+38ewPb9uZQbbUx8tddw8rL4cQJo6VF\nRFoN94SWxES3PLbFtGsHffrAP/7h3Pvu3Akvvmj8j7OLvf9NEhWV1fz+iqHcd+1ZlJRV8dhra1mV\nkOnyWv4/e/cd31T1PnD8k+5JF7SUvXfLHqUs2UtAEBQEZCvTieBCXD+/IC4ERARRFBFBwSLKEBBK\nGaVlFyh7l5YOaOlukt8fRxBoWpo06Xzer1dfF3LvPfcklCTPPec8jxBCiDxasEBNC3vhBTV16soV\nCAqC994z73X0eli+HOzsoFo16N4d1q0z6yXCTuawniU2Vm1lpEWIUqVggxadDt5/H/z81JtdYYuN\nhVdegYMH89fOiBFw+jT4mDmHfJUqsGaNGn6fOxdSUszbfg7OXr3F9rArVPMtQ5eWVejaqirvjg/A\n3taKT346yKotkeglY4sQQhQtSUmwbBmULw9DhqjHevaE1q1VghhzjraEhUFEBPTrB25usHUr7N1r\ntub1ej1hJ6Nxc7GjViX3B3empkL9+lCzptmuJ4Qo+gouaLl5E3r3hlmzoGJF9YbzsIwCXvC9ZAl8\n+ik0bw5vvAFpaaa3ZW2d/bH4eIiMNL1NZ2f1gaDTwYwZ6g16wQI1NG4her2eb4MiABjbryHWVmqR\nY+M65Zg7tT3eHo78tPkUn/98iMwsncX6IYQQwkg//KBG5idOVCMgoEZbZs9Wf373XfNd6+6Nx9Gj\n1Y1IULMDzOT8tdskJKXTvJ4PVlYPLbavVUvN2PjwQ7NdTwhR9BVc0NK0qcpm0rs3HDoEbdo8uP+L\nLyAgQH3RLyivv65Gfnx84KOPVB/37DFP2zExash8zBjTM7jY2MBrr6l89G++qe6iTZ0Kkyebp48G\n7I+4wbFzsbRs4EOTOg9ma6lSvgzzXuhA7crubA+7wjtL9nInRTKLCSFEkfDss7B4MTz33IOP9+ih\nRlvWrVOZxcyhVi1o21ZNC/PwgMqV1dpOM7k3NayemWcwCCGKrYILWqKi1JqPDRvAy+vBfXq9umty\n8CB061ZwgYtGA2+9BWfPqmAgMhL69FHBQX55e0OnTioI2rEjf225u8MHH6gFli+/DNOm5b9/BmRm\n6Vi+IQIrKw2j+zY0eIyHqwP/NymQAD9fjp2LZfqXwdyIS7ZIf4QQQhjB2VkFLA9PVdZo1CiLiwuc\nPGmea738MoSEqJtroEZbrl+HOPMkbAk7GY2VBprWlXUrQgil4IKWbdvUyIaVgUtqNPDVVzBunApc\nuneHhIQC6xouLjB/PuzaBd98oxbW5yY5WQ2Na7W5H/f222qbhwWQmrQ09aGS29Qvb2/45BPw939k\ne6b4a88Frscm0zugGpV9cn4NHOxsmDGyJQM61uRqzB1enb+LU5cKcIRMCCGEcbp3h8uXVRFkS7j7\nuWSGKWK376QTeTmBetU8cXGyy3d7QoiSoeCClk6dct9vZQVff60Cl/BwNY1MV8BrJtq1gyefNLxv\n8WLVv0OH1IjRmDFqfUluWraEXr1g504VEOUkM5MaM2eqeceff25y9/MjKSWDVVsicXaw4enudR95\nvLWVhrH9GjFxkD9JyRm8uSiE3UeuFUBPhRBCGE2jUdO4LGXCBHXTMSAg300dioxBrzeQNUwIUarZ\nFHYHHnA3cLl+XQ07X76s1oUUBXPmwMWL//29YkUYO/bR5739Nvz1lxpt+fvvB/fp9Wrty/TpuO/e\nreYdv/SSWbudV6u3nuZOaiaj+zbEzcU+z+f1blsdbw8n5v5wgDkrwojuk8LAx2qhkSrFQghRelSv\nbramwk7GALkELZGR6vtCzZqGZ28IIUqkove/3coKfvpJrWuxVMCybp1aH2KMoCBYulTdTWrbVk0j\nc3F59HkBAWoEZc6c7Pv69FGpKX/4gTuNGsGvv/6X8SWvbt1Sefjz4frNO2wMOY+PpxOPtzf+g6dF\nfR/mTGmPl5sD3208wcK1R8jSSmYxIYSwuIQElTXMglkl79HrTU8sk0danZ6DkdF4uTlQzbeM4YPG\nj4d69SzeFyFE0VK0RlrucnOzXNtJSfDMMyrTyalTasg8L/z81E9eRlce9s47hh9v0wbs7aFRI84+\n9hhNnJ2Na/fCBWjSBLp0UTn4TZCSlsmXaw6TpdUzum9DbG0MpG7Og+oV3PjkhQ68t2w/m/ddYkf4\n1Xvpku/n7GjLxEH+tGpQ3qTrCCGEuM/SpSrLZHy8KiiZV1lZMGWKqlVWu3bezgkJUVO4582Dvn1N\n6++/lqw/xt+hl7M9rtfrScvQ0qNNhZxH7G/eBE9Pw6UGhBAlVtEMWizp999VYaphw/IesFjKrFn3\n/qgNDzf+/GrVVL2bdevU4se7ufLzKPZWKu8u3cfFqERaNyxPW39f4/twHy83R/43uR3frD/GuWu3\nDR5zNTqJD7/dz7j+fjzevka+rieEEKXejz+qm18jRxp3XlCQmo79449qfeazzz76M3H5cjU1y9HR\n9P4CCUlp/BlyAQd7G3w8nbLtt7OxoldAtZwbuHlTJaYRQpQqJgctQUFBLFu2DBsbG6ZNm0bHjh3N\n2S/LWblSbYcNK9x+mINGowKfPn1USuTVq/N86rmrt3hv2X7iE9PoFVCN557wM8s6FEd7G6Y91TTH\n/acvJ/D+t/tZsv4YN+KSGdOvkcERGSGEEI8QFaVqo3TrZvwi+4EDYdUqlSJ59GhVR23x4pxnOiQn\nwy+/QNWq8Nhjubet0+W61mRH2BW0Oj3De9ajbzsjb15ptWpUqaHhtPxCiJLLpDUtt27dYuHChfz8\n8898/fXXbNu2zdz9soyYGNi6VWX1yutweFHXqxc0bw5r1uQ5/37oiRvMXLibhKQ0xvZryMRB/lhb\nF8zypjpVPJg3rQOVfVwJCj7PR9+FkpaeVSDXFkKIEuVucpfu3U07/+mn4cgRtfby55/VdOOrV7Mf\nd+yYShJz544akckpIAkLg0qVck3zr9fr2bL/MrY2VnRqVsn4PsfFqbUs5aR+ixCljUnfVPfs2UNg\nYCCOjo6ULVuW9/JQh8Roer1aLH/ggPna/OUXdZfmmWfM12Zh02hUhjK9Hj788JGH/7H7PB9+ux+d\nHmaObMmAjgYyfZ04oe6qWYiPpxNzp7anSe1y7I+4weuLdhOfmGax6wkhRIm0ZYvamhq0gJpmvGuX\n+hxp0AAqVMh+TFiYSj5jawujRuXcVoUKcO1arrVaTl6M59rNOwT4+ZpWgyUtDVq0UFOjhRCliknT\nw65du0ZqaioTJ04kKSmJyZMnE2CG3OwPyMhQb0qNGqm6LebQrRvMmAFDhpinPTNJTM7IXwP9+sHU\nqbkGY1qdnm83HCdo13ncXex5e2xr6lQxMJ1Ar1e1ai5fhv791TS6Xr3MnlbSxdGWd8a3YdHaI2wN\nvcyr83fxztg2VM0pW4wQQpQEaWnq/bVOnfy3NWQIuLsbvZ4xGxsbNTqS07SuLl1gwwaoWzf31Ma+\nvmqB/NGjOR6ydb9afN+9VVXT+lqlinlvZgohig2Tvonq9Xpu3brFokWL+Oijj3jjjTfM3S+1sLBF\nCzh8WGX8Moe6deF//1NvrEVAllbHgjWHeWbWXxw8l4+RDY0G5s+H1q0N7k7P1DJnxQGCdp2nso8r\n817ooAKWY8fUwsr7i3hmZsKgQeDjo1JP9+2rgr1r5i8caWNtxdQhTRjZuz43E1J546sQ7qTkM4AT\nQoiibNIkdUNu7978t/X44/Dll+ZLKpPTzakqVdRnwaOmVWs04O8P584ZHK1PSctk95Fr+Hg64Ver\nrBk6LIQoTTR6vfGJzn/77TdiY2OZMGECAH379mXFihV4enoaPD7cxJGSivPnU37FCk4vXEhSDl/I\ni6u0DB1rdsdx7obKre9oZ8XUx8vjZG/eEY2UdB2rdsVy5WYG1bzteaqDF452VqDXU+f553ENDydy\nyRLuNGv24Il6PU4REfguW4Z7cDDJ9etzasUKi2Vc2xWRyPYjiQTUc6FHM3eLXEMIIQqT/cWLNBwy\nBI1OR1KzZpz++uvCz2JpZpU//hjv1as5+d13pDRq9MC+8LPJbAhN4DG/MnT0k1F1IUTOmjdvnu0x\nk6aHBQYG8sYbbzB+/Hhu3bpFSkpKjgFLbhd/pEGDYMUK6ty8qRablxAxCSm8t3Qfl26k07KBD7Uq\nubNqSyQnou157gl/810nPoV3vtnL1ZsZdGhSkReHNv2vDsvatWraXd++1B0/3nADLVqoNJpff42z\nvz/NW7QwW98e5uevJeLKdg6cSWbUE62pUDYPhTtRAbFJv1tCXrt8kNfOdKX6tfvsMzWyXbkyrjY2\nNK9VS03vyoNi87p17Qpr1lDf3j7b5/aq3bvQaGBE/zaU88hf2mRjFJvXrgiS18508tqZLqfBDpOC\nFh8fH3r06MGQIUPQaDTMuq/eiFm1bau2ISGWab8QnL1yi/eW7SMhKZ2+gdUZN8APnU7P5r3n+HPP\nRXq2qWaWdR3nL8by7vdhxCemM6BjTUb3bYjV3dTCKSmqoJidnfoQzY1GA88/n+/+PIqdrTXP9mnA\n3B/C+H7jCV5/tpXFrymEEAXm7nqRZs1g2zaVWriEjbIAMHSoWgvp9GD9lUs3Eom8nEDzet4FGrAI\nIUoOk+u0DBkyhCGWXtBetqxaFJ7fBYtxceDlZZ4+5cO+41HMWxlORqaW8QMa0a99TQCsrTT0bObG\nTzvj+Ob3Y7z/XNt81Uw5cvgiH34XSpq1HeP6+9G/Q80HD/j4Y7UQdMYMqFXL9Cd09arKJuPjY3ob\n92nXuAJBuzzYczSKiPNxNKxR+P9mQghhFlZWsGIFpKerNZsllbOzwYfvLsDv1trEBfh3HT2qsoD6\n+4O1df7aEkIUKyYHLQVmzZp7f9Tr9YSdjKZOFQ/cXPL4pp+aqt7c6tSB7dsL7c7WhuDzfPP7Mexs\nrXlzVCtaN3owGUDtCg40q+fNwVMx7Dt+gwC/nJMF3ExIJTQiCp2B1UiJyRms3XYasGb6H/NoX2kQ\ndHjpvwN0OpUm09cX3nwzf0/qf/+DhQuhVSu1SLNvX5Xn38TXWKPRMLZ/I6bPD2Zp0HE+mdbhv9Eh\nIYQoCcwRsLz1Fhw8qNIQV6yY//YsLDNLx47wK7i52NGqQfn8Nfbii7Bjhwr+JGgRolQp+kHLfbaG\nXubLXw5TzsMxb+lxtVo1TH39Ojz1VKEFLKcuxbNk/TE8XO2ZNbYNtSpnn8Os0WgY168RU0/vYFnQ\ncZrX88bONvsb8oXrt5n19V5u3UnP8XrODja8+Xg1/NZcgJdfBkfH/6Z4WVmpnPznz4Ora/6eWIsW\nqjLyrl0QGgqzZqkP0NWrITDQpCbrVfWkQ9OK7Dp0jZ2HrvJY88r566MQQpQ069er9/CyxSMDV2jE\nDRKTMxjQsSa2NvlMNnPzploHZGdCjRchRLFWbIKW1PQsfvzrJDbWGm4mpPLagmBmjGxJs7rehk/Q\n62HaNPXm3qWLGhUoBHq9nqW/HwdgxsiWBgOWuyr7uNK3XQ1+33WO33edY3CXB6fFnb6cwDtL9nIn\nNZNnetajso/hoKNuFQ/KujuqedMdOsDEiWp+8ciR6gBr60enrsyLUaPUz61bsHkz/PEHbNoENWsa\nPn7NGnXdJk1ybfbZ3g3YeyyKFRtPEODni4Ndsfk1FUII48XGgosLODg8+thr1yAiQtXPKibTzLaE\nXgKgW6sq+W/s5k0oVy7/7Qghih3z5te1oF93nCEhKZ3BXerw2vAWZGbpeHfpPjbvu2j4hLlzYdEi\nNTXs118L7a7M7iPXibyUQKB/hTyt0Xi6e13cXOz45e/TxN1Ovff48XOxvLU4hJS0TF4a2pSnu9Ul\n0L+CwZ+y7v8ucqxXD/7+Gzw84K+/VCBnCe7uaiTrhx8gOhrKGxj+12rh2WehaVNYuTLX5rw9nejf\noSaxt9P4fec5y/RZCCEKwvXrue/ftg1q1FCfV3mxdavadu+ev35Z2q1bcO0aNxNSORQZQ92qHlQp\nn88kMzqdCvAkaBGiVCoWQcvNhFTW/XMOzzL2DOxUi/ZNK/LB821xdrBlwZojfPdHBLr7F3jodBAc\nDJUrw59/qiwthSAjU8t3G09gY63h2T4N8nSOi6MtI3o1IC1Dy/cbTwBw8FQM73yzj4xMHa+NaEnn\nFkbcrfL3h/37VUBRENPjcipOptWq9S/OzjB1Kty4kWszg7vUxs3FjrXbzxCfmGaBjgohhIUdPaoK\nM773Xs7HNG2q3jf/7/8gMfHRbW7erLZFOWi5cEHdLJs5k21hl9HroVurfC7ABxUIabUStAhRShWL\noOWHNaFkZGoZUU2Dg72aKtSguhfzXmhPxXLO/LrjLHN/DCM9U6tOsLJS08J27y7URYobgs8TE59C\n33Y18C1rOKOKIV1bVaFGRTd2hF/lp82neP/b/ej1et4c3YrAxhWM70jt2mBTyFOs7Oxg9Gg1TS8h\nQVWFzmXkx8nBlmd61ictQ8vKTace3HnoEHz6KWRmqr/fvAknTliw80IIYYJ331VfsnOrceXpCdOn\nqyyXn36ae3t6vVo/WLEi1K9v3r6aU9Wq4OSE7ugxtoZexsHOmvZNTPjselh6upry/IgpxkKIkqnI\nLxY4cyWBHZG3qBFznscOnINne9zbV6GsC3OnduD/vgsl5Mh1rkYnUSnbOo/oXNt3sLPmyc61qeSd\nz0XpD7mVlM4v207j6mTHU93qGnWutZWGCQP8mLlwN6u2ROJgZ81bY1rTuHYJuLs0aZJa27JuHfzy\ni5pWloPurarwx+7zbA29RLfWVahX1VONok2aBPv2QfPm2GRm/vchlo96Pnq9nl93nKVCWWfa+pvh\nw1UIUbodPgy//QatW6v1J7l54QWYPx8++QQmT855JEGjgVOn4OLFol3jxcoKGjXiaGwWMfEpdG1Z\nBScH2/y36+sLO3fmvx0hRLFUpIMWvV7PsqAIAMbsXYm1S1a2Y8o42/H+cwEsWHOE7WFXuHQjyejr\n7D9+gzdGt8Kvpvkysfy05RQpaVk894QfLo7Gv1k3rOFFjzZV2Xc8ijdHtaZ+dU+z9a1QWVnBsmUw\ndiw0bJjrodbWVozv34hZS/by9uI9vDaiBS33blQBy+DB0LEjWeHh0LmzSgKweze0a2dStw6cjOb7\njSewt7OmblUPvNyk+JkQIh/efVdtZ89+dIDh4qLSGE+bBh98AF98kfOxtrbmSaRiYTo/P35MVv3s\nGWCGqWFCiFKvSAct+46rIoOtG5an8QEndSc9MRHKPLiYzzbqOi/1qcW4/o3Qao1bbH7gxA0W/XqE\nWV/vYeqQpnRukf8Uu5dvJLJ570UqlnOhZ0A1k9uZ/GRjJg70x9q6WMziy7tatfJ8t6xJHW9ef7Yl\n81Ye5INv9zNh7yb6ODs/OI1i5kwVtMyZY1LQkpmlvZfhLf3f6WjTnmpqdDtCCAHA8eNqinKbNtCj\nx6OPB5gwQb0vTptm2b4VkJ01AoiMK0ugRxZ1q5aQm25CiEJVZL8NZ2bpWL7hBNZWGkb1baC+jOp0\n6i77/S5cgPbtoXdvXG3A3dXeqJ9uravy7oQA7O1s+GzVQX7afAp9PrNsLf/jBDo9jOnXEJt8BBwa\njabkBSwmCPCrwEeTAimjS2dxm+F889ICtBXuW6sUGKh+/vhDfVkwUtCu80TFJtMnsDrVfMvw94HL\nnL9224zPQAhRqjg7w4wZeRtlucveHtauzTllfDGSmp7Fd8nlsNNmMsY39dEnCCFEHhTZb8QbQy4Q\nFZdM78Dqar3J3WKF969bOHcOOnaES5egZ0+T0xr71yrHx1Pb4+PpxKotkXy66iCZWVqT2joYGUPY\nyWj8a5WlZX0fk9oQ2dXxdWHeiZVUToomKMWDj74LJS39vumCM2ao7dy5RrWbkJjG6r8jcXWyY3jP\neox5vCF6PSwLOp7v4FUIUUpVr66SjuR1lKWEWbPtNPFpegb2bIT32OGF3R0hRAlRJIOWpJQMVm+N\nxNnRlqfvLmIPDIQFC+CZZ9TfT59WAcuVK+rD4a238nXNyj6uzJvWgbpVPfgn/Cpvf72XpJQMo9rQ\n6vR8G3QcjQbG9muEpigvlCxubG3x+Ws9c9/sQ+PaZdkfcYPXF+0mKfXf4LJPH3j1VXjlFaOa/f7P\nE6SmaxnRqx4uTnY0retNi/o+HD0by4GTuSdxEEKIguIUEfHIVPFFwY24ZNbvPEdZNwcGPVbLvI3/\n+COcOWPeNoUQxUaBrWkZMXtTno/NzNSSnJbF2H4NKeP87+iJu7vKqgJw+TJ06gRRUTBvntFfVHPi\n7mrPhxMD+eyng4Qcvc7YD7Zgb0Q1dq1WT1JKBt3+TVks8ig2Vs3jfvJJ6N8frK0NH6fR4FK1Iu+M\n82XR2iP8feAy86MSWfb3v79bzl1gXZT6AZrWKcfkwU2wtzXc3unLCWw7cIVqvmXo3qbavcdH923A\nwcgYvg2KoFld73xN8RNCCJPp9WqKmZ0d1ZYuVZ+B8fFqMX4RtSzoOJlZOkY/3vBeiQKzuHkTRo1S\n6aMfniYuhCgVCixocTYm3aGDLQ1qONMnsLrh/RUqqHUsbduqVJFmZG9rzWsjWrB6ayS7Dl8zuoh8\nxXLODO9VhPPnF0U3bqi53KtWqfnfHh6qdsHo0fDGG9kOt7WxYtpTTajs48ofwZHY2WX/3UpNz2JH\n+FViElJ5e0xrnB/K4KbT6Vmy/hgAE57ww9rqv1GxKuXL0KNNVf7ac5FNey/St10N8z5fIYTIi1u3\n4Pvv4dIlHEGNKBfhgOXw6Rj2Hb9Bg+qetG9i5hpp69apmjdDhpi3XSFEsVFgQcvimV3M15iNDfz8\ns8Xy1FtZaRjaox5De9SzSPviIY0aqdoty5eru4hxcWqbkpLjKRqNhoGP1aJqmds0b9482/7MLC2f\n/HSQkCPXeWNRCLMntMHD1eHe/n8OXiXyUgKBjSsYTHU9rHs9dh68yk+bI+nUrBIuTqatlxJCCJN5\neMD27aoW1bVr0K1bYfcoR1qtjm9+V9OjJwzwM//06F9+UdsnnzRvu0KIYqP4znuR9SIlS//+KkXo\nrl0QEaGm/n3wgcnN2dpYM314C3oGVOP89dvMWLCbG3HJgBqF+X5jBHY2Vozpa7hWjLurPYO71FHr\nq9bsh6AgjB52E0KULqGh0Lw5/P67+dqsUQP++Ycbw4er6VFF1F97L3L5RhLdW1elZiV39WBWFuzZ\no97X8yMmBnbsUCmkq1TJd1+FEMVT8Q1ahMjNmTNY79jOpEH+PNW1DlGxycxYEMylqESV2SYxnYGP\n1cbb08nw+YmJ9Du7E+/02/xxKJqokc/Bt98W7HMQQhQvGzfCwYMqPb851arFtRdfBLeiuVYyMTmD\nlZtO4exgw/Ce902P1ulUwpy72R1N9dtvqi2ZGiZEqVaki0sKYZLkZGjWDBwd0UREMLxXfVyd7Vj6\n+3FmLNxNeoaWsu6ODOqcQ2ab1ath9GjsUlMZVbcdc/u8yrcDX2F02y5w806eu2FvZ42Xm6OZnpQQ\nosj78081fbmLGadDFwMrN53kTmomY/s1wt3V/r8ddnZQr56qn6XTgZWJ90k7d1YZQmVqmBClmgQt\nouRxdlYZd159FZ57Dn79lf4dauLqZMsXqw+j0+kZ07chDjllhvP3V8keRo2i3YgR/P77JfZRm31L\njxjdlT6B1Rnfv5EUCRWipIuOhrAweOwxKFOmsHtTYC5GJbJp70UqebvQt52B5Dl+fipouXhRTXUz\nRZ068P77+emmEKIEkKBFlEwvvqjWoaxbp3L7jxhB5xZVKOfuxMWoRNo1qZDzufXrq1oAGg0a4IWn\nPNkQfB6tzrg1LScvxrEx5ALR8SlMH94cJ2My6AkhipfNm9W2d+/C7UcB0uv1LAs6jk6vapMZTA/v\n56cyQx47ZnrQIoQQSNAiSipra/juOzVqMmWKqutTuTJ+tcriVyt7trBs7kv0UNnHlUlPNja6Cylp\nmcz5IYywk9G8vjCEWeNay3QxIUqq/fvVtlevwu1HAQo/FcPh0zdpWqcczet5Gz7I319tjx5VCVeE\nEMJEMmdFlFzVq8Pnn6sMNocPGz5m5Uq1BsYCnBxsmTWm9b0MZq98sYvz125b5FpCiEK2YAGcnNYH\nJQAAIABJREFUOgUNGhR2TwqEVqvj2w0RWGlgTL9GOac4btIE+vVTU7yEECIfJGgRJduYMRAZCY8/\nnn3fN9/A8OEwdqxxbYaHw7BhkJb2yEOtra2YNMif0X0bEnc7jRkLggk7GW3c9YQQRZ9GA3Xrlpp0\n/Fv2X+JKdBLdWlelmm8ua3gqVlQpoJ96yviLJCWZ3kEhRIkjQYso2TQaqFQp++ObN8PEieDlZXw9\nmB9/VHO0P/ssj11QhTBnPtsSnU7P+8v2sTHkgnHXzMWV6CTOXrlltvaEECI3yamZrNx8Ckd7a56x\nZBHmxx9X08vycINICFHySdAiSp8jR2DwYJWaNCgIauWQ+jgn77wD5crBhx+qKtV5FOhfgQ8nBeLq\nbMfi346yLOi40Yv7HxZ8+BovfPoPr3yxk017L+arLSGEyIs1205z+04GT3aug0cZB8tcJCpKFaV0\ncwMHC11DCFGsSNAiSpeoKOjTR007+OEHaNvW+Dbc3eGjj9RaGCOLptWr6sm8aR2o5O3C+p3nmLPi\nAGkZWUZ3Qa/Xs2bbaeb+EIaNtRUuTnYsXHuEHzedRK/PXyAkRL4kJEB8fGH3QljIjbhkft91nrLu\njvTvWNNyF/rtN9Dr1Q0mIYRAghZR2nh6qkxic+fm78Nw9Gho3lwt5A8JMerU8l7OfDy1Pf61yrL3\nWBRvLAohITHv0x+ytDoWrDnCij9PUtbNgTlT2vHx1PaU93Ji9dbTfPnLYbK0Zq7ILURe6HRqOk/j\nxuavCl9UHTmiMmOVkpsFK/48SZZWx7N9GmBva225C/3yi5reO2iQ5a4hhChWJGgRpYu9vRphefXV\n/LVjZQXz54OHB1y/bvTpLk52zB4fQJeWlTlz5RavzN/FpRuJjzwvOTWTd5fuY8v+S9So6Ma8FzpQ\nvYIbFcq5MHdqe2pVdmdr6GU++HY/qenGj+AIkS/bt8PVq+onNLSwe1Mw3ntPBWlnzxZ2Tyzu1MV4\ngg9fo04Vdzo0qZj3E/V6WLpUZVjLi6goCA6Gdu3UQn4hhECCFlEaaTTmyfDTti1cuWLyiI2tjRUv\nPNWU4T3rcTMhlde+DObw6Zgcj4+JT+G1BcEcPn2TVg3K87/J7R6o++Lh6sD/TQykeT1vwk/F8MZX\nIdxKSjepb0KY5P5sT7/+Wnj9KCgZGbB1K9SsafzauGJGr9ezNOg4oApJWlkZ8R6q0ag1gHlNenL1\nqkodLVPDhBD3keKSQuSHs3O+TtdoNDzVrS4+Xs588fMhZn+zj8DGFQxWlj4YGcOtpHQeb1+Dsf0a\nYW3gS4OjvQ1vjWnNwjVH+PvAZV6Zv4tGNbwMXlubdhs/fy12eZjiodfr2bTvEh6u9rRp5Gv8ExWl\nwxNPQEoK+PjAunVqGmZJTgG8Z48K1EaNKtnPE9h9+DqRlxIIbFyBBtUNv6fkys8PNmyAmBjwzqEQ\n5V0tW8Lx46DVmtZZIUSJJEGLEEVAp2aVKOfuyP99F8quQ4YzkllZaRg/oBH92ue++NXG2oppTzXB\ny92B1VtPsz0+JcdjYxbv4c3RrXBzsc/xGJ1Oz+J1R/lrz0VsbaxY9FpnynvlL1gTJZijI6xdC40a\nlfgv8mzYoLa9exduPwrAX3svAvBsbxOLZ/r7q9fr2DHo0iVv51hbcM2MEKLYkaBFiCKiYQ0vvn27\ne45TupwcbHB1ssu+49NP1TSVmTPvPaTRaBjesz6Pt6tBWkb2u5V6vZ4vVoZw/GI80+cHM2tcayp5\nu2Y7TqvVMf+Xw2wPu4KHqz0JSel8uyGCN0a1Mv2JipKve/fC7oHlHT8OX3yhsgl27FjYvbGo5NRM\nTlyIo3Zld3zLmnjDws9PbY8ezXvQIoQQ95E1LUIUIfa21vh4Ohn8MRiwACxbBq+/DrdvZ9vl5mJv\nsK3yXs4MauvJU13rEBWXzPT5wRw/F/vAuZlZOj7+MZztYVeoW8WDha91pn41T/Yei+LI6ZuWePpC\nFB8NG8Kbb8Kff6rRpRLs8JmbaHV6WtT3Mb0Rf3+1PXbMPJ0SQpQ6ErQIkV96PcybB6+8UjjXHzhQ\nbY1MvazRaBjeqz4vPNWE1PQs3v56L/+EXwEgPVPL/30XSsjR6zSs4cV7zwXg6mTHhCf80Ghgye/H\n0EpaZVGaaTTw7rsQEFDYPbG48JPRAPkLWmrXhjfegKefNlOvhBCljQQtQuSXRgOrVqkUyLduFfz1\nO3VS23/+Men0rq2q8u6EAOxtrfjkp4P8uOkk7y3dR9jJaJrV9Wb2+DY4OdgCUKuSO91aVeXyjaR7\nc9xFKRcbq9avfP99YfdEWIBOpyfsZDRuLnbUquRuekM2NiqDWG5TB9evh7feMimNvBCi5JOgRQhz\neOIJyMqCjRsL/toBAWBra3LQAtC4djnmTm2Pt6cqUHn0bCwBfr68NaYVDnYPLn0b0as+Tg42rNx0\nisTkjHx2XhR7K1ZARAQkJGTfl5WlMmwVd7GxcPp0YfeiUJy/fpuEpHSa1/MxLs2xKb75RgU2aXkv\ntiuEKD0kaBHCHJ54Qm3XrbPsdXbvhpMnH3zMyQlatYLwcEh8dIHKnFQpX4Z509rTor4PvdtWY8aI\nFtjaZM/e4+5qz9DudbmTmsmPm04aaEmUGno9LFkCdnYwYkT2/WPGQGAgnDpV8H0zl6goVZOpWzeI\niyvs3hS4e1PD6uVjalhe3L6tat40aQI1alj2WkKIYkmCFiHMoUEDNWf7r78gNdUy1zh4UKVW7dpV\n1cK43/Tp8MMPagpGPni4OvDOuDZMHNQYawO1Yu7qE1iDiuVc2Lz3IheuZ08AIEqJ4GCIjIQnnwQv\nA7U77k4FKs6FJr/+Gs6cgUGDwNOzsHtT4A6cjMbKSkPTuuUse6GNGyEz8781ekII8RAJWoQwB43m\nv8J627ebr93QULXYd+ZM6NED7tyBzz5Toyv3698fhg3L/riF2NpYMX5AI3R6+Gb9cfR6fYFcVxQx\n33yjthMmGN7/+ONq6uLatQXXJ3O7O73tzTdLft2Zh9y+k87pywnUr+aJS07ZC83lbmArQYsQIgcS\ntAhhLs8/r4IMcxaa278fZs+GOXPU1JTFi2HIEPO1nw/N6/nQor4Px87FsudoVGF3RxQ0nQ7OnYM6\ndaBDB8PHuLmpaVWHD6tjixutVv0frFvX8EhSCXcoMga9HprXe0QFe2PMng3PPPPgY6mpapS6bl01\nai2EEAZI0CKEuVSvDi1bmnY39uxZtT7gYf37w99/q7u9Fy7kfEe7kIzv3wgbaw3fbjhOdHwKcbdT\ns/1kZmUvbilKACsrlWY7JCT33/lBg9S2OE4RO3FCrRNr27awe1Iowk7GAPlMdfyw4GD46SdISvrv\nMUdHFdguXlzqRrOEEHmXvwnwQoj827tX3Y2eMEFVt79flSrqp4iqUM6Ffu1r8ts/Zxn34VaDx7i7\n2vPmqFbUq1b61gOUeBoNlC2b+zH9+8PPP6s1X8VNmTKqtkgpDFq0Oj0HI6Mp6+ZANd8y5mvY319N\noY2IgDZt/nu8Th31I4QQOZCgRYjCdOgQ9OqlUnx27FjYvTHJU93qkJ6p5U5KZrZ9WVode49d582v\nQnhpWDPaNa5YCD0UhcrLC7ZsMe3cTZvg2WchKAhatzZvv/KialWVgrcUOn0pgaSUTNq2qYDGnKMf\nfn5qe/Tog0GLEEI8ggQtQhSWEydUdqXERFi5Ut2Rzg+9XrWRmqpShxYQJwdbnh/on+P+sJPRzP3h\nAHNWhBHdJ4WBj9Uy75cgUXLNng0xMWqK2ZUrMnWoAIWd+jfVsTmnhoEaaQE4dsy87QohSjxZ0yKE\nJZw7l3tV53PnVOri2FiVgWno0PxfU6NR7e3YobKMFREt6vswZ0p7vNwc+G7jCRauPUKWVlfY3RJF\nnV4Pycnqz9euwYYNhdufUibsRDQ21lY0rm3mVMcNGqj3qqNHzduuEKLEk6BFCHPbvBlq1YJFi3I+\nxslJ1Xz4/HMYO9Z81+7USWU8CgkxX5tmUL2CG5+80IEaFd3YvO8S7y3dR3Jq9ulkopj44gv45x/L\nXuPuF9t//lGL/t97z3CyCmF2cbdTOX/9No1qeuFob+YJGU5O8Ntv8NVX6r3q0CH5dxVC5IkELUKY\nW7t24OAA69apv+sMjCr4+kJYGLzwgnmv3amT2lr6C2Ve7d0Lv/8OgJebI/+b3I4W9X04dPomMxYE\nE5OQ8ogGRJETFwcvvqjScJvCmC+oGo1a67V8OaxfL9PDzCTudipXopNy3B9+ygJZw+43YIAacdm9\nG5o1g9dft8x1hBAligQtQpibs7Naq3LihFo8PHy44eMcHMx/7bZtwdq6aAQtV6+q/gwYADdvAuBo\nb8Nbo1vRN7A6l24kMX1+MBeu3y7kjgqjhIerbYsWxp2n18OLL1Jn/Hjj76yPHAmVKhl3Tn5NmgSv\nvlriRgHSMrJ47ctgpszbwdb9lwweE3bSQutZHnY3DXaXLpa9jhCiRJCgRQhLePpptQ0LUwvtC4qL\ni6oVc+oUpKcX3HUfptc/WFMmIuLeH62trXhuoD9j+zUkPjGNmQt3c+TMzULopDBJWJjaGhu0aDRw\n7Rquhw8XuemL2WRmqtGdrVtL3OjOun/OEZOQil6vZ/4vh1m1JRL9fYFZZpaOw6dj8PVypkJZZ8t1\nRKdT08Q8PP4bIRZCiFyYFLSEhoYSEBDAyJEjGTFiBB988IG5+yVE8fb006qSdlwc/PFHwV57zRqV\nccnevmCve7/vv1cVrtu2VemcDXwpGdCxFtOHNycjU8fsb/ay8+DVgu+nMJ6pQQvA5Mlqu3Ch+fpj\nCYcPq9/bElafJSYhhbXbz+Dhas+nL3TE29OJnzafYuHaI2j/TY5x4kIcqelaWjTwsWyWvwMHVIKF\nfv3A1tZy1xFClBgmr7Br1aoVX3zxhTn7IkTJodFAq1aFc+2CnkbzML1e3aV2dYVVq3INnjo0rYS7\nqz0fLg9l3spw4m6n8USnmpISuSgLC4Py5aFCBePP7diR1Bo1cFy7VhVS9fU1fNwPP6igqH79/PXV\nVHv3qm0JC1q+++MEGZlaJg3yp1Zld+ZNbc/spfvYvO8S8YlpvDa8xX9Tw+oV0NSwgQMtex0hRIlh\n8vQwfQmb5yuEMBONRk2r2b4dqlR55OH+tcrdS4m8/I8Ilv5+HJ1O3l+KJJ0OXn5ZrfUwJbDUaIgZ\nMgSyslSqb0Pi4mDUKBg/3vD+Q4egb191l95S9uxR2xIUtEScjyP48DXqVHHnseaVAfAo48BHkwJp\nWqccB05E8+biEPYfv4GdrTWNanpZtkM3bqht9+6WvY4QosQweaTl3LlzTJo0idu3bzN58mTalqA3\ndyFEPtnZGTV9qJpvGT6e2oHZS/cSFHyei1GJVPR2MXisf62ytGtcMc9th52MJvTEjTwff5dXGQcG\ndKqFva210eeWWFZWKnNYPsT36kXVJUvuJWfI5q+/VHDUt6/h/QcPwsaN8O67sGRJvvqSoz17oFw5\nqFHDMu0bKSExjU3ht9h/8YjB/ZW9XekTWB0rK8OBpFanZ8k6VcxxwgC/B45zcrDl7bFtWLDmMNvD\nrgDQsoEPdpb+vf/sM/i//7NMQhIhRImk0ZswZBIdHc3Bgwfp1asXV65cYeTIkWzduhUbG8MxUPjd\nbDNCCJGL1AwdP++K5VJMRq7HBdZ3oUsTN6xyuduv1+vZe+oOWw6Znp2skpcdT3f0wsVBAhdzskpJ\nQefkZHBf9ddfx3PrViJWryatZs3sB2Rl0eDpp3G4coWI1atJr1bN7P2zv3wZu+hoklq2NHvbpvgz\n7Bahp3MvGOtXzYkBbTywNhC4hJ+9w4bQWzSu7sQTAZ4Gz9fr9Ww7ksjuE0kMbudJwyqG/32EEKIg\nNG/ePNtjJgUtDxs8eDCff/45FSsavvsZHh5u8OLiP/IamUZet1xERUFsLPj5GdxdoK9dfLyqs9Gq\nFTRqlOuhOp2e67F3DE4RS07N4ovVB7l2M5lA/wq8NKyZwZEQnU7PsqDjBAWfx8vNgZeHNcPdJe+J\nCfTA2u1n+Cf8Kj6eTrwzrg2VfVzv7ZffO9Pl+tplZKgRDi8vOHcu5ylo69fDE0+o0Zhff1UjeyVU\nRqaWZ9/djF6vZc7Ujjz8imh1ehatPcKpSwm0qO/DjJEtcLD77wbindRMnvvobzKztCye2RXPMrmP\nbKSmZ5m/oGQhk/+vppPXznTy2pkup9fOpHemDRs2cOnSJaZMmUJcXBzx8fH4+Fh40Z4QIu+Sk6Fy\nZVUnpiDSy+7Zo4rFubsb3r9vH4wdq9ZCfPxxrk1ZWWmo5O2a4/6Pp3Xgw+WhhBy9TuztVN4a3Rp3\n1/8CkoxMLZ+uOkjIketUKe/K7HEBlPNwNPopvTy0Gb5ezqzaEsn0L4N5c1Qr/GqVNbodYYTdu1WK\n8GefzX3NTP/+qojrH39Anz5qDVUJte94FHdSMwms70LV8mUMHvP+c235aMUBwk5GM+vrvcwa2xoX\nJxXIrdpyisTkDEb2rv/IgAUocQGLEKLkMGkhfufOnTl+/DhDhw5l8uTJzJ49O8epYUKIQuDsrCpN\nh4aqAMaS7i6MbtNGLbA2pHNn1af16/NdrM/VyY73nwugU/NKRF5K4NX5u+5V976TksGsJXsJOXKd\nhjW8mDO5nUkBC4BGo2FYj3q8NLQp6RlZzFqyh+1hl/PVd/EI1avDrFkwbFjux2k0sGEDPPecCoZL\nsK371e9c05o510xxsLfhrdGt6dC0IicvxjNz4e57Ve837r6Ar5czAzoamGonhBDFiEmRhrOzM4sX\nLzZ3X4QQ5tSpk6qFEBJimQw9Oh3MmwdvvaWK8c2dCzndvHBwgJ491VSekyfVqEw+2NpY8/LQZlTw\ncuanf0dCJg7055dtp7l8I4lA/wq8PKyZWRYTd25RhXLuTnz4XSifrTpEVGwKdcuWwuxmO3eqhe9T\np6oA1RKqV1cL7PPC3R1K+OfQjbhkDp+5ScMaXpQtk3stE1sbK14Z1pwyTnb8EXKB1xbsxquMA1qd\nnrH9GmJrI+uyhBDFm8kpj4UQRVyfPmr7ySfmb/vqVejaFWbMUOsPNm+GceNyP2fAALX9/XezdEGj\n0TC0Rz1eGtqM9Iws5q0M5/KNJB5vX4PXRrQwa/Yjv1pl+Xhqe3w8nfh5ayQbw26Zre1iY8cO+Okn\ntT7JXC5cgMGDi07wkZ6ugvEi4u8DapSlW6tHpw4HNbVywhN+DOtel5j4FE5ejKdJnXK0aljekt0U\nQogCIUGLECVVx45qhGXLFhVUmNPOnepLbP/+cOxY3kZyevcGa2uzBS13dW5Rmfeea0vV8q6M7deQ\n8f0b5Zj6NT8q+7gyb1oHqvmWIexMMhHn48x+jSLtbhZIcy4sdXaGoCD44ot8Txu8Jy0NXn9dTR0z\n1vz5ULYs7Nplnr7kg1anZ1voZRztbQj0z3shz7vB/KRB/tSq5MZzT/hJsVYhRIkgQYsQJdnHH8Pz\nz0OTJuZtd9gwFQytW6e+5OWFp6eaQjZ7tnn7AvjVLMuC6Z0Z0LGWRb+gubvaM3lwYwCWrDuGtrQU\nwdTrISxMJXcwZ9IVb28YMgROnVLFSM3Bzg42bVLFKw8dMu7cPXsgIUFNUytkh0/HEHs7jQ5NK+Jg\nwuL4Xm2r89lLnXJNaiGEEMWJBC1ClGT+/vDVV+b9oglqIXS3bsZXRX/5ZbW2pRirV9UT/2pOnL9+\nm79DLxV2dwrG9euqgrkRBUPzbPJktV240DztWVmpYF2vh9dey/sIjl6vgpZKlVRwVsjuLsDv3rpq\nIfdECCGKBglahBA50+mMv1td0g0dyqjty3Cws2bFnye5k5pZ2D2yvLAwtbVE0NK6tdquW6emiplD\n167Qowf8/bcaEcyLCxcgJgbatjVPH/Lh9p109kdEUbW8K7Ur55BGXAghShkJWoQQhl2/rkZTAgPh\nxInC7k3REBMDP/9M+ctnGNK1DonJGfy8JfKRpxX7aWSdOql1UU89Zf62NRpVb6VuXTUyaC5z5qi2\nX3sNtNpHH79nj9oWgaBlR/hVsrR6urWuKutRhBDiXxK0CCGy27BBfYHcvl0FLt7eBd+H5cvh/fch\nNrbgr52TfxdoJ7ZpQ/8ONSnv5cQfu8/fqxNjyIETNxj29p98+lM4mVl5+PJcFLm5qWQLNS1U66NP\nH7WupVo187XZuLEqUlm7NiTl/O9zT1SUWg8TEGC+PphAr9ezNfQSNtYaOjWrVKh9EUKIokSCFiFK\nk3374LPPct5/+zZMmgT9+sGdO2qdwfr1eV9sb4zU1Nz3f/mlKjRYubJKJnDqlPn7YKx/g5akZqoG\nzNh+jdDq9Cz9/Th6A2sndh+5xofLQ0lJy2JH+FXeWryHxOSMgu516fXNN7B2rarp8ijTp0Nionmz\no5ng9OUELt9IonUjX9xc7Au1L0IIUZRI0CJEaaHTqerhr74KERGGj7l1C777Dho2VIUpJ00yfrF9\nXowYAVWqqKKUW7dChoEv8jt3qlS4vr7w9ddQvz707Zu3u+aWsnMnODiQ8m9xzNYNy9OkdjkORsZw\n4GT0A4duO3CZj38Iw87WmncnBBDYuAInLsQzff4ursfeKYzelz45FTvNib29SstdiLaG/rsAv5Us\nwBdCiPtJ0CJEaWFlpVIO63Rqnr8hVauqICI8HPz8LNcXDw817atbNzXt6IMPsh/j6grTpsGZM/Dr\nr2ptzY0b4OJiuX7lJj5e1aRp0wa9nR2gamKMG6Dqwiz9/TiZWaow4caQC3z+8yGcHGz54Pm2NKvr\nzWvDW/Bk59pcj03m1S+CS1+dF/FIqelZ7Dp0lbLujjSuU66wuyOEEEWKBC1ClCa9e8Njj8Gff+K6\nf7/hYwID1R1nS+rfX2137oRmzeDpp3M+1toaBg6E3bth2zbLjPzkhaur6u/9dWZiYqg6cxq9y+uJ\nik1mQ/A5fttxlsW/HcXdxZ7/mxRInSoegKpW/myfBkwZ3JjktEzeWryHnQevFs5zMYa5ij4WNVeu\nwNWi9fqHHLlGarqWbq2qYG2BAqlCCFGcGV+xSghRfGk0MG8eNG9OncmTYeLEwgkCOnaEMWPUwusZ\nM9QC6Lxwc7Not3Jlawvt26s/360OHxcHK1fyTPVQdj41jx/+OkmWVo+XmwMfPN/WYGG/Hm2q4e3h\nxP9WHGDeynAu3Uik7r+Bzf00Gg11q3qYbV1D5KV4biWlG9zn5GhLoxpehjNV9e2rFqnv3Wv5YNbS\nIiPB0VGlcB43To0mbt+e65SwzCwd56/donZlD6zyGEjo9XpOXIjnTopx65c2hlxAo4GuLasYdZ4Q\nQpQGErQIUdo0awbPP4/2+++xPntWZVcqaDY2sGxZwV/X3OrXh5dewuXjjxmhPccibRXKeznx/nNt\nKe/lnONpTet6M3dKe95dto81287keJy7qz1vj2l9b7TGFFqdnm83HCdo1/lcj3v1meZ0fDhblV6v\nghUvr+IfsISHq5owFSqoURZHR3jmGTVtMgdJKRl8uDyUiPNxtPX35eVhzbG3zX3NS5ZWx8I1R/j7\nwGWTutmkTjm8PZ1MOlcIIUoyCVqEKI0WLeLwqFE0L4yAxZwyMtQISGHWsnj7bVi5kh6fvobHH3up\n17o+7q6P/oJf1bcMn77Qkd1HrpGl1T24Uw9xv20gKLEary/azavPNCfAr4LRXUtLz2LeynD2R9yg\nso8L3VpVzfZSabV6ftx0iu//PEEbP98Hv5RfvAgJCWrdUXHXtKkK2A8cUOmQV61SQWcOomKTeXfp\nXq7dTMbNxY49R6OIuxXCW2Na5/jvm5qexf9WHODgqRhqVXanY9OKRnVRo9EQ0MjXqHOEEKK0kKBF\niNJIozE+s1JRc+IEDBkCL76opvoUFldXmDcPq2HDaDN/llFV3d1d7enbrkb2HXv2wJcv41ezJXOf\nnMVH3x9gzOMN6d+hJhqdDn75RY0W5JRQAYhPTOP9Zfs4e/U2/rXK8vqoVrg42ho8Niklg193nCVo\n1zkGd6nz346wMLVt0SLPz6nIsrKCNWtgyxYYOTLXkaOTF+L5YPl+EpMzGPRYLYb1qMeCNYfZEX6V\nV+fv4p1xbajs8+DUv4SkNN5bql7vFvV9eG1ECxzti/n/MSGEKEJkIb4QongqU0YtpH75Zbhs2lSc\nPDOUkvl+Tz8NXbqo7GtZWfm/3ooVALT66kP+N6UdHq72LAuKYPFvR9HqgXfeUTVs4uMNnn4xKpFX\nvtjF2au36dqyCrPHB+QYsAAM7lKHMs52rNl2moSktP92lKSgBdS/z/jxuQYswYeu8ebiEO6kZjJl\ncGNG9W2Ina01Lw1txrDudYmOT2H6l8EcPXvz3jnXb95h+vxgzl69TbdWVXhrdCsJWIQQwswkaBFC\nFE+VKqlCmUlJqv6MJbNcdekC/v6qrowhGg1s2qQKYuZ3BCstDVavVmsvOnemViV35k3rSDXfMvy5\n5yLvLw8lZdxzkJ4OP/yQ7fSDkTG89mUwsbdSGdGrPtOeaoKtTe5v9c6OtjzTsx6p6VpWbrqviOeZ\nf9fbNG2av+dUDOj1etZsO83cH8OwsbbinXFt6NGm2r39Go2GoT3q8dLQZqRnZDHr671sO3CZyEvx\nTP8ymOj4FJ7uVpepQ5pgbS0frUIIYW5yK0gIUXyNGqUqnv/5JyxZAs89Z/5rpKbC/v0qaLHNebTC\nbNPtNm5URT7Hj7+X1aqchyNzprRjzoowwk/FMKOcP00eGwv/XIbqx++dmpahZcv+S1hbaZg+vDkd\nmlbK6SrZ9GhdlT92n2fr/ks83q4GVX3LqPo4UVEWz9qWkJRG8OFrdG1ZBSeHXF5jC9Hr9Sxce4TN\n+y5R1t2R2ePaqOdvQOcWlSnn4cj/LQ/l858PYWNthU6nY8rgxg8EOUIIIcxLbgcJIYovjUYFK+7u\n8Mor6gv2w2bNUrVnTJ22tW+fGmHp2DF/fc0rNzfo1AlGjHjgYScHW2aNbU3PgGpcvJn+aD7RAAAZ\nt0lEQVTC+qaPs75GB9bvPHfvZ9Peizj/W9AyW8DyiJEoa2srxjzeCJ0evt0QoR7UaNSIjwXp9Xo+\n++kg36w/zqwle41OE2wOuw5dY/O+S9Ss5MYnL3TIMWC5y69mWT6e1p7yXk5YWWl4c3RrCViEEMLC\nZKRFCFG8VawIixerdSfly2fff/68Wtj+55/Qr5/x7e/apbYdOuSvn3nVtav6McDa2opJg/zp36EG\nqSH7YeLzMOhJmDnj3jEVyrrg/PD6lchI6NwZpkyB11/P8dLN63nTpE45DkbGEH4qmub1fMzylHJz\n4EQ0h07fxMnBhshLCbz51R7eey7AbPVpHiU9U8v3f57AxtqKmSNb4lnGIU/nVfJ2ZcH0zqSlZxVY\nX4UQojSTkRYhRPH31FNqZMJQ6uO7Gba++sq0tu8GLXcLSxYyjUZDJW9Xag/oQu1lX1D78/epXdnj\n3k+2gEWnU1PNrl+HgIBHtj22XyOsNLAsKALtw6mYzSwzS8vS349jZaVh7pT29Ayoxvnrt3l90W7i\nbqda9Np3Be06x82EVPp3qJFrbR1D7G2tJWARQogCIkGLEKJk8/eHtm1h82Y16mIMvR5iY1XldE/P\nvJ2zaxc89hj8/bfxfTWGRgN9+uS+zgbgm28gOBgGDlTTznKSmQlPP021sJ10bVWVK9FJbNl/yaxd\nfljQrvNExSXTJ7A6VX3LMGmQPwM61uRK9B1mLtxNdHyKRa+fkJTGmm1nKONs92CqZyGEEEWOBC1C\niJJv4kQVgHz9tXHnaTRw5IiqCp9XOh38849axF7Yrl1TI01ubiqzWU60WpXUYPVqWLSI4T3q4mBn\nzcrNp0hOzSFjWj7FJ6ax+u9IXJ3sGNa9LqBGesY83pCh3etyIy6FmQuCuRqTZJHrA/y0OZLU9CyG\n9aiXfYRKCCFEkSJBixCi5HvySShbFi5cMO18ZyOmDbVrp661fr0KYPLKEimbX3oJEhPh448NL6jX\n69XUsSFD4KefVMKCtWvxcHPkyS61uX0ng+V/RKDPY9+ytDq+3RDBkvXHyMjU5nrs9xtPkJquZUTv\n+rg42d17XKPRMKxHPUb3bUDs7TReXxjC2au38vyUL0Yl8sG3+zlw4kaux12KSmTLvotU9nGhZ5uq\neW5fCCFE4ZCgRQhR8jk4wOnTqpK8pdnYqAX/N26ozGN5odOpWiivvmrevrz3niq+OXas4f0HDsDy\n5fDbb9CsmUq3/G+ANqBjLSqWc2HzvkvMWxn+yCAkNT2L97/dz7p/zrIh+Dxvf72H23fSDR57+nIC\n28OuUL1CGbq3NhwwDHysNhMH+XM7OZ3XF+4mNCL3IATg2NlYZi4IZn/EDT74dj8bgnOeDvjthgh0\nehjzeCOpqyKEEMWAvFMLIUoHD4+Cu9YTT6jtunV5O37XLjUNLYcK94906xYsWABxcQ8+Xq8efPIJ\nWOXwVt+qlbr2yy+rNT/31WOxt7VmzpR21K/mya5D13INQhKS0nhj0W4OnoqhRX0f2jWuwIkLquji\n9Zt3HjhWp9ezZN0xACYM8MPaykDyhH/1blud159thU4PHy7PPQgJPnSNWUv2kp6pZXjPepRxsWfJ\n+mN8s/4YWt2DI0Xhp6I5GBlDkzrlaF7PO8c2hRBCFB0StAghhLl17QouLhASkrfj71a2HznStOst\nWwZTp/7XjjHatlWBTdmy2Xa5udjzwfNtad+kYo5ByLWbd5g+P5izV2/TrVUV3hrdiunDWzC4S22i\nYpN5df4uIs7/F0wdvZBC5OUE2jWuQKOa2a/5sAA/X/43OfBeELLEQBCyfuc55v4Yhq2NFbPHBfBU\nt7p8Mq0DVcq7EhR8no++CyUtXdXp0Wp1LAuKQKOBMY83RGMo45wQQogiR4IWIYQwJCwM9u83rSil\ng4M6Pzj40cempMCaNVClium1YJ59FuzsVKFNM6+NsbO15tVnmhsMQk5dimf6/GCi41MY2r0uU4c0\nwdraCisrDSN7N2DqkCakpGXx1uI97Dx4lZS0TP4+chs7GytG922Y5z7UruxxLwjZcF8QotPpWRZ0\nnGVBx/EsY8+cKe1oXKccAN6eTsyd0p4mtcuxP+IGMxftJj4xjS2hl7kSnUS3VlWpXsHtEVcWQghR\nVEhxSSGEMOT99yEoCC5fhsqVjT+/bt28HRcUBElJaqQkp2lcj1K2LAwaBKtWqdGddu1MaycHd4MQ\nXy9nFq49wluL99C/Qw027L5AVpaWKYMbG6wI3711Vbw9HPno+wPMWxlO7cru3EnVMbR7Xbw9nYzq\nw90g5H/fH7gXhJT3cibkyHUq+7gwe1xAtjadHW15Z3wbFq09wtbQy7zyxS4ys7Q42FkzvGe9/Lwk\nQgghCpiMtAghSpdr1+D559UC9JzodGqUpHp10wIWY5w5oxbvjxiRv3YmTFDb9u1VbRkL6Na6KrPH\nt8HO1opfd5wF4M0xrQ0GLHc1qePN3Knt8fZw5MyVW5RxsmbgY7VMuv7dIKRbqyqcu3qbkCPXqV/N\nkzlT2ucYBNlYWzF1SBNG9q5P7K1Ubt/J4MkutfEo42BSH4QQQhQOGWkRQpQu1tZqDUhIiKpNYmhN\nw/HjkJCgsoBZ2ttvw5Qp+U8U0LEjNGkCycng6GievhlwNwj5dfsZ+rarQZ0qj+531fJlmDetAys3\nn6KiawoOdqZ/9NwNQmpUdONGXAojetfH3tY613M0Gg2Du9ShkrcrR8/cZEBH04ImIYQQhUeCFiFE\n6VK+vKoO/8svhqdS6fUqBTCoQKAgmCOzmUajno9eb1xdGRNULV+Gl4c1N+ocjzIOTBnchPDw8Hxf\nX6PR0LddDaPPC/DzJcDPN9/XF0IIUfBkepgQovSZOFFtv/oq+77YWPjoI7WYvmvX/F/ryhVVaf6u\nxMT8t5kTJyeLByxCCCFEYZCgRQhR+nTsCPXrw9q1cPPmg/vKlYMvv4Q9e8yznmX4cBg6VF2rc2fo\n1s3sGb6EEEKIkk6CFiFE6aPRqMX4Oh3s3p19/4QJqkK9OQwcqIKUwYNhxw41FcySoy1CCCFECSRB\nixCidBo9WqUzvlu93lKGDIFq1aBXL9i3DzZteqDyvBBCCCEeTRbiCyFKJ1dX9WNpvr5w4YLlryOE\nEEKUYDLSIoQQQgghhCjSJGgRQgghhBBCFGkStAghhBBCCCGKNAlahBBCCCGEEEWaBC1CCCGEEEKI\nIk2CFiGEEEIIIUSRJkGLEEIIIYQQokiToEUIIYQQQghRpEnQIoQQQgghhCjSJGgRQgghhBBCFGkS\ntAghhBBCCCGKtHwFLenp6fx/e/ceFFXZB3D8ywK7ICAEitzBOwoCotigCMlYo5KCRv2haVojqeW1\nLLtMksy8jpWTzZDjJU0q0camcZwxRsXbWEqIAopoXDMRARVckItcdt8/fOE101gPxsH29/nTQXie\n7zxnd589Z88+++yz7N2793GNRwghhBBCCCH+pEublo0bN+Lk5PS4xiKEEEIIIYQQf6F401JSUkJp\naSlRUVGPczxCCCGEEEII8SeKNy2ffPIJq1atepxjEUIIIYQQQoi/ULRp2bt3L2FhYXh4eABgNBof\n66CEEEIIIYQQop2FUcGOY/ny5ZSVlaHRaKioqECn0/Hxxx8THh7+wJ8/c+ZMlwcqhBBCCCGE+Pcb\nNWrUX/5N0ablXsnJyXh5eREXF9eVXyOEEEIIIYQQDyTf0yKEEEIIIYTo0bp8pkUIIYQQQggh/kly\npkUIIYQQQgjRo8mmRQghhBBCCNGjyaZFCCGEEEII0aPJpkUIIYQQQgjRo8mmRfR4cq8I5W7fvq32\nEIQZqqysBMBgMKg8EmFO5LlCiH83y8TExES1B/FvV1tby5YtW2hqaqJ3797Y2tpiNBqxsLBQe2g9\nVvuTz5o1azAYDPj5+UmvR1BbW0tycjJ5eXmEhIRgaWmp9pCeGDU1NWzevJm2tjacnJzQ6XRqD+mJ\nUVdXx8aNG1mzZg2TJ0/GwcFB7SE9MWpra9m6dSstLS04ODjI84SJ9Ho9qampODo6otPp0Gq10s1E\ner2elJQUbG1tsbW1RafTSTsT1dbWcu3aNZycnNQeyhNHr9ezadMm6uvrcXR0pFevXiavOznT8g87\nfPgwb7zxBo2NjZw6dYrPPvsMQB4UOtG+gM+cOcOxY8e4evWq2kN6YqSmpjJv3jwcHBxISEhAq9Wq\nPaQnxtWrV3nrrbfQ6/WUlpZSUFCg9pCeGN9//z0LFy4E4KWXXkKj0cg73yZKT09n0aJFNDY2cvLk\nSdatWwfI80RnTp06xaJFi7h+/TppaWmsXbsWkG6mOH36NG+++SY3btxg//79rF69GpB2pmhtbWXe\nvHls2bJFXps8orNnz7J48WKMRiNnzpxh5cqVgOnrzuqfHJw5a2trw9LSkvLycuLi4njhhRfIysoi\nJyen42fkHY2/MhgMaDQaNBoNer0eZ2dn6uvrOXfuHC4uLtja2qo9xB6turqanJwcxowZQ0JCAnD3\nHaHevXsD/+8r/qz9eK2oqADoeAK/lxyvD1dUVERVVRWffvop7u7uJCQkEBcXJ7060b7url69Smxs\nLC+++CJFRUUcPHiw42dk3f1Ve7fKykrCwsJYtmwZAJMnT+bgwYM899xz8ljXiZqaGgICAli1ahUA\nMTExpKWlMXnyZFlznSgvL8fW1hYrKyvy8/Pp27evvDloorKyMgYNGsTy5csBmDlzJgUFBQwZMsSk\n/y+Xhz1mBQUFbNmyhdLSUoYNG0ZFRQXh4eE0NzezbNkyrK2tqaysJCgoSB4U7nFvN39/f6ysrNBo\nNNTU1BAYGEhmZiYhISFotVq51Ok+97YbOXIkvXr1oqqqihs3bpCSksLx48f59ddfiYyMlDV3n/Z2\nJSUl+Pv7Y2FhQVFRETY2NmzYsIEjR45w9uxZIiIipN19CgoK2Lx5M7///jtjx45l7NixHZeDXbly\nBSsrK/z8/NQdZA91//PEzz//TG1tLXV1daxfv56GhgYaGhoYPny4rLt73Hu8Dhs2jNzcXDQaDR4e\nHtjb21NYWMiePXuYPXu2dLvPH3/8wbFjx/D39wfg3LlztLW1MXjwYGxsbOjXrx/JycnMnDlT2t3n\n/natra1ERkYCd88c+Pr64uzsrOYQe6z721VUVBAaGkq/fv2orKwkLy+PqVOnmrzpk03LY9D+rkRp\naSmJiYlERkaSm5tLdnY2kZGReHt7c+PGDfr06cPUqVPZunUr5eXljBkzBoPBYLYPEA/qdv78eTIz\nM/H19cXa2ppt27axcuVKTp06xY4dO9Dr9YSGhppts3YPW3M5OTn079+fW7du8eOPPzJp0iRmz57N\nN998I2vufx627nJycrC2tqaqqoqCggLGjBnD7Nmz+frrr7l27Zq048Htzp07R0ZGBh4eHri4uNDa\n2sqRI0fw9/fHw8PD7Ju1e9gxm5+fT0hICIMGDWLt2rXExsYya9Ystm3bRkVFBaNHjzbrhg9bc/n5\n+bi6unL58mVOnjxJdnY2Hh4eXLlyhYaGBkJCQsz+jMG98//www85efIknp6e+Pj4cPv2bdLT0wkN\nDcXJyYkBAwZw+PBhWXP/86B23t7eeHt7Y2lpiYuLC76+vhw9ehSDwYCnpyc2Nja0tbWZ/Rm+v1t3\nPj4+uLm5AXdv2HLgwAEmT56MtbW1fKalu7S0tABQXFyMs7Mz06dP54MPPkCn03H8+HGqq6vx9vYm\nPj6e/v37k5iYyIEDB7hz545ZL+4HdXvvvfewt7cnPT2diooKIiIi2LVrF6dPn6a+vp4RI0aY9QNp\nu4etOa1WS3FxMcOGDWPJkiXExMTg5OTEmjVr+Omnn8x+zcGD273//vtotVpu3LiBVqvl5s2bDBw4\nECcnJ5KSkjh48KC04+HHrIODAydOnKCqqgorKys8PT1JSUkBMPtm7R52zMLdy+tcXV155plnmDZt\nGr6+vqxYsYITJ07Q3Nxs1g3/rlt9fT0xMTGEh4djZ2fHnDlzmD9/PuXl5Wb/ohv+366kpASdTkdc\nXBz79u3DaDQSFhaGk5MT+/fvp7a2FoDXX3+dS5cu0draatZrDh7cbu/evRiNRnQ6HW1tbdja2hId\nHU1OTk5HQ7lj4t+vO41GQ1tbGwC5ubn4+vpib2+PhYUFd+7c6fR3y5mWLsjIyGDdunVkZ2fj4ODA\n4MGDOXr0KP7+/ri5uaHRaMjLy8Pa2hqj0Uh1dTXOzs6cP38eo9HIhAkT1J6CKkzpVlRUhF6vZ8+e\nPbS1tZGUlISVlRXFxcUMHTrUbD/b0lk7CwsLLly4gIeHB1FRUTQ2NqLVarlw4QIajYaoqCi1p6Ca\nztrB3ctPvL29MRgMNDU1MWTIEAoLCzEYDERFRZntiyBTjtkLFy6g0+nw8/Nj0KBBHDp0CA8PD9zc\n3Mz6HW9T2hUWFqLX6zvOlHp4eHD27Fmsra2JiIhQewqqMOWxLjc3F09PT6Kjo/H390en05GWloar\nqyshISFqT0E17e1ycnKws7MjICCAoUOHMmDAALKzs7l+/TqBgYH4+vqSlpZGc3MzAQEBZGRkYGdn\nR1hYmNpTUE1n7aqrqxk+fHjHZ6b69+/PxYsXSU9PZ/369djY2BAYGKj2NFRhaju4+8H7I0eOMHHi\nROrq6liyZAkWFhYEBAT87d+QTYtCVVVVrF69mldeeQUXFxcOHz5MWVkZ/v7+XLp0iVGjRuHl5UVO\nTg4ajYampiZ++OEHdu/eTU5ODnFxcfj4+Kg9jW5narfMzExcXV1JSEhgxowZODg44OXlhZubG76+\nvmpPQxWmtsvOzqa5uRmtVsv27dvZtm0b586dIy4uDm9vb7WnoQpT2nl7e5OZmYmjoyOTJk3it99+\nY+fOnRw5coT4+HhZdyY81jU1NREcHExDQwNlZWVUV1czcuRIs92wmNru9OnTuLu74+bmxi+//MKu\nXbvIy8sjNjYWLy8vtafR7UztlpubS2NjI+7u7nz77bd88cUXXLt2jdjYWNzd3dWehirubefs7Ex6\nejo1NTWEh4djbW2NRqMhPT2dkJAQfHx8cHR05MKFC3z11VdcvHiR2NhYPD091Z6GKkxpd/DgQUJD\nQztubtPc3MyGDRsoLy9nxYoVTJs2TeVZqONR2rV/9vHAgQNs2rSJwsJC5s6dy5QpUzr9O7JpeQRt\nbW18+eWXFBYWUlJSgo+PDzNmzMDX15ennnqK1NRUAgICqKysxNLSEi8vL5qbm0lNTeXtt99m3Lhx\n9O3blyVLlpjVhkVJt9bWVrZv386rr74K3P3gm4ODA66urirPpnspXXO7d+8mISGB4OBg+vTpw/Ll\ny81uw6KkXUtLCzt27OC1114jNDSUwYMHM3/+fLM6XkF5u507dxIfH4+NjQ0+Pj6MHz9e7al0O6Xt\nUlJS+Oijjxg9enTH84Q5bViUdktNTWXOnDk8/fTTuLm5sXTpUrPbsPxdOycnJ7Zv3050dDS9e/dG\np9Nx5coVKisrCQ4OpqWlhSlTpuDn58eCBQvMbsOipF1VVRVBQUEUFxd3XNmwdu1aBgwYoPZ0ulVX\n2hUVFVFeXs6ECRN45513TL5pi3lftPgIKisrWbZsGXV1deh0OpKSkti3bx+NjY3odDqCg4MJCwvj\n7NmzjBgxguTkZFpaWqitrWXEiBE0NTVha2vbcccJc6G0W/sH7pubmwGwsjK/u3N3pV1QUBB37tzB\n0dGRiRMnqj2VbtfVddfU1ATAwIEDVZ5J91Pa7tatW4SGhnZcl2xuLxzh8TxPODg4mN1lnF1ZcyEh\nIR3H67hx41SeSffrrN2oUaMYMWIE27ZtA8DT05MpU6aQmppKREQEWVlZAAQHB6s5DVUobffdd98R\nERHB+fPnGT9+PLNmzVJ5Jt2vK+3GjRvHpUuXmD9/PvHx8Y/0d+VMi4nKyso4dOgQn3/+OQEBAVy+\nfJmsrCxu3rzZ8dkUR0dHcnNzmTVrFuXl5ezbt4+MjAwWLlxodmcI2nW1W9++fVWegXpkzSkn7ZST\ndspJO2Wkm3KdtTMajbi4uHDq1CmCgoK4ffs2ixcvxt3dnaSkJKKjo9Wegmq62i4qKspsb1jQ1Xbj\nx49X9PUV5vf2tUIuLi4sWLAAg8GAwWDAx8eHrVu38u6775KXl0dgYCD29vZYWVnRq1cvli5dSn19\nfcd1j+ZKuikn7ZSTdspJO+WknTLSTTlT29nY2NCnTx/0ej0LFizg+eefV3voqpN2yqnVTs60mMjO\nzg4fHx8sLCwwGAwkJyczd+5c7O3t2bVrF66urmRlZVFSUkJ0dDQ6nQ6dTqf2sFUn3ZSTdspJO+Wk\nnXLSThnpppyp7YqLi5kwYQKOjo4mf/v4v520U06tdnKmRYGCggLg7unql19+GVtbWzIyMrh+/TqJ\niYn06tVL5RH2TNJNOWmnnLRTTtopJ+2UkW7KddbOzs5O5RH2XNJOue5sJ5sWBSorK4mJiem4xVtQ\nUBDLli0z29t6mkq6KSftlJN2ykk75aSdMtJNOWmnnLRTrjvbyaZFgVu3bvGf//yH9PR0pk+fztSp\nU9Ue0hNBuikn7ZSTdspJO+WknTLSTTlpp5y0U64721kYjUbjP/bb/6UyMzPJz89n5syZaLVatYfz\nxJBuykk75aSdctJOOWmnjHRTTtopJ+2U6852smlRwGg0yilDBaSbctJOOWmnnLRTTtopI92Uk3bK\nSTvlurOdbFqEEEIIIYQQPZp5fiuOEEIIIYQQ4okhmxYhhBBCCCFEjyabFiGEEEIIIUSPJpsWIYQQ\nQgghRI8mmxYhhBBCCCFEjyabFiGEEEIIIUSP9l9I0Ywe7OCyhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model = regression.linear_model.OLS(Y.reset_index(drop=True), predictors).fit()\n", + "theta = model.params\n", + "print theta\n", + "predictions = model.params[0] + model.params[1]*gold[s:e] + model.params[2]*iwm[s:e] + model.params[3]*inflation[s:e] + model.params[4]*qqq[s:e]\n", + "\n", + "predictions.plot(label = 'model', linestyle = '--', c = 'r');\n", + "Y.plot(label = 'unemployment');\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At first glance the regression model seems decent, but further evaluation is required to determine it's validity." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Validation\n", + "\n", + "Now that we used model selection criteria and methods to find the most valuable combination of regressors, we now must determine whether this best model is acceptable. Because \"best\" is a relative term, it is possible that the best model does not explain the independent variable in a satisfactory way. As a result, more work needs to be done to ensure that our model is well-founded.\n", + "\n", + "### $R^2$ and $\\bar{R}^2$\n", + "\n", + "As well as being criteria model selection, $R^2$ and $\\bar{R}^2$ can also be used as model validation criteria. The intuition, formulas, and weaknesses detailed in the selection section still hold. However, in terms of validation they are additionally limited as they cannot determine the accuracy of the form of the relationship, a vital part of a well-founded model. \n", + "\n", + "To illustrate this weakness we can run a linear regression on two datasets with very different forms. Both regressions have a similar $R^2$ value but only the second accurately represents the form of the data it is modeling." + ] + }, + { + "cell_type": "code", + "execution_count": 930, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R^2 of First Model: 0.671416768972\n", + "R^2 of Second Model: 0.67216727851\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAHoCAYAAACIMzrDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0VOW9x//PTEiGXJAQSAYhEoFAQIgBo4dLvCEItKV6\nXBVkWalaV7vqhbZirQoc9Fgp4qUcuixLPEf8gZemKqUip7/gr+2x7RJUOkgQFCSIwUDIBQghEBJC\n5vdHzDCTzJDMLbP3nvdrLRaZmZ2ZZ/JkYD7zfJ/vtrndbrcAAAAAwMLssR4AAAAAAEQbwQcAAACA\n5RF8AAAAAFgewQcAAACA5RF8AAAAAFgewQcAAACA5Rku+OzZs0c33nijXn/99Qsed+LECd1zzz36\n2c9+5rmupaVFv/jFL3T77bdr3rx5qqioiPZwAQAAAJiAoYJPY2Ojli9frqKioi6P/c///E9NnDjR\n57pNmzapb9++euONN/STn/xEzz//fLSGCgAAAMBEDBV8HA6HVq9erQEDBniu279/v+68807dfffd\neuCBB9TQ0CBJWrp0qQoKCny+f+vWrZo2bZokafLkydq+fXvPDR4AAACAYRkq+NjtdiUlJflc96tf\n/Uq/+tWv9Morr2jy5Ml67bXXJEnJycmdvr+2tlYZGRmSJJvNJrvdrpaWlugPHAAAAICh9Yr1ALqy\nc+dOLV68WG63W2fPnlV+fn63v7e1tTWKIwMAAABgFoYPPikpKVq3bl23js3KylJtba3y8vI8Kz29\nehn+KQIAAACIsrBK3S7Uge3DDz/Ubbfdpttvv12LFi0K+THy8vL0j3/8Q5L05z//WR9++KHnNrfb\nLbfb7blcVFSkkpISSdLf/vY3TZgwIeTHBQAAAGAdNrd3cghCY2Oj7rvvPuXk5GjEiBH6/ve/73P7\njBkztG7dOjmdTv3sZz/T9773PV177bUXvM/S0lItXrxYx44dU0JCgvr27asnn3xSzz33nOx2u3r3\n7q3nn39eaWlpuvnmm9XY2KgTJ05o4MCBeuSRRzR58mQtWrRI5eXlcjgcevrpp+V0OkN5egAAAAAs\nJOTg09raqpaWFr300kvq169fp+DT0NCgtLQ0SW2tp8ePH6+bbrop/BEDAAAAQJBCLnXz14HNW3vo\nqa6u1pYtW3TdddeF+lAAAAAAEJao7vw/evSo7r33Xj3xxBPq27fvBY91uVzRHAoAAAAACygsLAzp\n+6IWfBoaGvSjH/1IDz30kCZNmtSt7wn1SSD2XC4X82dSzJ25MX/mxdyZG/NnbsyfeYWzWBK1E5g+\n/fTTuvvuu1VUVBSthwAAAACAbgl5xadjB7bi4mJ973vfU3Z2tq6++mpt3LhRBw8e1Jtvvimbzabv\nfve7mj17diTHDgAAAADdEnLwKSgo0Lvvvhvw9p07d4Z61wAAAAAQUVErdQMAAAAAoyD4AAAAALA8\ngg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAA\nALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAywsr\n+OzZs0c33nijXn/99U63bdmyRbNnz9bcuXO1atWqcB4GAAAAAMIScvBpbGzU8uXLVVRU5Pf2pUuX\n6oUXXtDvf/97ffDBB9q/f3/IgwQAAACAcIQcfBwOh1avXq0BAwZ0uu3rr79Wenq6nE6nbDabrrvu\nOn344YdhDRQAAAAAQhVy8LHb7UpKSvJ7W21trTIyMjyXMzIyVF1dHepDAQAAAEBYevXEg7jd7m4d\n53K5ojwSRBPzZ17Mnbkxf+bF3Jkb82duzF/8iUrwycrKUk1NjedyVVWVsrKyuvy+wsLCaAwHPcDl\ncjF/JsXcmRvzZ17Mnbkxf+bG/JlXOIE1Ku2sBw8erFOnTunw4cNqaWnR+++/r6uvvjoaDwUAAAAA\nXQp5xae0tFSLFy/WsWPHlJCQoOLiYn3ve99Tdna2pk2bpscff1wLFiyQJM2aNUs5OTkRGzQAAAAA\nBCPk4FNQUKB333034O1XXnmliouLQ717AAAAICRNTc0qKTmourpEpaef1cyZQ+Rw+G/KhfgRlVI3\nAAAAIFZKSg6qqipXTU05qqrKVUnJwVgPCQZA8AEAAICl1NUlXvAy4hPBBwAAAJaSnn72gpcRnwg+\nAAAAsJSZM4fI6SyTw1Eup7NMM2cOifWQYAA9cgJTAAAAoKc4HEm6+ebcWA8DBkPwAQAAgGnRwQ3d\nRakbAAAATIsObugugg8AAABMiw5u6C6CDwAAAEyLDm7oLoIPAAAATIsObugumhsAAADAtOjghu4i\n+AAAAMDw6N6GcFHqBgAAAMOjexvCRfABAACA4dG9DeEi+AAAAMDw6N6GcBF8AAAAYHh0b0O4Qm5u\nsGzZMpWWlspms2nhwoXKz8/33Pb666/r3XffVUJCgsaOHavHHnssIoMFAACAtQVqYkD3NoQrpBWf\nbdu2qby8XMXFxXrqqae0dOlSz20NDQ16+eWX9fvf/16vv/66ysrKtHPnzogNGAAAANZFEwNES0jB\nZ+vWrZo2bZokafjw4aqvr9epU6ckSUlJSXI4HGpoaFBLS4vOnDmjvn37Rm7EAAAAsCyaGCBaQgo+\ntbW1ysjI8Fzu16+famtrJbUFn/nz52vatGmaOnWqrrjiCuXk5ERmtAAAALA0mhggWiJyAlO32+35\nuqGhQatWrdJ7772n1NRU3Xnnnfriiy80cuTILu/H5XJFYjiIEebPvJg7c2P+zIu5MzfmLzqyss6q\nrGyfGhqSlZbWqPz8fnK5TkT8cZi/+BNS8MnKyvKs8EhSdXW1MjMzJUlffvmlLrnkEk95W2FhoXbt\n2tWt4FNYWBjKcGAALpeL+TMp5s7cmD/zYu7MjfmLjECNDCZNiu7jMn/mFU5gDanUraioSJs3b5Yk\n7d69W06nUykpKZKkwYMH68svv1Rzc7MkadeuXRoyhHaDAAAA8EUjA/SkkFZ8xo8frzFjxmju3LlK\nSEjQkiVLtGHDBvXp00fTpk3TPffco3nz5qlXr14aP368rrzyykiPGwAAACZHIwP0pJD3+CxYsMDn\ncl5enufrOXPmaM6cOaGPCgAAAJaXnn5WVVW+l4FoCanUDQAAAAjXzJlD5HSWyeEol9NZppkz2R6B\n6IlIVzcAAAAgWA5Hkm6+OTfWw0CcIPgAAAAgqgJ1bwN6EqVuAAAAiCq6t8EICD4AAACIKrq3wQgI\nPgAAAIiqjt3a6N6GWGCPDwAAACLG336emTOHqKSkzOc6oKcRfAAAABAx7ft5JKmqSiopKdPNN+fS\nvQ0xR6kbAAAAIob9PDAqgg8AAAAihv08MCqCDwAAACJm5swhcjrL5HCUy+ksYz8PDIM9PgAAAAha\noJOSOhxJ7OeBIbHiAwAAgKBxUlKYDcEHAAAAQaOJAcyG4AMAAICg0cQAZsMeHwAAAAQUaC8PJyWF\n2YQcfJYtW6bS0lLZbDYtXLhQ+fn5ntuOHDmiBQsWqKWlRZdddpmeeOKJSIwVAAAAPSzQCUlpYgCz\nCanUbdu2bSovL1dxcbGeeuopLV261Of2p59+Wvfcc4/efPNNJSQk6MiRIxEZLAAAAHoWe3lgFSEF\nn61bt2ratGmSpOHDh6u+vl6nTp2SJLndbrlcLt1www2SpP/4j//QwIEDIzRcAAAA9CT28sAqQgo+\ntbW1ysjI8Fzu16+famtrJUnHjh1TSkqKli5dqttvv12/+c1vIjNSAAAA9DhOSAqriEhzA7fb7fN1\ndXW17rrrLg0aNEg//vGP9fe//13XXXddl/fjcrkiMRzECPNnXsyduTF/5sXcmZsV56+5+ay2bDmu\nhoZkpaU1avLkfkpKSlR2tpSd3XbMrl2fxnaQEWLF+cOFhRR8srKyPCs8klRdXa3MzExJbas/gwcP\nVvY3r45JkyaprKysW8GnsLAwlOHAAFwuF/NnUsyduTF/5sXcmZtV5++dd8rUp89E9enTdrm6usyS\nDQysOn/xIJzAGlKpW1FRkTZv3ixJ2r17t5xOp1JSUiRJCQkJys7O1sGDBz23Dx06NOQBAgAAoGfQ\nyABWFtKKz/jx4zVmzBjNnTtXCQkJWrJkiTZs2KA+ffpo2rRpWrhwoR599FG53W6NHDnS0+gAAAAA\nxpWeflZVVb6XAasIeY/PggULfC7n5eV5vh4yZIjeeOON0EcFAACAqOGkpIhHEWluAAAAAPPgpKSI\nRyHt8QEAAIB5sZcH8YjgAwAAEGc4KSniEaVuAAAAFuZvPw97eRCPCD4AAAAWFmg/D3t5EG8odQMA\nALAw9vMAbVjxAQAAsIBALarj7tw8Z89K+/dLe/ZIl1wiFRbGekQwCIIPAACABQQqabPsfp76emnv\n3raA8/nn5/8uK5NaWtqOufRS6cCBmA4TxkHwAQAAsIBAJW2mPjeP2y1VVvoGmz172v4cOtT5+L59\npSuvlEaPlkaNkmbM6Pkxw7AIPgAAABZg6pI27/K0jgGnvr7z8ZdcIk2f3hZu2kPO6NFSVpZks/X8\n+GEKBB8AAACTMW2L6vbytI4rON7lae0SE6WRI33DzahRUl6elJYWm/HD1Ag+AAAAJmPoFtUdy9O8\nA053ytPa/x46VOrFW1VEDr9NAAAAJmOIFtVnz7at1PgrTzt5svPxQ4ZIN97YFmwoT0MMEHwAAAAM\nyhAtquvrO4ebzz9v25PTnfK00aPbrqM8DTFG8AEAADCoHmtR7XZLhw/7L087fLjz8enp0lVXnd93\nQ3kaTIDfTAAAAIOKeIvq9u5p/tpDBypPmzGjc8ChPA0mRPABAAAwqJBL2trL0zoGHH/laUlJ58vT\nvMNNXp6Umhq5JwPEWMjBZ9myZSotLZXNZtPChQuVn5/f6Zjnn39eO3bs0KuvvhrWIAEAAKws0F6e\nC5a0+StPaw85FypP89c9LSGh554sECMhBZ9t27apvLxcxcXF2r9/vxYtWqTi4mKfY/bv369//etf\nSkyMQZcRAAAAEwm0l8fhSNLN38453z3t+TfPh5u9e7suT/M+/w3laYhzIQWfrVu3atq0aZKk4cOH\nq76+XqdOnVKq13Lo8uXL9dBDD+m3v/1tZEYKAABgUXV1iUpsPKH0I3uVfuRzDaj5SPp/KgN3T0tK\nkkaM6NwaeuRIytOAAEIKPrW1tRo7dqzncr9+/VRbW+sJPhs2bNCkSZN08cUXR2aUAAAAVuB2q+nL\nA3K9/k8lfPGVso7tU87pQ7pt52fqfby68/He3dO8Q86ll9I9DQhSRF4xbrfb8/WJEyf0zjvvaM2a\nNTp8+LDPbV1xuVyRGA5ihPkzL+bO3Jg/82LuzO1C82c7e1aOigr1PnBAvb/6qu3v8nL1/uorOU6f\n1uSO3zBwoA7kFao6PUf1gy/WoKmXqSU3Vy0ZGZ3L006ckEpLI/584g2vv/gTUvDJyspSbW2t53J1\ndbUyMzMlSR9++KGOHj2q22+/XU1NTfr666/19NNP69FHH+3yfgsLC0MZDgzA5XIxfybF3Jkb82de\nzJ25eebvxInAJ/c8d873mxwOaeRIfdV7iI5ljtfxi0erbuBonRnSW9//8WgNlTQ0Js8m/vD6M69w\nAmtIwaeoqEgvvPCC5syZo927d8vpdColJUWSNGPGDM2YMUOSdOjQIT322GPdCj0AAACG5HZLhw75\nhJsRH3/cdl1lZefj+/WTJkzQuREj9bnNqar0kWrNy9G1P5gsR0qySt8p8zQykCSns6wHnwwQv0IK\nPuPHj9eYMWM0d+5cJSQkaMmSJdqwYYP69OnjaXoAAABgKs3N57undTy5Z0ODz6EXSVJOjjRz5vmu\nae37cDIzJZtNmzoEnNP/X1untgu2qAYQNSHv8VmwYIHP5by8vE7HDB48WOvWrQv1IQAAACIvmPK0\n9pN7djj3zSenTmn81Vd7DvOch+f/bVR6+n7NnDlEdXW+p/Rov+xwJOnmm3MFoGfRDgQAAFiPn/I0\nz98XKE/zOe/N6NFt3dP8nNyztcM+A3/n4UlPb/u6XXr62Ug+QwBBIvgAAADz8i5P8y5N81OeJqmt\nPG3GDN8VnNGjpQEDwjq5p7/VnblzL6akDTAQgg8AADC+ujr/e28u0D3NuzTNc3LPb5oxhaq9pG3H\njpOqqCjTzJlD5HAkKT39bKfVHUraAGMh+AAAAGNwu6WKCv/7b44c6Xx8RoY0caJvadro0W2rOn7K\n0yKhvaStuTlRVVU5KimhYQFgFgQfAADQs9rL0zruvdmzRzp1yvdYm+1897TRo6W8vIiVp4WChgWA\neRF8AABAdIRSntahe1okytNC4enS5rWCE6ikDYA5EHwAAEDovMvTOq7gXKg8zbt72qhRAbunxYq/\nLm3eJW2VlRVyOilpA8yE4AMAALrW3Czt2+d/BcdfedqQIefL07xXcDIzYzP+C/C3utNVSVt29gkV\nFlLaBpgJwQcAAJznrzzt88+lL7+8cHma9wpOjMrTQsU5eID4QPABACDetJenea/adKc8rWN76Ch2\nT4uGQPt2OAcPEB8IPgAAWFVTk//uaXv3+i9Pu/RS6Vvf8g04Bi1PC0WgfTucgweIDwQfAADM7vjx\n8ys33gEnUHlae0to7/PfjBwpJSfHZvxREMy+Hc7BA8QHgg8AAGbgdktff+2/e5r3ckW7AQOkSZPO\nB5v2sGOy8rRQBbNvh9UdID4QfAAAMJKO5WntAaer8rSOKzgDBsRk+D2NfTsAuovgAwBADCScPClt\n3eq/e1prq+/BvXu3rdh4B5tRo6QRI0zVPS0a2LcDoLsIPgAAREtra8DuaeP8laf1799WnubdHnr0\n6LZz4sRBeVpX2LcDIBwhB59ly5aptLRUNptNCxcuVH5+vue2Dz/8UCtWrFBCQoKGDh2qpUuXRmSw\nAAAYUlNT28k9/ZWnnT7te+w35WknJk9W344touOkPC1U7NsBEI6Qgs+2bdtUXl6u4uJi7d+/X4sW\nLVJxcbHn9scff1zr1q2T0+nUz372M/3jH//QtddeG7FBAwAQE+3d0zo2FwimPO2b7mllLpcKCwtj\n8zwMjn07AKIhpOCzdetWTZs2TZI0fPhw1dfX69SpU0pNTZUkrV+/XmlpaZKkjIwM1dXVRWi4AABE\nWWtr5+5p7V9XV3c+fsAAqaioc8ChPC1k7NsBEA0hBZ/a2lqNHTvWc7lfv36qra31BJ/20FNdXa0t\nW7bo5z//eQSGCgBABAVbnjZ0qHTllb57b/LyKE8LQzArOxL7dgCEJyLNDdxud6frjh49qnvvvVdP\nPPGE+vbt2637cblckRgOYoT5My/mztyYvwtLqK9X7wMH1Purr87/OXBAjsOHZetQntbqcOhMTo7O\nXHqp758hQ+Tu3bvznZeXt/0JUbzP3fvvV+vYscu+uZSosrK/6vrrs1RbW61jx84fl5HxmVyuWklS\ndnbbH0natevTnh1wB/E+f2bH/MWfkIJPVlaWamtrPZerq6uVmZnpudzQ0KAf/ehHeuihhzRp0qRu\n3y+1zublolbdtJg7c2P+vhFOeZrX+W/sOTlKsdvVEw2i423u/K3u7NpVqT59cjzHOBxSYWGOxo7t\neOxUORxJMRx9Z/E2f1bD/JlXOIE1pOBTVFSkF154QXPmzNHu3bvldDqV4nUegaefflp33323ioqK\nQh4YAACddCxPa//7QuVpV13lu/+G8rSoClS+Rkc2ALEWUvAZP368xowZo7lz5yohIUFLlizRhg0b\n1KdPH1199dXauHGjDh48qDfffFM2m03f/e53NXv27EiPHQBgVceOdTrvTZfd07z33rR3T/NXnoao\nCtSYgI5sAGIt5D0+CxYs8Lmcl5fn+Xrnzp2hjwgAEB9aW6WDB/2Xp9XUdD4+M7NzeVr7yT3t9p4f\nP4I6oSgd2QDEWkSaGwAAENCZM23laR3Pf7N3r9TY6Htsx/K00aPPh5z+/WMzfkSkfI2ObABijeAD\nAIiMY8c6773Zs0c6cKBzeVpysm95WnvIGTGC8rQY8xdyIlG+xuoOgFgj+AAAus+7PK3jCk6g8rSr\nr+5cnnbJJZSnGZS/kEP5GgArIPgAADprL0/z1z2tY3ma3d5WnvZv/+a7gkN5mqEFc/JQfwFHonwN\ngLkQfAAgnnmXp3kHnO6Up7X/TXmaoQWzP+fmm3P9hpxAAYfVHQBmQvABAKvz1z2t/W9/5WlZWW3d\n07wbC4waRfc0Ewh3f47kfxWHgAPACgg+AGAVZ85IX3zRefWmu+Vp7X9nZMRm/Oi2YFZxgtmfI7GK\nA8C6CD4AYDZHj3pCzeC///38yT4PHJDcbt9jk5N999xQnmY64a7isD8HANoQfADAiNrL0zqWpn3+\nuVRb6zlsYPsXWVnSNdf4Bhy6p5lKtFZx2J8DAG0IPgAQS42NgbunnTnje6zdLg0bJk2c6Ak3e9xu\njbrlFsrTTKQ94OzYcVIVFWVdNhsIdxWHgAMAbQg+ANATvMrTfPbgBCpP824s4F2e5nD4HHrK5SL0\nGECg1ZoLlak1Nyeqqiqny2YDrOIAQGQQfAAgUlpbpfJy/93TvMrTPLKypGuv9Q03o0ZRnmZwwey5\niUSzAVZxACAyCD4AEKyO5WntAeeLLwJ3T5s40XcFJy+PlRoD8RdmJIW95yYSzQYIOQAQGQQfAAjk\n6NHzocZ7BeerrzqXp6WkdG4sMGqUlJtL97QYCKb0LFCYafs6vD03FypTq6yskNNJwAGAnkLwARDf\nzp3z7Z7W3fK0vLzzAWf0aCk7m/K0KAtlH43UdenZhfbX+LsumD03FypTy84+ocJCgg4A9BSCD4D4\n0Nh4/uSe3qs3X3zRre5plKeFL5hysmjtowl2f024e25YxQEA4wg5+CxbtkylpaWy2WxauHCh8vPz\nPbdt2bJFK1asUEJCgq699lrdd999ERksAHSpttZ/c4FA5WmXXdb5BJ9xXJ4WzKqK1P3QEmw5WbT2\n0QS7v4Y9NwBgHSEFn23btqm8vFzFxcXav3+/Fi1apOLiYs/tS5cu1Zo1a5SVlaU77rhDM2bM0PDh\nwyM2aABx7ty5zt3T2r8+erTz8U6ndN11nQOOCcrTugoi3ueCkYILIuGuqrR9HZ1yskjto+lO6ZkU\nOMwQcADAOkIKPlu3btW0adMkScOHD1d9fb1OnTql1NRUff3110pPT5fT6ZQkXXfddfrwww8JPkAc\nCXd1oP3Yk9XnNPjUF7p6QL0Sy/bp3GefqWHbp0o9dEC9zjb5PGarza7TAy9R8ncmKuGyy3Q2d4S2\nHk/XoT55Shmc0vnx/s+t9PQvQx5bOOEimPvoKoh4nwum7ZjuB5FIlIgFc2ww5WSR2kfTEas1ABC/\nQgo+tbW1Gjt2rOdyv379VFtbq9TUVNXW1irDqwY+IyNDX3/9dfgjhSGF+6lzMMdG4j6sMrZIPl7H\ns8fHoqSpbn+60o/sUb/Kz/X1mg/Vp2K/phw8qD5Hv5LNqzwtQVJKUoqOXzxGdQNHqyU3Uyezh6k8\n+QadyMxVa6JDTmfb/f75nTJVqe3xTkZw5SKYYyNxH9EMIpEoEYtWORlhBgAQaRFpbuDuWDffzdtg\nfuF+6hzMsT39ptXIY4vk43U8e3y0SppsrefUp+ZLpR/Zo/Qjn6t/9b+k5yo0Y8du9W443ul36/RF\nTlWOuFZ1A0erITtL/3Znkd7elaZjKRM95WkOR7kkqakpx+exvP/u7vXROrYny7uk4IJIJErEolVO\nRpgBAERaSMEnKytLtV5tXqurq5WZmem5raamxnNbVVWVsrKyunW/LpcrlOEghnbsOKnm5rY3a+Xl\n5aqsrJAkz3WSVFlZoezsEz7Htl8fzLGRuA+rjC3Sj9c+d5G430sGVMm2c4cu+tKtzNoyZR7dr4F1\nu9Wv5pASW5rlzW2363TGQB24uFA1/Yerpv9wNQ3rpWOZg1V5ZoLnuIyMz5TQv7/K3dU65rWCnJHx\nmSTp2DH5XOdy1aq2trrb1wdzHz39eCNH9lNZ2T41NCQrLa1R+fn95HKdUFbWWZWV7VNSUrJOnvxM\n+fn9JOmCx3bn+l27Tig7u237kyTt2vWpZzz+rg/mWHTG/3vmxvyZG/MXf0IKPkVFRXrhhRc0Z84c\n7d69W06nUykpKZKkwYMH69SpUzp8+LCysrL0/vvv6/nnn+/W/RYWFoYyHMRQRUWZqqpyVF5erpyc\nHDmd7Z86n/8E3uk8q8LCXM+x3tcHc2wk7sMqY4vk43nPXVD3O6SvTif+Re6yfUqv/FzpVXvUv+ZT\npf7nIV3RYaXXnZIid/4YfX3RJarNyNXZEZdq3NxrlHTZaKXKpi+8yuVm+S2tmyqHI0ljx3YsrZsa\n1LGRuI+efjyHI0mTJsmvSZPa/uMuLLze57pAxwZzPaKvbe74f8+smD9zY/7MK5zAanOHWIv2m9/8\nRh9//LESEhK0ZMkSffbZZ+rTp4+mTZumf/3rX3ruueckSTNnztRdd93V5f3xC2hO5/f4VGjcuGzT\n7Gsx+9giu8fn/Nx1OrbPGc0c7ZZ97x7tfecjJX15QP1rypRR/ZVsfrqnuZ1O2UaP9u2cNnq0NHiw\n4bunmRX/dpoXc2duzJ+5MX/mFc7chRx8Io1fQHNj/szL5XKpcPTozif33LMn8Mk9hw8/H2y8W0T3\n6xebJxHHeO2ZF3NnbsyfuTF/5hXO3EWkuQEAk6ip6XRyz7E7d0qVlZ1P7pmaKo0Z0zng5OZKDkds\nxg8AABAigg9gNefOSV995XtSz/av/ZSn2fv3bzu5Z3u4af87O1uy2Xp+/AAAAFFA8AHM6vTpzuVp\nn3/edl2T78k9lZAgDRsmFRV1Kk/buX8/y/0AAMDyCD6AkbndUm2t76pN+9fl5f7L08aO9V25GT26\nbU8O5WkAACCOEXwAIwhUnvb5574nfGk3cKB0/fWd999QngYAAOAXwQfoSadPS3v3dg44gcrThg+X\nrr66Ldzk5Z0POenpsRk/AACASRF8gEhzu/12T/OUp3WUlibl559fvWkPOLm5UlJSz48fAADAggg+\nQKjay9MZ58VhAAAgAElEQVT87b/xV5528cXSlCm+pWntJ/ekPA0AACCqCD5AV7zL0zp2T2tu9j02\nIaFtpeaaa3z33+TlUZ4GAAAQQwQfQDpfnhaoe1pH7eVpo0d37p5GeRoAAIDhEHwQXzqWp3n/ffx4\n5+M7lqe1/015GgAAgKkQfGBNp061laJ1XMHZt89/97TcXOnaazu3h+7bNzbjBwAAQEQRfGBeoXZP\n67h6Q3kaAACA5RF8YHwtLYG7pwUqT7vhBt/OaZSnAQAAxDWCD4zj1Cn/3dP27QvcPe26684HHMrT\nAAAAEADBBz3L7Zaqq33DTfvXBw92Pj4tTSoo6Lz3hvI0AAAABIHgg+joWJ7mHXL8lacNGiRNndq5\nPG3QIMrTAAAAELaQgk9LS4seffRRHT58WAkJCVq2bJmys7N9jvnzn/+sV155RQkJCZowYYIefPDB\niAwYBrRvn/qVlEh/+tP5cHOhk3u2l6d5r+BcdFFsxg4AAIC4EFLw2bRpk/r27avnnntOH3zwgZ5/\n/nmtWLHCc/uZM2f03HPPadOmTUpJSdGcOXN00003afjw4REbOAyislIaNUrDWlvPX9enT+fytNGj\npWHDKE8DAABATIQUfLZu3ap///d/lyRNnjxZCxcu9Lm9d+/e2rhxo1JSUiRJ6enpqqurC3OoMCSn\nU/rNb3Tw0CENmTGD8jQAAAAYUkjBp7a2VhkZGZIkm80mu92ulpYW9ep1/u7S0tIkSXv37tXhw4c1\nbty4CAwXhmO3Sz/7mWpcLg0pLIz1aAAAAAC/ugw+b731lt5++23ZvvkE3+12a+fOnT7HtHqXOXn5\n6quv9Itf/ELPP/+8EhISuhyMy+XqzphhUMyfeTF35sb8mRdzZ27Mn7kxf/Gny+Aze/ZszZ492+e6\nxx57TLW1tcrLy1NLS0vbHfXyvasjR45o/vz5evbZZ5WXl9etwRSyYmBaLpeL+TMp5s7cmD/zYu7M\njfkzN+bPvMIJrPZQvqmoqEglJSWSpL/97W+aMGFCp2MWLVqkxx9/XKNGjQp5cAAAAAAQCSHt8fn2\nt7+tDz74QLfffrscDoeefvppSdJLL72kCRMmqG/fvtq+fbt++9vfyu12y2az6e6779aUKVMiOngA\nAAAA6I6Qgo/dbteyZcs6Xf/jH//Y8/Unn3wS+qgAAAAAIIJCKnUDAAAAADMh+AAAAACwPIIPAAAA\nAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIP\nAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwvF6hfFNLS4seffRRHT58\nWAkJCVq2bJmys7P9HrtgwQI5HA4tW7YsrIECAAAAQKhCWvHZtGmT+vbtqzfeeEM/+clP9Pzzz/s9\n7oMPPlBFRUVYAwQAAACAcIUUfLZu3app06ZJkiZPnqzt27d3Oqa5uVkvvvii7r333vBGCAAAAABh\nCin41NbWKiMjQ5Jks9lkt9vV0tLic8xLL72kO+64Q6mpqeGPEgAAAADC0OUen7feektvv/22bDab\nJMntdmvnzp0+x7S2tvpcLi8v1969e/XAAw/oo48+6vZgXC5Xt4+F8TB/5sXcmRvzZ17Mnbkxf+bG\n/MUfm9vtdgf7TY899phmzZqloqIitbS0aOrUqfr73//uuX3t2rX64x//qOTkZJ08eVLHjx/XPffc\no3vuuSeigwcAAACA7gipq1tRUZFKSkpUVFSkv/3tb5owYYLP7XfeeafuvPNOSdLHH3+sDRs2EHoA\nAAAAxExIe3y+/e1vq6WlRbfffrt+//vf66GHHpLUtq+ntLQ0ogMEAAAAgHCFVOoGAAAAAGYS0ooP\nAAAAAJgJwQcAAACA5RF8AAAAAFheSF3dIuXcuXNatGiRDh48qNbWVv3yl7/UFVdcoT179uiJJ56Q\n3W5XXl6eHn/88VgOExewbNkylZaWymazaeHChcrPz4/1kNCFZ555Rtu3b9e5c+f04x//WPn5+Xr4\n4YfldruVmZmpZ555RomJibEeJi6gqalJs2bN0v3336+JEycyfyaxceNGvfzyy+rVq5d++tOfKi8v\nj7kzidOnT+uRRx7RiRMndPbsWd1///3Kzc1l/gxuz549mj9/vu666y59//vf15EjR/zO2caNG7Vu\n3TolJCRo9uzZuvXWW2M9dKjz/FVWVmrhwoVqaWlRYmKinn32WfXv3z+o+Yvpis8777yj3r176403\n3tBTTz2lZcuWSZJ+/etf6z/+4z/0xhtvqL6+Xv/85z9jOUwEsG3bNpWXl6u4uFhPPfWUli5dGush\noQsfffSRysrKVFxcrP/+7//Wr3/9a61cuVJ33HGHXnvtNQ0ZMkTr16+P9TDRhVWrVik9PV2StHLl\nSs2bN4/5M7i6ujr97ne/U3FxsVavXq2//vWvzJ2JbNiwQcOGDdO6deu0cuVKLV26lH87Da6xsVHL\nly9XUVGR5zp/r7nGxkatWrVKa9eu1bp167R27VrV19fHcOSQAs/fnDlz9Oqrr2rq1Kl65ZVXgp6/\nmAafm266SY899pgkKSMjw/NJSkVFhcaMGSNJuuGGG7Rly5ZYDhMBbN26VdOmTZMkDR8+XPX19Tp1\n6lSMR4ULueqqq7Ry5UpJ0kUXXaTTp09r27ZtuuGGGyRJU6ZM4fVmcF9++aUOHDig6667Tm63W9u2\nbdOUKVMkMX9GtmXLFhUVFSk5OVkDBgzQk08+qY8//pi5M4mMjAwdP35cknTixAllZGTwb6fBORwO\nrV69WgMGDPBc5+81V1paqssvv1ypqalyOBy64oortH379lgNG9/wN3+PP/64ZsyYIantNVlXVxf0\n/MU0+PTq1UsOh0OStHbtWn33u9/V8ePHPZ9kSm1PrKamJlZDxAXU1tYqIyPDc7lfv36qra2N4YjQ\nFbvdruTkZEnS22+/reuvv16NjY2e8oz+/fvzejO4Z555Ro8++qjnMvNnDocOHVJjY6Puvfde3XHH\nHdq6davOnDnD3JnEt771LR05ckTTp0/XD37wAz3yyCO89gzObrcrKSnJ57qOc1ZdXa2jR4/6vJfh\nfacx+Ju/5ORk2e12tba26o033tCsWbM6vRftav56bI/PW2+9pbfffls2m01ut1s2m03z589XUVGR\nXn/9dX322Wd68cUXdfTo0Z4aEiKMU0KZx1/+8hetX79eL7/8sqZPn+65njk0tj/96U+66qqrNGjQ\nIL+3M3/G5Xa7PeVuhw4d0g9+8AOf+WLujG3jxo0aOHCgXnrpJe3du1eLFi3yuZ35M59Ac8ZcGltr\na6sefvhhTZo0SRMnTtSmTZt8bu9q/nos+MyePVuzZ8/udP1bb72l999/X6tWrVJCQoLPcrIkVVVV\nKSsrq6eGiSBkZWX5rPBUV1crMzMzhiNCd/zzn//USy+9pJdffllpaWlKTU1Vc3OzkpKSeL0Z3N//\n/ndVVFTovffeU1VVlRITE5WSksL8mcCAAQM0fvx42e12XXLJJUpNTVWvXr2YO5PYvn27rrnmGklS\nXl6eqqqqlJyczPyZTMf/75xOp7KysnxWCKqqqjR+/PgYjhIX8thjj2no0KG67777JCno+YtpqdvX\nX3+tP/zhD3rhhRc8S4+9evXSsGHDPPV57733nucfGxhLUVGRNm/eLEnavXu3nE6nUlJSYjwqXEhD\nQ4OeffZZvfjii+rTp48kadKkSZ553Lx5M683A1uxYoXeeust/eEPf9Ctt96q+++/X5MmTVJJSYkk\n5s/IioqK9NFHH8ntduv48eM6ffo0c2ciOTk52rFjh6S2ssWUlBRNnjyZ+TMZf//fXX755dq1a5ca\nGhp06tQpffLJJyosLIzxSOHPxo0blZSUpAceeMBzXUFBQVDzZ3PHcE1vxYoV+vOf/6yLL77YU/62\nZs0alZeXa8mSJXK73SooKNAjjzwSqyGiC7/5zW/08ccfKyEhQUuWLFFeXl6sh4QLePPNN/XCCy/o\n0ksv9bzmli9frkWLFqm5uVmDBg3SsmXLlJCQEOuhogsvvPCCsrOzdfXVV+uXv/wl82cCb775pt56\n6y3ZbDbdd999Gjt2LHNnEqdPn9bChQt19OhRnTt3Tj//+c81dOhQPfLII8yfQZWWlmrx4sU6duyY\nEhIS1LdvX7388st69NFHO83Ze++9p//5n/+R3W7XvHnz9J3vfCfWw497/uavtbVVDodDqampstls\nys3N1ZIlS4Kav5gGHwAAAADoCTEtdQMAAACAnkDwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAA\nlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8A\nAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5\nQQefPXv26MYbb9Trr7/uc/0///lPjRo1ynN548aNuvXWW3Xbbbfp7bffDn+kAAAAABCiXsEc3NjY\nqOXLl6uoqMjn+ubmZr300kvKysryHLdq1SqtX79evXr10q233qrp06froosuitzIAQAAAKCbglrx\ncTgcWr16tQYMGOBz/Ysvvqh58+YpMTFRklRaWqrLL79cqampcjgcuuKKK7R9+/bIjRoAAAAAghBU\n8LHb7UpKSvK57sCBAyorK9P06dM919XW1iojI8NzOSMjQzU1NWEOFQAAAABCE1Spmz/Lly/XkiVL\nJElut9vvMYGu9+ZyucIdCgAAAACLKywsDOn7wgo+VVVVOnDggBYsWCC3262amhrNmzdPP/3pT/V/\n//d/PseNHz++y/sL9Ukg9lwuF/NnUsyduTF/5sXcmRvzZ27Mn3mFs1gSVvBxOp3avHmz5/INN9yg\nV199VU1NTVq8eLEaGhpks9n0ySefaNGiReE8FAAAAACELKjgU1paqsWLF+vYsWNKSEhQcXGxXnvt\nNfXt21eSZLPZJLU1QXjooYf0wx/+UHa7XfPnz1daWlrkRw8AAAAA3RBU8CkoKNC7774b8Pa//vWv\nnq+nT5/u0/AAAAAAAGIl6BOYAgAAAIDZEHwAAAAAWB7BBwAAAIDlEXwAAAAAWB7BBwAAAIDlEXwA\nAAAAWB7BBwAAAIDlEXwAAAAAWF5QJzAFAAAAJKmpqVklJQdVV5eo9PSzmjlziByOpFgPCwiIFR8A\nAAAEraTkoKqqctXUlKOqqlyVlByM9ZCACyL4AAAAIGh1dYkXvAwYDcEHAAAAQUtPP3vBy4DREHwA\nAAAQtJkzh8jpLJPDUS6ns0wzZw6J9ZCACwq6ucGePXs0f/583XXXXfr+97+vyspKLVy4UC0tLUpM\nTNSzzz6r/v37a+PGjVq3bp0SEhI0e/Zs3XrrrdEYPwAAAGLA4UjSzTfnxnoYQLcFteLT2Nio5cuX\nq6ioyHPdypUrNWfOHL366quaOnWqXnnlFTU2NmrVqlVau3at1q1bp7Vr16q+vj7igwcAAACA7ggq\n+DgcDq1evVoDBgzwXPf4449rxowZkqSMjAzV1dWptLRUl19+uVJTU+VwOHTFFVdo+/btkR05AAAA\nTKGpqVnvvFOmtWvL9c47ZWpqao71kBCHggo+drtdSUm+/dmTk5Nlt9vV2tqqN954Q7NmzVJtba0y\nMjI8x2RkZKimpiYyIwYAAICp0PoaRhCRE5i2trbq4Ycf1qRJkzRx4kRt2rTJ53a3292t+3G5XJEY\nDmKE+TMv5s7cmD/zYu7Mjfnrvh07Tqq5+Xy768rKCmVnn4jhiJi/eBSR4PPYY49p6NChuu+++yRJ\nWVlZPis8VVVVGj9+fJf3U1hYGInhIAZcLhfzZ1LMnbkxf+bF3Jkb8xeciooyVVXleC47nWdVWBi7\nxgjMn3mFE1jDbme9ceNGJSUl6YEHHvBcV1BQoF27dqmhoUGnTp3SJ598wi8XAABAnKL1NYwgqBWf\n0tJSLV68WMeOHVNCQoKKi4vV2toqh8OhefPmyWazKTc3V0uWLNFDDz2kH/7wh7Lb7Zo/f77S0tKi\n9RwAAABgYLS+hhEEFXwKCgr07rvvduvY6dOna/r06SENCgAAAAAiKexSNwAAAAAwOoIPAAAAAMsj\n+AAAAACwPIIPAAAAAMsj+AAAAACwvIicwBQAAMSfpqZmlZQcVF1dotLTz2rmzCFyOJJiPSwA8IsV\nHwAAEJKSkoOqqspVU1OOqqpyVVJyMNZDAoCAWPEBAAAhqatLvOBlWAMre7AKVnwAAEBI0tPPXvAy\nrIGVPVgFwQcAAIRk5swhcjrL5HCUy+ks08yZQ2I9JEQBK3uwCkrdAABASByOJN18c26sh4EoS08/\nq6oq38uAGbHiAwAAgIBY2YNVsOIDAACAgFjZg1UQfAAAABAxdIGDUQVd6rZnzx7deOONev311yVJ\nR44c0bx583THHXfowQcf1NmzbXWfGzdu1K233qrbbrtNb7/9dmRHDQAAAB9NTc16550yrV1brnfe\nKVNTU3NMxkEXOBhVUMGnsbFRy5cvV1FRkee6lStXat68eXrttdc0ZMgQrV+/Xo2NjVq1apXWrl2r\ndevWae3ataqvr4/44AEAANDGKIGDLnAwqqCCj8Ph0OrVqzVgwADPdR9//LGmTJkiSZoyZYq2bNmi\n0tJSXX755UpNTZXD4dAVV1yh7du3R3bkAAAA8DBK4Aj3/E5GWbmC9QQVfOx2u5KSfGs0GxsblZjY\n9sLq37+/qqurdfToUWVkZHiOycjIUE1NTQSGCwAAYD2ReLNvlBPKhtsFzigrV7CeiDY3cLvdQV3f\nkcvliuRw0MOYP/Ni7syN+TMv5s7cIjl/779frWPHLvvmUqLKyv6q66/PCuo+srLOqqxsnxoakpWW\n1qj8/H5yuU5EbIzByM5u+yNJu3Z9GtT37thxUs3N51erKisrlJ0d+efB6y/+hB18UlNT1dzcrKSk\nJFVVVcnpdCorK8tnhaeqqkrjx4/v8r4KCwvDHQ5ixOVyMX8mxdyZG/NnXsyduYUzf/66nu3aVak+\nfXI8xzgcUmFhzgXuxb9Jk0IakqFUVJSpqur8c3c6z6qwMLLttHn9mVc4gTXsE5hOmjRJmzdvliRt\n3rxZ11xzjS6//HLt2rVLDQ0NOnXqlD755BN+uQAAgOm1l6Rt2nQy5JI0f6VcRilTMwJOmIpoCWrF\np7S0VIsXL9axY8eUkJCg4uJivfzyy3r00Uf1hz/8QYMGDdItt9yihIQEPfTQQ/rhD38ou92u+fPn\nKy0tLVrPAQCAsHDeEXRXe2hpbk5UVVWOSkrKgj65p78mBHPnXqySkjKf38F4FfYJU1tapL17pdJS\n6ZJLpGuuidzgYGpBBZ+CggK9++67na5fs2ZNp+umT5+u6dOnhz4yAAB6SPubWUmqqlJIb2YRHyLR\nOS09/ayqqnwvh/1m/wIsHexPnJB27pR27GgLOjt2SLt2SU1Nbbfn5EhffRXTIcI4ItrcAAAAMzJK\nG2AYn7/QEqyZM4f06OqOJYK92y2Vl/sGnNJS6cAB3+OSkqQxY6Rx46SCAulb34rNeGFIBB8AQNyL\nxJtZxIf20FJZWSGnM7TQEs3VHX9MF+wbG6Xdu30Dzs6dbas73jIzpWnTzoecggJp1Cgp0eDPDzFD\n8AEAxL2e/gQe5tUeWrKzT0S801i0GDrYV1X5BpwdO9r255w7d/4Yu10aObJt9aY94IwbJw0cKNls\nfu/W0uV9CBnBBwAQ93r6E3igJxki2Le0SF98cT7gtIcc70QmSX36SBMn+gacsWOllJSgHs4S5X2I\nOIIPAACAhfV4sG9vOOC9krNrl3TmjO9xOTnSTTedDzgFBdLQoW0rPGEyXXkfegTBBwAAwKAMXbLV\n3nCgY6laVw0Hxo2TLr9c6tcvakMzdHkfYobgAwAA4oKhQ0QAhinZOnOmreGAd8AJ1HDgxht9V3Hy\n8nq84YAhyvtgOAQfAAAQFwwTIoIQk5Kt6uq2YNOdhgMzZ54POV00HOhJ7NuDPwQfAAAQF8y47yOq\nJVvtDQe8S9VKS6UjR3yPS0uTJkzwDTghNBwAYo3gAwAA4oIZ931ErGSrvt63m1qghgNDhkSt4QAQ\nawQfAAAQF8y47yPoki23W/rqq84hJ1DDAe+AU1AQ1YYDQKwRfAAAgKEE04QgmGMtt+8jmIYD06b5\nBpxRo3q84UC4zNicAsZC8AEAwMLM+GYxmCYEZmxYEJL2hgPeqzh79vg2HLDZ2jqozZzp2zraIA0H\nwhU3c42oCTv4nD59Wo888ohOnDihs2fP6v7771dubq4efvhhud1uZWZm6plnnlGiyT5VAADACsz4\nZjGYJgRmbFhwQd4NB7xDTqCGA94BJ4iGA0YJxMGMw3JzjR4XdvDZsGGDhg0bpgcffFDV1dW68847\nNW7cON1xxx2aMWOGVqxYofXr12vu3LmRGC8AIIqM8mYoWqz+/Pwx45vFYJoQmLFhgUd9fVtpmvdK\nTqCGA9/9rm+p2rBhYTUcMEogDmYcpp5rGELYwScjI0N79+6VJJ04cUIZGRnatm2bnnzySUnSlClT\ntGbNGoIPAJiAUd4MRYvVn58/kXiz2NOBMZgmBKZoWOB2S+Xlvi2jS0ulL7/0PS4pSbrssvMto6PY\ncMAogTiYcZhirmFoYQefb33rW9qwYYOmT5+ukydPavXq1br33ns9pW39+/dXTU1N2AMFAESfUd4M\nRYvVn58/kXiz2NOBMZgmBIZrWNCx4UD7n44NBwYMaGs44N1VrQcbDhhl9SSYcRhurmE6YQefjRs3\nauDAgXrppZe0d+9eLVq0yOd2t9sd7kMAAHqIUd4MRYvVn58/kXizGI+BsVu8Gw60l6r5azgwcmRb\nwwHvkHPxxTFtOGCU1ROjjAPxIezgs337dl1zzTWSpLy8PFVVVSk5OVnNzc1KSkpSVVWVsrKyunVf\nLpcr3OEghpg/82LuzC2S85eVdVZlZfvU0JCstLRG5ef3k8t1outvNAmjPT+zvPZqa6t17Nj5yxkZ\nn8nlqo3dgHpaS4t6f/21kvfuVcq+fUret0+X790rHT3qc9i5lBQ1jh2r0yNHqnHEiLa/c3Pl7t3b\n9/4qK9v+xFh2dtsfSdq169O4G4dZXn+InLCDT05Ojnbs2KEbb7xRhw4dUkpKiiZMmKCSkhLddNNN\n2rx5sycYdaWwsDDc4SBGXC4X82dSzJ25RWP+Jk2K6N0ZjlGen5lee2PHdtzjM9W6TSG62XCg2en0\nbTgwbpwShg5Vmt2utBgNHd1nptcffIUTWMMOPrfddpsWLlyoefPm6dy5c/rVr36loUOH6pFHHtGb\nb76pQYMG6ZZbbgn3YQAAQIxYcm9Fe8MB75bR/hoOJCZKY8b4to2+/HJ9euAAb5wNIh67NSI0YQef\nlJQU/dd//Ven69esWRPuXQMAAISvveFAx5BzoYYD7SEnUMOBAwd6ZuzoUjx2a0Rowg4+AAAAhlFV\n5dtNzUQNBxAamm+guwg+AABYRFyV/LS0SPv2+e7FKS2VjhzxPS4tTZowwfe8OGPHSqmpsRk3Ii4e\nuzUiNAQfAAAswrIlP+0NB7wDzqefdmo4oCFDfBsOFBRIw4ZJdntsxo0eQUtsdBfBBwAAizB9yY93\nwwHvUrVuNhxQRkZIDxtXK2UWZMnmG4gKgg8AABZhqpKfM2ekzz7zLVXbuVOqq/M9bsAAaepU31Wc\nUaOkpMgFE38rZW2rCIQhwEoIPgAAWIRhS36qqzt3VPv8c/8NB6ZP9w05gwZFveGAv5Uyy5YNAnGM\n4AMgrlDSAiuLecnPuXPSF1/4hpwdOzo3HEhNbWs40B5uCgqk/PyYNRzwt1Jm+rJBAJ0QfADEFT7F\nRbgIz9/obsOBSy5pazjg3TbaYA0H/K2Utf1bcf4YQ5cNAugWgg+AuMKnuAhX3IVnt1s6eLDzKk7H\nhgNJSdJll/mWqRUUhNxwoCf5WykzbNkggJARfADEFVNt/oYhWTo8d2w40P6nq4YD48a1NRxItM7P\nIhJlg6wOAsZC8AEQV/gUF+HyF55N+Qa3veGA90pOdxoOjBsnXXxx1BsOWEHcrQ4CBkfwARBXYr75\nG6YXeD+IQd/g+ms4UFoqVVb6HpeaKv3bv/kGnLFjY9ZwwAosvToImBDBBwAswoyrDmYcs7/wbJg3\nuCdPtjUc8N6Ls2uX1Njoe5x3w4H2kBODhgNmnP9gUFoLGAvBBwAswtCrDgGYccz+9PgbXLdbKi/v\nXKrWseFAYqI0ZoxvwDFQwwGrzH8glNYCxhKR4LNx40a9/PLL6tWrl376058qLy9PDz/8sNxutzIz\nM/XMM88o0UIbHgHAiAyz6hAEM47Zn6i+wW1qknbv7lyqFqjhgHfAGTWqrdua37uN/WpLNOffCM+P\n0lrAWMIOPnV1dfrd736nP/3pTzp16pR++9vfqqSkRPPmzdP06dO1YsUKrV+/XnPnzo3EeAEAAZix\nrMaMY/YnYm9wa2p8w82OHdKePVJLy/ljbDZpxIi2hgPeIWfQoKAaDhhhtSWa82+E5wfAWMIOPlu2\nbFFRUZGSk5OVnJysJ598UlOnTtWTTz4pSZoyZYrWrFlD8AEizAifZsJYzFhWY8YxR8S5c+p94IC0\nb5/vSo6/hgNXXeUbcPLzI9JwwAirbdGcfyM8PwDGEnbwOXTokBobG3Xvvffq5MmTuv/++3XmzBlP\naVv//v1VU1MT9kAB+OLTTHRkxrKaQGO2VLAP0HBgjL+GA7Nm+Yac4cOj1nAg0GpLT/7so/k7a5XV\nRACRE3bwcbvdnnK3Q4cO6Qc/+IHcbrfP7d3lcrnCHQ5iiPnrWTt2nFRz8/lPMCsrK5SdfSKk+2Lu\nzM2K8/f++9U6duyyby4lqqzsr7r++qyYjqlLbreSjhxR8hdfKOWLL5T8xRdK3rdPvSsqfA5r7dVL\nZ6WBmusAAB79SURBVIYN0+mRI9U4YoRO5+WpccQInevb1/f+6uulTz6J2nCzss6qrGyfGhqSlZbW\nqPz8fnK5TpjzZ+9HoOcXSVZ87cUT5i/+hB18BgwYoPHjx8tut+uSSy5RamqqevXqpebmZiUlJamq\nqkpZWd37B7OwsDDc4SBGXC4X89fDKirKVFWV47nsdJ5VYWHwn5wyd+Zm1fnbtatcffqc//12OKTC\nwpwLfEcP627Dgf79OzUcsI8apZSkJH1ugLmbNKnzdYb/2QfB3/OLlI6vPUutUsYBq/7bGQ/CCaxh\nB5+ioiItXLhQP/rRj1RXV6fTp0/r6quvVklJiW666SZt3rxZ11xzTbgPA6CDuN0bgbhgqDKlmhrf\ngHOhhgM33uh7AtAgGw4YgaF+9h0YOVxQfgwYX9jBx+l0asaMGZozZ45sNpuWLFmisWPH6pe//KXe\nfPNNDRo0SLfcckskxgrAixn3c4TLyG96EFkxCfbnzrU1G/BewSktlQ4f9j2uveGAd8AZOzYiDQeM\nIFo/+0i8fo0cLmimABhfRM7jM2fOHM2ZM8fnujVr1kTirgHAw8hvehBZUQ/27Q0HvFdyPv1U6tBw\n4PSAi3W0YKpOj8zTsFuuUeJVV0rDhkWt4YARROtnH4nXr5HDhZFXygC0iUjwAYCeYOQ3PTAot1s6\neND3vDilpdL+/b7HJSZKl13ms4rz54o0VTRe5TlkT0qZbs4laIcqEq9fI4cLyo8B4yP4ADANI7/p\ngQF4NxzwDjn+Gg7ccINvqdqoUVKSb9lVzdpyn8sE7fBE4vVr5HARj+XHgNkQfACYhpHf9KCHVVf7\n7sMJ1HAgNzfkhgME7ciKxOuXcAEgHAQfAKbBm5441LHhQPvflZW+x7U3HPA++Wd+flgNB3o6aFul\neUeg58Hr1xys8nsI+EPwAQAYQzcbDig7W5o1yzfkDB8e8YYDPf1G3SrNO6zyPOIV8wcrI/gAAHqW\n2y19/XXnttFlZb7HtTcc8A44BQVte3RMrP0T9R07TqqioszzibpVmndY5XnEK+YPVkbwAQBET1OT\n9NlnnUvVAjUc8A45o0d3ajhgNv7Khto/UW9uTlRVVY7nE3Wr7CmyyvOIV8wfrIzgAwCIjJoa33BT\nWip9/nnnhgMjRoTccMBs/JUNBfpEPZg9RUbeh0ETEnNj/mBlBB8AQHDaGw54h5wdOzo1HDjrSNHJ\n4fnqe+2VSrjiiraAM3aslJYWo4H3PH8hJ9An6sHsKTLyPgyaGJgb8wcrI/gAAAI7ebKtwYB3wOmi\n4cDHZ536Mm2m6jPbGg44ncZ5U97T/IWc9k/UKysr5HSG9ok6+zAAIHgEHwA+jFxCY2Sm/7m1Nxzo\nWKoWQsOBz9eWq6kpx3M5nt+U+ysbav9EPTv7hAoLQwuE7MMAgOARfAD4MHIJjZEF+rkZMhC1Nxzo\nGHKOH/c9LiPjfMOB9j+XXdZlw4FovSkP9LM05M/4G9EqG2IfBgAEj+ADwAclNKEJ9HOLeZBsbzjQ\n/mfHDv8NB3JzpWnTfFdyBg/2NBzwhIvSyi7DRaA35eEGlEA/y5j/jGOAfRgAELyIBZ+mpibNmjVL\n999/vyZOnKiHH35YbrdbmZmZeuaZZ5SYyJsnwAwooQlNoJ9bjwVJ74YD3is5hw/7HpeaKl15pW+Z\nWn5+lw0HggkXgd6UhxtQAv0s/V1v5FUgIBL4HQeCF7Hgs2rVKqWnp0uSVq5cqXnz5mn69OlasWKF\n1q9fr7lz50bqoQBEkb9P6/kPtmuBVjnCDZJ+f/bNTZ6GA0P+8hfp0KHADQe+8x3fkJObK9ntQT+/\nSAS4cO8j0M/S3/XxuAqE+MLvOBC8iASfL7/8UgcOHNB1110nt9utbdu26cknn5QkTZkyRWvWrCH4\nACbh79P6d94p4z/YLgRa5QhrL4bbrfdf/UiOT+p0WUWp+lfs0Nl7/yVHZbnnkEzJt+FA+59x43wa\nDoQrEiuB4d5HoJ+lv+uLi31ba1OyCauhLBkIXkSCzzPPPKMlS5boj3/8oySpsbHRU9rWv39/1dTU\nROJhAMSIGf+DNcoqVbf3YgRoODCjQ8OBM6np5xsOjBunzxITddn3vtdlw4FwRWIzfbj3Eehn6e96\nSjZhdfyOA8ELO/j86U9/0lVXXaVBgwb5vd3tdof7EABizIz/wUarDCQigaq2tvPJPwM0HDg0eqIO\nZxbpaHaBjl4yTml5jbr530d4Dmt0uaIeeqTIbKbvyQ35dD2D1fE7DgTP5g4zmTz44IOqqKiQ3W5X\nVVWVZ6Xnf//3f5WUlKRt27bptdde08qVKy94Py6XK5xhAN3S3HxWW7YcV0NDstLSGjV5cj8lJRl/\n9SLWzPhz27TppJqbh3ouJyUd0KxZfcK+3/ffr9ax/7+9ew+Osjz7OP7bHMmJwwKJBpBCIgdjiBDp\nECMV0EFtAYeOMEjB6T/1nYI4aIdTKLE6HAbolGGGUqQNLbRQIGEqjGMTRjv0xUIhsykRpFRDfQNh\nZENCAEMiicm+fyxZsjlv9vQ8m+9nxoFskt07Xm7c397XfT03H3N9bLVe1LRpiR1/cVOToq9eVezn\nnyvmiy+cf37+uaLa7II39eun+kcfVf2jj6puzBjVjxmj+tRUNcfGmvLfPQAA/pSZmdmr7/N6x2fb\ntm2uv+/YsUPDhw9XSUmJCgsLNWfOHBUVFWnq1Kk9uq/e/hAIPpvNZor6HT1apoSEKUq4//q3spKz\nKj2tXVZWABbjQxUVZbLbH1xEMympsdcXi2ztwoVyJSQ8uN/oaCkzc6T09dfOAQOtd3LOn5fq6tzv\noIOBA+EpKYoPD1dnc9W6+ndvluce2qN25kb9zI36mZc3myV+uY7PG2+8oZUrV+rw4cNKTk7W3Llz\n/fEwgMfMeFYFveOvNpCBAxpUe+mKBl91DhsYduMf0vrLUlmZ+xdGRkrjxz8IOC1/+nDgAAAA6Dmf\nBp/XX3/d9fc9e/b48q4BnzDjWRX0jk/Ok9y75zx70+oszpzSUlnaDByQ1fpg4EBLyBk/PiBnb3qi\ns3NJRhkAAQBAIPhlxwcwKg6DolMtAwdat6pdvNhu4IAlNVV69tkHAeeJJ6Rhw5zDCAyqs0EPXAcE\nANCXEHzQpwRyqhQMqqnJ2ZbWZmy0rl1z/7rYWCkz0z3gpKdL8Z2dxAmslt2ac+e+VkVFWZe7NZ21\neNL6CQDoSwg+MD0ztuuYcc2mVFsrffpp9wMHhg1zDhxofRYnJUUKDw/OunugZbemoSFSdvvILndr\nOmvxpPUTANCXEHxgemZs1zHjmg3N4ZCuXm3fqnb5svNzLSIipMcecw84GRnSkCHBW3svebJb01mL\nJ62fAIC+hOADQ/JkR8SM7TpmXLNhNDQ4z960vvhnaanU0cCBadPcQ8748c750yHAk92azlo8af0E\nAPQlBB8Ykic7ImZs1/HXmo3cQtertfVw4IBSUpxT1VrO4mRkOK+XY+CBA95q2a356qsKJSWxWwMA\nQHcIPjAkX7TxGJm/1mzkFrou19Z64EDrkNPRwIEnn3TfxTHQwIFAatmtGT78tk8uzAoAQKgj+MCQ\nfNHGY2T+WrORW+ha1hLxTa2s184r6R8fS3+tcIaczgYOfP/77hcANfjAAQAAYFwEHxiSGXdxjMBQ\nbX8Oh1RR4drBee6v/1Bc2WUNuFEmS9uBA+PHu7epmXTgAAAAMC6CDwzJjLs4RhC0wNgycKDttXFu\n3nR9yTBJDQkDdX3cFNWljtUjc55W5JOZITVwoK8x8pkyAADaIvgAISQggbGjgQP//rfU2GZ3KTXV\nOXCg1XmcqOHD9XAIDxzoa4x8pgwAgLYIPghZvBvtJU8GDkya5H4Wp48OHOhrjHymDACAtgg+CFmB\nfjfa1EGrttY5YKB1wPn00/YDB5KT+9TAAVPXNAAMdaYshPHfIQD4BsEHISvQ70abou2n9cCB+yEn\n7exZ6epV5+datB440Hp0dB8bOEB47hpDSALDFL9bAMAEfBJ8tmzZopKSEjU1Nem1115Tenq6VqxY\nIYfDoaFDh2rLli2KjKQFAoEV6HejDdf204OBA5IU0b+/NG3ag2lqTzzBwIH7CM9dYwhJYBjudwsA\nmJTXwefMmTMqKyvTwYMHdevWLc2dO1dTpkzRokWL9Pzzz2vbtm06cuSIFixY4Iv1Aj0W6HejvQ1a\nXr3b33rgQEvQ6WzgwPTpbjs5pXa7Mp980qO1+vVn8cH3+0qfD88wBFoKAcA3vA4+kydP1oQJEyRJ\n/fv3V11dnYqLi/Xuu+9KkqZPn649e/YQfBBwgX432tug1aN3+5uapMuXH+zg9HTgQEaGc+BAQkL7\nB66s9GidPvtZ/Pj9vmK28IzQREshAPiG18EnLCxMMTExkqSCggJNmzZNn3zyiau1bfDgwbpx44a3\nDwMYnrdBq+27+7XXG6TTp7sfODBsmOEGDni7cxHonY/OdpjMFp4RmmgpBADf8Nlwg48++khHjhxR\nXl6eZs6c6brd0frAdDdsNpuvloMgoH695HAosrJS/f/3rOIv39VD9n/r4cqLGlzzf24DB5rCwlWd\n9Igs3xurb8aNU/2YMap/9FF9O2iQ+/19/bUzKLXS0NCoU6dqVFsbo/j4ej311CBFRT0IE76uXVVV\npdtRIqv1omy2qoB9v6dOnKjUzZuP3f8oUmVlH2vatES/PV5Xhg93/iNJFy6c79H38NwzL2pnbtTP\n3Khf3+OT4HPy5Ent3r1beXl5io+PV1xcnBoaGhQVFSW73a7ExJ69gMjMzPTFchAENpuN+vVEQ4Pz\n7E3bVrWbNzWh9ZfFD5Dje8/IMvEJlTQ/rC/7z1TNQ+PVHBmtpCTP276OHi1TQsIUV6dbZeWD+/BH\n7R5/vO0OyrMendHx9vs9deFCuRISRro+jo6WMjNHdvEdxsFzz7yonblRP3OjfublTWD1OvjU1tZq\n69at+sMf/qCE+6+qsrKyVFRUpNmzZ6uoqEhTp0719mEA86mubj9R7eLF7gcOZGQoasQIyWKRJJ3f\nW6579x68CO9N21egW8e8bc0JdGsPZ2sAAAh9XgefDz/8ULdu3dLy5cvlcDhksVi0efNmrV27VocO\nHVJycrLmzp3ri7XCJPw5kcso077cNDdLZWXuIefcufYDB2JinAMHWoYNZGRIEyZ0PHCgFV+8KOeF\nfdc4WwMAQOjzOvjMnz9f8+fPb3f7nj17vL1rmJQ/J3IFfdpXba10/nz3AweSk50DB1pf/DM1tVcD\nB3zxopwX9l3j8DgAAKHPZ8MNgBb+bKsKWMuWwyFVVLhfF6e01Lmz03pgR0SE82KfrcdGZ2RIQ4f6\nbCm+eFHOC3sAANDXEXzgc/5sq/LLfXcxcMDNoEHSM8+4h5zHHnOehAcAAIChEXzgc560VXl6Zsfr\nlq2WgQOtA05HAwdSUpwDB1oCzsSJzhnD9wcOAAAAwFwIPvA5T9qqPD2z0+P77mjgQGmps32ttZgY\nZ6hpvYvTg4EDAAAAMBeCD4LKJ2d27t51Dhxo3ap2/rzz9tZaDxxoGTrQy4EDAAAAMBeCD4LKozM7\nDodzRHTbszidDRxoHXB8PHAAAAAA5kLwQVB1emanZeBA22vjMHAAAAAAvUDwQVBFR0fppanWB8Hm\nf+7/2dHAgdTUBwMHWoLOiBGGHjhgyAuuAgAA9EEEHwROc7N0+XL7VrWOBg5MmuTeqpaebsqBA0G/\n4CoMiUAMAEDgEXzgH54MHHjxxQcBJ8QGDgTsgqswFQIxAACBR/CB9yor1f+TT6TCwgdjo7/4ov3A\ngXHj3ANOHxg44M+LucK8CMQAAAQewQfeuX5dGj1aj9bXP7ht4EDnwIHWZ3H66MABry+4ipBEIAYA\nIPAIPvDOkCHSW2/pWnW1hr34ojPoGHzgQCB5cjFX9B0EYgAAAo/gA+9EREjr1+u6zaZhmZnBXg1g\nCgRiAAACz6/BZ9OmTSotLZXFYlFOTo7S09P9+XAwOCZZhR5qCgAAzCLMX3dcXFys8vJyHTx4UOvX\nr9eGDRv89VAwiZZJVvfujZTdnqrCwivBXlKfdu9eg44eLdMHH3yto0fLdO9eg8f3QU0BAIBZ+C34\nnD59Ws8995wkKSUlRXfu3NHdtqOM0acwycpYWkJLQ8OoXocWagoAAMzCb8GnqqpKVqvV9fGgQYNU\nVVXlr4eDCbSdXMUkq+DyRWihpgAAwCwCNtzA0fqaLp2w2WwBWAn8pbv6JSY2qqzsC9XWxig+vl7p\n6YNks90O0OrQVlVVpW7edP69vLxcVutF2WyevTlBTY2B353mRe3MjfqZG/Xre/wWfBITE912eCor\nKzW0m4tVZjIVzLRsNluP6peVFYDFoEcef9w5mODcuQo98cRwvfDCs70aTBDsmvb1AQs9fe7BeKid\nuVE/c6N+5uVNYPVbq1t2draKiookSZ999pmSkpIUGxvrr4cD4KGWkcqzZiXopZdSTRsWGLAAAAB6\nwm87PhMnTlRaWpoWLFig8PBw5ebm+uuhAPRhDFgAAAA94dczPm+99ZY/7x7wq77eQmUWAwc2ym53\n/xgAAKCtgA03AMympYVKkux2qbCwTC+9lBrkVYUebwPmCy88osLCMrfvBwAAaIvgA3SCFqrA8DZg\ntpxVAgAA6IrfhhsAZsc1agKDgAkAAAKB4AN04oUXHlFSUpmio8uVlFRGC5WfEDABAEAg0OoGdIIW\nqsDgjA4AAAgEgg+AoCJgAgCAQCD4AGJ0NQAAQKjjjA+gB5PF7t0bKbs9VYWFV4K9JAAAAPgQwQcQ\nk8UAAABCHa1u8EpLi9i5c1+roqLMtC1iAwc2ym53/7gztMUBAACYDzs+8EpLi1hDwyhTt4h5Mrqa\ntjgAAADzYccHXgmVFjFPJouFys8MAADQl7DjA6/0xYtP9sWfGQAAwOy8Cj5NTU1avXq1Fi5cqAUL\nFqikpESSdOnSJS1YsEALFy7UO++845OFwphaWsSior7stkUsVHjSFgcAAABj8KrV7ejRo+rXr58O\nHDigsrIyrVmzRvn5+dq4caPWrVuntLQ0/exnP9PJkyc1depUX60ZBtLSIjZ8+G1lZvaNi1BywU0A\nAADz8WrHZ86cOVqzZo0kyWq16vbt22psbFRFRYXS0tIkSTNmzNCpU6e8XykAAAAA9JJXOz4RERGK\niHDexd69ezV79mzV1NRo4MCBrq+xWq26ceOGd6sEAAAAAC/0OPjk5+eroKBAFotFDodDFotFy5Yt\nU3Z2tvbv36+LFy9q165dqq6u7vVibDZbr78XwUf9zIvamRv1My9qZ27Uz9yoX9/T4+Azb948zZs3\nr93t+fn5OnHihHbu3Knw8HBZrVbV1NS4Pm+325WYmNijx8jMzOzpcmAwNpuN+pkUtTM36mde1M7c\nqJ+5UT/z8iawenXG5+rVqzp06JB27NihyEjntUwiIiI0evRo14S348ePM9gAAAAAQFB5dcanoKBA\nt2/f1k9+8hNX+9uePXuUk5Oj3NxcORwOZWRkKCsry1frBQAAAACPeRV83nzzTb355pvtbk9JSdH+\n/fu9uWsAAAAA8BmvWt0AAAAAwAwIPgAAAABCHsEHAAAAQMgj+AAAAAAIeQQfAAAAACGP4AMAAAAg\n5BF8AAAAAIQ8gg8AAACAkEfwAQAAABDyCD4AAAAAQh7BBwAAAEDII/gAAAAACHkEHwAAAAAhj+AD\nAAAAIOT5JPhUVVXpu9/9roqLiyVJly5d0oIFC7Rw4UK98847vngIAAAAAOg1nwSfrVu3asSIEa6P\nN27cqHXr1unAgQO6c+eOTp486YuHAQAAAIBe8Tr4/POf/1RCQoLGjBkjSWpsbNS1a9eUlpYmSZox\nY4ZOnTrl7cMAAAAAQK95FXwaGxv1m9/8RsuXL3fdVlNTowEDBrg+tlqtunHjhjcPAwAAAABeiejp\nF+bn56ugoEAWi0UOh0MWi0VPP/20XnnlFcXHx7t9rcPh6NVibDZbr74PxkD9zIvamRv1My9qZ27U\nz9yoX99jcfQ2pUh65ZVX5HA45HA4dOXKFQ0ePFi//OUvtWTJEv3tb3+TJL3//vv6/PPPtXLlSp8t\nGgAAAAA80eMdn478+c9/dv19zZo1+uEPf6hx48Zp1KhRKikp0aRJk3T8+HEtXrzY64UCAAAAQG95\nFXw6k5OTo9zcXDkcDmVkZCgrK8sfDwMAAAAAPeJVqxsAAAAAmIFPruMDAAAAAEZG8AEAAAAQ8gg+\nAAAAAEKeX4Yb9FRTU5PWrl2rK1euqLm5WStXrtSkSZN06dIl/eIXv1BYWJjGjh2rt99+O5jLRBc2\nbdqk0tJSWSwW5eTkKD09PdhLQje2bNmikpISNTU16bXXXlN6erpWrFghh8OhoUOHasuWLYqMjAz2\nMtGFe/fuadasWVq6dKmmTJlC/Uzi2LFjysvLU0REhN544w2NHTuW2plEXV2dVq1apdu3b6uxsVFL\nly5Vamoq9TO4S5cuadmyZfrxj3+sH/3oR7p+/XqHNTt27Jj27dun8PBwzZs3Ty+//HKwlw61r99X\nX32lnJwcffvtt4qMjNTWrVs1ePBgj+oX1B2fo0ePql+/fjpw4IDWr1+vTZs2SZI2btyodevW6cCB\nA7pz545OnjwZzGWiE8XFxSovL9fBgwe1fv16bdiwIdhLQjfOnDmjsrIyHTx4UL/97W+1ceNGbd++\nXYsWLdKf/vQnPfLIIzpy5Eiwl4lu7Ny5UwMHDpQkbd++XYsXL6Z+Bnfr1i39+te/1sGDB/Xee+/p\n448/pnYm8pe//EWjR4/Wvn37tH37dm3YsIHfnQZXX1+vzZs3Kzs723VbR8+5+vp67dy5U3v37tW+\nffu0d+9e3blzJ4grh9R5/ebPn68//vGPevbZZ/X73//e4/oFNfjMmTNHa9askSRZrVbXOykVFRVK\nS0uTJM2YMUOnTp0K5jLRidOnT+u5556TJKWkpOjOnTu6e/dukFeFrkyePFnbt2+XJPXv3191dXUq\nLi7WjBkzJEnTp0/n+WZw//3vf/Xll1/qmWeekcPhUHFxsaZPny6J+hnZqVOnlJ2drZiYGA0ZMkTv\nvvuuzp49S+1Mwmq1qqamRpJ0+/ZtWa1WfncaXHR0tN577z0NGTLEdVtHz7nS0lJNmDBBcXFxio6O\n1qRJk1RSUhKsZeO+jur39ttv6/nnn5fkfE7eunXL4/oFNfhEREQoOjpakrR3717Nnj1bNTU1rncy\nJecPduPGjWAtEV2oqqqS1Wp1fTxo0CBVVVUFcUXoTlhYmGJiYiRJBQUFmjZtmurr613tGYMHD+b5\nZnBbtmzR6tWrXR9TP3O4du2a6uvr9dOf/lSLFi3S6dOn9c0331A7k3jxxRd1/fp1zZw5U6+++qpW\nrVrFc8/gwsLCFBUV5XZb25pVVlaqurra7bUMrzuNoaP6xcTEKCwsTM3NzTpw4IBmzZrV7rVod/UL\n2Bmf/Px8FRQUyGKxyOFwyGKxaNmyZcrOztb+/ft18eJF7dq1S9XV1YFaEnyMS0KZx0cffaQjR44o\nLy9PM2fOdN1ODY3t/fff1+TJk5WcnNzh56mfcTkcDle727Vr1/Tqq6+61YvaGduxY8f00EMPaffu\n3frPf/6jtWvXun2e+plPZzWjlsbW3NysFStWKCsrS1OmTNEHH3zg9vnu6hew4DNv3jzNmzev3e35\n+fk6ceKEdu7cqfDwcLftZEmy2+1KTEwM1DLhgcTERLcdnsrKSg0dOjSIK0JPnDx5Urt371ZeXp7i\n4+MVFxenhoYGRUVF8XwzuL///e+qqKjQ8ePHZbfbFRkZqdjYWOpnAkOGDNHEiRMVFhamESNGKC4u\nThEREdTOJEpKSjR16lRJ0tixY2W32xUTE0P9TKbt/++SkpKUmJjotkNgt9s1ceLEIK4SXVmzZo1G\njRqlJUuWSJLH9Qtqq9vVq1d16NAh7dixw7X1GBERodGjR7v6844fP+76ZQNjyc7OVlFRkSTps88+\nU1JSkmJjY4O8KnSltrZWW7du1a5du5SQkCBJysrKctWxqKiI55uBbdu2Tfn5+Tp06JBefvllLV26\nVFlZWSosLJRE/YwsOztbZ86ckcPhUE1Njerq6qidiYwcOVLnzp2T5GxbjI2N1VNPPUX9TKaj/99N\nmDBBFy5cUG1tre7evat//etfyszMDPJK0ZFjx44pKipKr7/+uuu2jIwMj+pncQRxT2/btm368MMP\n9fDDD7va3/bs2aPy8nLl5ubK4XAoIyNDq1atCtYS0Y1f/epXOnv2rMLDw5Wbm6uxY8cGe0nowuHD\nh7Vjxw595zvfcT3nNm/erLVr16qhoUHJycnatGmTwsPDg71UdGPHjh0aPny4nn76aa1cuZL6mcDh\nw4eVn58vi8WiJUuW6PHHH6d2JlFXV6ecnBxVV1erqalJy5cv16hRo7Rq1SrqZ1ClpaX6+c9/rps3\nbyo8PFwDBgxQXl6eVq9e3a5mx48f1+9+9zuFhYVp8eLF+sEPfhDs5fd5HdWvublZ0dHRiouLk8Vi\nUWpqqnJzcz2qX1CDDwAAAAAEQlBb3QAAAAAgEAg+AAAAAEIewQcAAABAyCP4AAAAAAh5BB8AAAAA\nIY/gAwAAACDkEXwAAAAAhLz/B8joTYiGW3WQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(13)\n", + "X = range(100)\n", + "Y1 = [x**5 for x in X]\n", + "Y2 = [x + 20*np.random.normal(0,1) for x in X]\n", + "\n", + "model1 = regression.linear_model.OLS(Y1, sm.add_constant(X)).fit()\n", + "model2 = regression.linear_model.OLS(Y2, sm.add_constant(X)).fit()\n", + "\n", + "print 'R^2 of First Model:', model1.rsquared\n", + "print 'R^2 of Second Model:', model2.rsquared\n", + "\n", + "line1 = [model1.params[0] + model1.params[1]*x for x in X]\n", + "line2 = [model2.params[0] + model2.params[1]*x for x in X]\n", + "\n", + "fig, axes = plt.subplots(nrows = 2, ncols = 1)\n", + "\n", + "axes[0].plot(X, line1, c = 'r');\n", + "axes[0].scatter(X, Y1, alpha = 0.4);\n", + "axes[1].plot(X, line2, c = 'r');\n", + "axes[1].scatter(X, Y2, alpha = 0.4);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Clearly the second model best represents the data it was meant to model, but it has practically the same $R^2$ as the first. This illustrates the limitations of $R^2$ when it comes to determining model fit and predictive value." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although it will not provide a complete picture, let's find the $R^2$ and $\\bar{R}^2$ of our unemployment model:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 931, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unemployment Model R^2: 0.875698551729\n", + "Unemployment Model Adjusted R^2: 0.871375023094\n" + ] + } + ], + "source": [ + "print 'Unemployment Model R^2:', model.rsquared\n", + "print 'Unemployment Model Adjusted R^2:', model.rsquared_adj" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Residual Analysis\n", + "\n", + "A large portion of model validation has to do with studying the residuals of the regression in question. Residual analysis can help check that the basic assumptions of the linear model are satisfied. More information can be found in the [lecture on residauls analysis]." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cross-Validation\n", + "\n", + "Cross-validation is a technique used to determine how well a model will predict values outside of the sample used to select or fit it. In the case of our unemployment model, we used data from 2002 through 2012 to select our parameters. Now to ensure the accuracy of our model parameters (stored in `predictors`) we will employ a cross-validation technique known as *forward chaining* on the 2002-2012 data. We will leave the 2012-2017 data untouched for further validation methods later on.\n", + "\n", + "Forward chaining cross-validation works by splitting the data up into $k$ equal sized partitions, and conducting an \"out-of-sample test\" for each partition. During each of these out-of-sample tests we will choose a training set and a testing set and use the training set to fit the model and the testing set to asses its performance. For time series data the training set must come before the testing set, and in the case of forward chaining the training set consists of all the data before the testing set. Forward chaining iterates through all possible testing sets and asses model performance in each.\n", + "\n", + "In the case of our unemployment model, we will partition our 2002-2012 data into 10 yearly blocks. The first 3 iterations of a forward chaining test would be constructed as follows:\n", + "\n", + "\n", + "$$\n", + "\\\n", + " \\text{Iteration } 1: \\overbrace{\n", + " \\underbrace{\\textit{2002}}_\\text{Training} +\n", + " \\underbrace{\\textit{2003}}_\\text{Testing}\n", + " }^\\text{First Trail-Test Pair}\n", + " \\\n", + "$$\n", + "\n", + "$$\n", + " \\\n", + " \\text{Iteration } 2: \\overbrace{\n", + " \\underbrace{\\textit{2002 & 2003}}_\\text{Training} +\n", + " \\underbrace{\\textit{2004}}_\\text{Testing}\n", + " }^\\text{Second Trail-Test Pair}\n", + " \\\n", + "$$\n", + "\n", + "$$\n", + " \\\n", + " \\text{Iteration } 3: \\overbrace{\n", + " \\underbrace{\\textit{2002 & 2003 & 2004}}_\\text{Training} +\n", + " \\underbrace{\\textit{2005}}_\\text{Testing}\n", + " }^\\text{Third Trail-Test Pair}\n", + " \\\n", + "$$\n", + "\n", + "
\n", + ". . .\n", + "
\n", + "\n", + "\n", + "The end result is a single performance statistic, usually the mean squared error (MSE) or adjusted $R^2$ of the model in the testing set averaged from across all of the iterations. Let's implement a forward chaining model-validation test on our unemployment model using adjusted MSE as our model prediction quality metric." + ] + }, + { + "cell_type": "code", + "execution_count": 1058, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE in 2003 : 0.0565831690527\n", + "MSE in 2004 : 0.653180823804\n", + "MSE in 2005 : 0.20938626572\n", + "MSE in 2006 : 0.56114441747\n", + "MSE in 2007 : 0.021279349198\n", + "MSE in 2008 : 2.0220023476\n", + "MSE in 2009 : 13.4768461212\n", + "MSE in 2010 : 3.51297688997\n", + "MSE in 2011 : 2.4009454556\n", + "\n", + "\n", + "Average MSE across Iterations: 2.54603831551\n", + "Average MSE Excluding 2009: 1.1796873398\n" + ] + } + ], + "source": [ + "Y = unemployment[:e]\n", + "X = [qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]]\n", + "\n", + "# Our step AIC algorithm selected all predictors except for fx_rate\n", + "predictors = pd.DataFrame(data = [qqq[:e], inflation[:e], iwm[:e], gold[:e]], index = ['qqq', 'inflation', 'iwm', 'gold']).T\n", + "\n", + "# Setting partition dates to the first day of every year 2002-2012\n", + "cutoff_dates = pd.date_range(start = '2002-01-01', end = '2012-01-01', freq = 'AS')\n", + "n = len(cutoff_dates)\n", + "\n", + "MSEs = []\n", + "\n", + "for i in range(1,n-1):\n", + " \n", + " # Defining training and testing sets for each iteration, using yearly cutoff dates\n", + " training_data = predictors.loc[cutoff_dates[0]:cutoff_dates[i]]\n", + " testing_data = predictors.loc[cutoff_dates[i]:cutoff_dates[i+1]]\n", + " \n", + " # Fitting model within the training set\n", + " fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], sm.add_constant(training_data)).fit().params\n", + " \n", + " # Testing performance within the testing set\n", + " testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] + fitted_theta[2] * testing_data['inflation']\n", + " + fitted_theta[3] * testing_data['iwm'] + fitted_theta[4] * testing_data['gold'])\n", + " \n", + " # Caluclate Mean Squared Error for the model runnning on the testing set\n", + " errors = Y[cutoff_dates[i]:cutoff_dates[i+1]]-testing_model\n", + " df = len(testing_model) - len(predictors.columns) - 1\n", + " MSE = np.sum([error**2 for error in errors])/df\n", + " MSEs.append(MSE)\n", + " \n", + " print 'MSE in', cutoff_dates[i].year,':', MSE\n", + " \n", + "print '\\n\\nAverage MSE across Iterations:', np.mean(MSEs)\n", + "print 'Average MSE Excluding 2009:', np.mean(MSEs[:6]+MSEs[7:])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since unemployment usually is between 3 and 10 percent, a 2.5 MSE is large. However, we can also see that the a couple outliers around the 2009 recession led to this higher error. Excluding 2009, our average MSE would be 1.18, a more reasonable value." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Out-of-Sample Validation\n", + "\n", + "After conducting the forward chaining test we can be confident in the performance of our model within the time period of 2002-2012. So far in this lecture, all of the testing and development of this model has been done within this 10-year period. Working extensively within a single timeperiod can lead to overfitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Overfitting\n", + "\n", + "A model is overfit when it is trained so much that it models the random noise of the data instead of just the underlying relationship. Conducting out-of-sample tests and using cross-validation helps avoid overfitting. It is easy to have a model that looks perfect in-sample, but has little predictive value. To demonstrate the dangers of overfitting, look at the two models below. They both model the same data, but `simple_model` is just a simple linear regression while `complicated_model` includes high-order values of X. The result is that the second more complicated model looks better in-sample, but the first and more simple one explains the relationship better." + ] + }, + { + "cell_type": "code", + "execution_count": 1080, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAHiCAYAAADcVpIVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9YVWWi9vF7gYK4RUBE06ApNaVMTZFSyfyZllNT1ujo\nUftl04w1WXPKUieC3XuyVzzZ64xTSqPOmTwTajpNzThhjueQRSluywlNSzHbaaKokAqIwnr/WAkS\n6EZk77U3+/u5Li5s7Qe460nl5lnPswzTNE0BAAAAQIAJsTsAAAAAADQGZQYAAABAQKLMAAAAAAhI\nlBkAAAAAAYkyAwAAACAgUWYAAAAABKQWngaUl5dr5syZOnLkiCoqKjRt2jRlZ2crPz9fMTExkqSp\nU6dqyJAhXg8LAAAAAGcZnp4zs3btWn377beaOnWqDhw4oAceeED9+vXTrbfeSoEBAAAAYBuPKzNj\nxoyp/vWBAwfUqVMnSRLP2gQAAABgJ48rM2dNmDBBhw4d0qJFi7Rs2TIVFRWpoqJC7du3V2pqqqKj\no72dFQAAAACqNbjMSNLOnTv19NNPa/bs2YqOjlZiYqIyMzNVWFio1NTU836cy+VqkrAAAAAAmrek\npKQGj/V4m1l+fr5iY2PVqVMnJSYmqrKyUt27d1e7du0kSSNGjFB6enqThoJ3uFwu5sEPMA/2Yw78\nA/PgH5gH+zEH/oF58A8Xuwji8WjmLVu2aNmyZZKkoqIilZaWKi0tTbt27ZIk5eXlqXv37o2ICgAA\nAACN53FlZuLEiZo9e7YmTZqkU6dOKS0tTa1bt9asWbPkcDjkcDg0Z84cX2QFAAAAgGoey0x4eLhe\neumlOtfXrFnjlUAAAAAA0BAebzMDAAAAAH9EmQEAAAAQkCgzAAAAAAISZQYAAABAQKLMAAAAAAhI\nlBkAAAAAAYkyAwAAACAgUWYAAAAABCTKDAAAAICARJkBAAAAEJAoMwAAAAACEmUGAAAAQECizAAA\nAAAISJQZAAAAAAGJMgMAAAAgIFFmAAAAAAQkygwAAACAgESZAQAAABCQKDMAAAAAAhJlBgAAAEBA\nauFpQHl5uWbOnKkjR46ooqJC06ZNU2JiombMmCHTNBUXF6eMjAy1bNnSF3kBAAAAQFIDysyGDRvU\nq1cvTZ06VQcOHNADDzygfv36afLkyRo9erRefvllrV69WhMmTPBFXgAAAACQ1IDbzMaMGaOpU6dK\nkg4cOKBOnTopLy9Pw4cPlyQNGzZMubm53k0JAAAAAD/gcWXmrAkTJujQoUN69dVX9eCDD1bfVhYb\nG6vDhw97LSAAAAAA1McwTdNs6OCdO3dqxowZOnLkSPVqzNdff61nnnlGb7zxxnk/zuVyXXpSAAAA\nAM1eUlJSg8d6XJnJz89XbGysOnXqpMTERFVVVcnhcKiiokJhYWEqLCxUhw4dmjQUvMPlcjEPfoB5\nsB9z4B+YB//APNiPOfAPgTwPJSXH5XTmyu2OUHx8qdLTUxQVFWl3rEa52EUQj3tmtmzZomXLlkmS\nioqKVFpaqoEDB+rdd9+VJGVnZ2vw4MGNiAoAAADgUjmducrJGaW9e2/W+++PltMZPPvZPa7MTJw4\nUbNnz9akSZN06tQppaenq2fPnnr66ae1cuVKde7cWWPHjvVFVgAAAAA/4HZHyDAMSZJhGHK7I2xO\n5Dsey0x4eLheeumlOteXLl3qlUAAAAAAGi4+vlQFBaYMw5BpmkpIKLM7ks80+DQzAAAAAP4nPT1F\nTuc6ud0RSkgoU1raILsj+QxlBgAAAAhgUVGRmj9/tN0xbOHxAAAAAAAA8EeUGQAAAAABiTIDAAAA\nICBRZgAAAAAEJMoMAAAAgIBEmQEAAAAQkDiaGQAAAH6lpOS4nM5cud0Rio8vVXp6iqKiIu2OBT/E\nygwAAAD8itOZq5ycUdq792a9//5oOZ25dkfyf1VVdiewBWUGAAAAfsXtjpBhGJIkwzDkdkfYnMiP\nffyxdP310siRdiexBWUGAAAAfiU+vlSmaUqSTNNUQkKZzYlsVFUl7dwprV9f/+vR0dIXX0gtWkjf\n/zcLJuyZAQAAgF9JT0+R07lObneEEhLKlJY2yO5IvnPqlPTOO1JenvXmcknffSe1aycVFUnfr1hV\n69HDer1FcH5bH5z/1gAAAPBbUVGRmj9/tN0x7GEY0qRJUkWF9c89ekg/+Yl0ww3SmTNSy5Z1xwdp\nkZEoMwAAAID3lZRIW7fWrLjk5UmbNkkdO9YeFxYmLV4sXXGFlJQkRUXZkzdAUGYAAAAAb7rjDulv\nf6t9LS5O2revbpmRpPvv90ms5oAyAwAAADTWmTPS9u3WSsvgwdZtYT905ZXSsGFScnLN2xVX1N3/\ngotGmQEAAAAuxsaN0po1VoHZulUq+/60tXnz6i8zv/udb/MFEcoMAAAA8EOmaW3CDw+v+9qHH0r/\n7/9JoaFSz541qy0jRvg+Z5CjzAAAACDohRYXS+++W3uD/pgx0pIldQdPnGjdUta3r9S6te/DolqD\nykxGRoa2bt2qyspKPfzww9qwYYPy8/MVExMjSZo6daqGDBni1aAAAACAV7z7rq6/7bba1+LjrQdS\n1udHP7LeYDuPZWbTpk3avXu3srKyVFxcrLFjx2rAgAF66qmnKDAAAADwb6dOSf/6l7XScvSo9Oyz\ndcf06aOSgQMVNWKE9TyX5GTpsst8nxUXzWOZSU5OVu/evSVJbdu2VWlpqaqqqmSaptfDAQAAABft\nxAnp6aetArNtm3T6tHW9VSvpmWfqPniyUyft/t3vlJSU5PusuCQey0xISIgiIiIkSatWrdLQoUMV\nEhKi5cuXa9myZWrfvr1SU1MVfb5lOAAAAKCpmaZUUCB16VL3iOPWraU//9k6Zez662sfiRwaak9e\neIVhNnCJZf369Xrttde0ZMkS5efnKzo6WomJicrMzFRhYaFSU1PP+7Eul6vJAgMAACD4tCgqkiM/\nX44dO9R6xw45Pv9cLUpK9Nlbb6kiPr7O+PB9+1TRqZPMsDAb0uJSXMwKWYMOANi4caMyMzO1ZMkS\ntWnTRgMGDKh+bcSIEUpPT2/SUPAOl8vFPPgB5sF+zIF/YB78A/NgP+aggW68Udq8ueafu3SRbr1V\nvRIT63+2y0X+N2Ue/MPFLoJ4LDMnTpzQvHnz9Mc//lGRkZGSpOnTp+vRRx9Vjx49lJeXp+7duzcu\nLQAAAILbyZPSJ5/UHIf88MPS0KF1xz30kHTHHdatYv37S7GxPo8K/+OxzKxdu1bFxcV64oknZJqm\nDMPQ3XffrVmzZsnhcMjhcGjOnDm+yAoAAPxESclxOZ25crsjFB9fqvT0FEVFRdodC4Fk6VLrwZPb\nt0tVVTXXr7mm/jLz85/7LBoCh8cyM378eI0fP77O9bvuussrgQAAgP9zOnOVkzNKhmGooMCU07lO\n8+ePtjsW/EllpbRrl7VRv2fPuq+Xlkp79kiDBtWstiQnS926+T4rAlaD9swAAACcy+2OkPH9CVKG\nYcjtjrA5EWx35Ii0YYN1q9jmzZLLZR2RPG6ctHJl3fEPPST98pdSC74dRePxfw8AALho8fGlKiiw\nbj83TVMJCWV2R4LdPv1UOns3j2FIiYnWSsuoUfWPb9XKd9nQbFFmAADARUtPT5HTuU5ud4QSEsqU\nljbI7kjwlpISa5Xl7Ab9kyelf/yj7rjkZCkjw3rfr5/Utq3vsyLoUGYAAMBFi4qKZI9Mc3f8uFVM\ndu2qfb1TJ6miQvrh81vatpVmzPBdPkCUGQAAgOB0+rR1klhennT//VLLlrVfj4yUQkOl4cOtUnP2\nLSHBuo0M8AOUGQAAgGCxZo2Uk2MVmE8+kcrLrev9+0t9+9Ydn59PcYFfo8wAAAA0J6ZpvYWE1H3t\nlVekf/7TWnG57rqa1ZbLL6//c1Fk4OcoMwAAAIGsqKhmc/7Zt5dfliZOrDvW6ZSef166/nqpdWvf\nZwWaGGUGAAAgUD33nPR//k/tawkJNbeP/VBKivczAT5EmQEAAPCykpLjcjpz5XZHKD6+VOnpKYqK\nirzwB5WXS9u2WSstl18ujR1bd0yfPtJtt9XeoN+xo3f+JQA/RJkBAADwMqczVzk5o2QYhgoKTDmd\n6+o/2vrzz6Xf/tYqMP/6l3XimCTdemv9Zeaee6w3IEhRZgAAALzM7Y6Q8f1mekNSyZfnuQ3sxAlp\n0SLrGS59+9astgwY4LuwQAChzAAAAHjT/v26tXy99M276lm6RdeUblHl7paS7qw7tk8facsWqVev\nug+lBFAHZQYAAMBbjh+XEhI01TSrLx2O7qyokYOkioq6hSUsTEpK8nFIIHBRZgAAABrj5Elp69aa\n45Bfe01q06b2mMhIado0qXNn63ax/v0V166dPXmBZogyAwAAcDFmzpT+/ndpxw6pqqrm+rRp0s03\n1x3/+9/7LhsQZCgzAAAA56qslHbtkjp0kNq3r/v6F19IBQXSoEE1G/RvuEHq0sX3WYEgR5kBAADB\nbf9+6cMPa24Xc7lqThX7xS/qjn/tNSkqSmrBt1GA3fhdCAAAgtsrr0hz5li/Ngzpmmus1Zbu3esf\nHxvru2wALogyAwAAmqfiYuuY47MrLv36Sc8+W3fcXXdJMTFWgenXz9q0DyAgNKjMZGRkaOvWraqs\nrNTDDz+sXr16acaMGTJNU3FxccrIyFDLli29nRUAAMCzDz+UHnzQ2ttyroqK+sef3fcCIOB4LDOb\nNm3S7t27lZWVpeLiYo0dO1YDBgzQ5MmTNXr0aL388stavXq1JkyY4Iu8AAAg2J0+LeXnSwcOSD/+\ncd3X27eXCgulESNqikpyshQf7/usALzKY5lJTk5W7969JUlt27ZVaWmp8vLy9Pzzz0uShg0bpqVL\nl1JmAACAd5SXS6tW1dwu9umn1rV27aSiImufy7m6d5eOHpVCQuzJC8BnPJaZkJAQRURESJLefPNN\nDR06VB988EH1bWWxsbE6fPiwd1MCAIDmzzTrFhPJKiUPPWTdJtaihdSrV81qy5kz0g9vdTeM+j8P\ngGbHME3TbMjA9evX67XXXtOSJUs0atQo5ebmSpK+/vprPfPMM3rjjTfO+7Eul6tp0gIAgGajxbFj\nar19uxw7dqj1jh1y7NihHW+8oTP1nBYW8+67qujcWaXdu8ts1cqGtAB8JSkpqcFjG3QAwMaNG5WZ\nmaklS5aoTZs2cjgcqqioUFhYmAoLC9WhQ4cmDQXvcLlczIMfYB7sxxz4B+bBP9g2D6NGSe+9V/va\nFVeoT2ysVF+eZvz/Cr8X/APz4B8udhHEY5k5ceKE5s2bpz/+8Y+K/P6owoEDByo7O1t33HGHsrOz\nNXjw4MalBQAAzU95ubRtm7W/Zfhw6dpr64657jrr9rCzt4v17y917Oj7rAACmscys3btWhUXF+uJ\nJ56QaZoyDENz587Vb37zG61YsUKdO3fW2LFjfZEVAAD4qw0bpJUrrQLzr39Ze1kkKSOj/jIzf75v\n8wFoljyWmfHjx2v8+PF1ri9dutQrgQAAgJ8yTenkSalNm7qvbd4sLV4shYdbt4SdXXEZOtTnMQEE\njwbtmQEAAEFo/35rpWXzZuv9li3S2LFSfT/QnDzZ2gdz3XVSWJjvswIISpQZAABQ19q1dR9I2a2b\ndNll9Y+Pj+ehlAB8jjIDAECwOXFCcrmkvDx13rlT+sMf6o7p29dahenfv2aDfkyM77MCwAVQZgAA\nCAbHj0vTp1u3i33+uVRVJUnqGB4uvfpq3QdPduokrVljQ1AAaDjKDAAAzUVlpbRzp3V6mGHUfs3h\nsMpJZaV0003VG/S3t2qlXi34dgBAYOJPLwAAAtXevTWb8/PyrFvHTp6UvvzS2t9yrpAQ69kvCQlS\naGj15QqXq27xAYAAQZkBACBQTZhglRnJKiTXXmutuJhm/eOvvNJn0QDAFygzAAD4m2PHrGOQz664\n/OpX0ogRdcdNmyaNH28VmH796n/+CwA0Y5QZAAD8xeLF0n/+p7R7d+3rN9xQf5m5/36fxAIAf0WZ\nAQDAV06flj77zNqz0qdP3dfPnJGKiqSRI6s36Cs5Wbr8ct9nBYAAQJkBAMBbDh2SsrNrNul/+ql0\n6pQ0bpy0cmXd8T//ufTII2zIB4AGoswAAOAt+fnSvfdav27RQurd21ppGTmy/vFhYb7LBgDNAGUG\nAICLdeiQtdJydsWlvFzasKHuuP79pd/9ziowffpIrVr5PisANGOUGQAAGuq776RevaSvv659vUsX\naz9My5a1r7dta51EBgDwCsoMAABnlZVZ+1q2bJF++cv6y0lsrFVozm7O799f6tDBnrwAEOQoMwCA\n4PbnP0v/+7/W7WL5+daJYpJ0001S3751x2/d6tN4AIDzo8wAQDNVUnJcTmeu3O4IxceXKj09RVFR\nkXbHskdVlVRZWXelRZKWLZPWr5fCw61VluRk67kuV1zh+5wAgItCmQGAZsrpzFVOzigZhqGCAlNO\n5zrNnz/a7ljeZ5rSN99YKy1n37ZskV55Rfq3f6s7fs4cKSNDuu66+ssOAMBvUWYAoJlyuyNkfP+8\nEsMw5HZH2JzIR2bPlv7v/6197eqrrZWZ+iQnez8TAMArKDMA0EzFx5eqoMCUYRgyTVMJCWV2R7p0\nx49be1by8qzbwMaPrzvmxhulsWNrb9CPjvZ9VgCA1zWozOzcuVOPPfaY7r//fk2aNEmzZs1Sfn6+\nYmJiJElTp07VkCFDvBoUAHBx0tNT5HSuk9sdoYSEMqWlDbI7UuPk50v/+Z9Wgfn8c+s2MkkaPbr+\nMnPXXdYbAKDZ81hmysrKNHfuXKWkpNS6/tRTT1FgAMCPRUVFBs4emcpK6cABKSGh7mvl5dJ//ZfU\npo108801Ky433uj7nAAAv+KxzISHh2vx4sXKzMz0RR4AQHNnmlJBgWKys61jkTdvtm4da99e2rev\n7vg+faTt26UePaTQUN/nBQD4LY9lJiQkRGFhYXWuL1++XEuXLlX79u2VmpqqaO5HBgA0xIkT0tVX\nq8vZ28VCQqRrr7VWW06frnuiWMuW1usAAPyAYZpn/za5sIULFyomJkaTJk3Sxx9/rOjoaCUmJioz\nM1OFhYVKTU0978e6XK4mCwwA8F+hJSVq/fnncmzfrtaff66vnE5VORx1xsXPn6+KDh1U2rOnSnv0\nUFXr1jakBQD4o6SkpAaPbdRpZgMGDKj+9YgRI5Sent6koeAdLpeLefADzIP9mAMv+PWvpXfekfbs\nqXU5JiREqu+/9X//N/PgJ5gH+zEH/oF58A8XuwgS0pgvMn36dO3atUuSlJeXp+7duzfm0wAAAkVF\nheRySYWF9b/+9dfS0aPSLbdYz3l56y1p/37pppt8mxMAEFQ8rsxs27ZNzz77rI4eParQ0FBlZWVp\n+vTpmjVrlhwOhxwOh+bMmeOLrAAAX9m7V3r/fes45Lw86dNPrULz6qvSL39Zd/yyZVJkpPT9QzoB\nAPAFj2WmT58+euedd+pcv+WWW7wSCADgB5YskV54wfp1y5ZS797WBv2ePesf37at77IBAPC9Ru2Z\nAQAEqMLCmtWWvDzphhuk+vY93n231KmTVWB695ZatfJ5VAAAPKHMAEBzVVJi7XPp2FE6ckSaPFly\nu2uPiYio/2P79bPeAADwY5QZAGgOjh6VVq2SNm2y9rbk5UlffGG9dvXV1kljFRXS7bdbqy3JyVL/\n/lJcnL25AQC4BJQZAAg0p09bKy6vvGKVln37pLKy2mOioqQRI6zScs89Uvfu0rffskEfANCsUGYA\nwJ+dOWM9u+XcfS6ffCKVl9ceFxkpde0qDRggPfaYlJgohTTq9H0AAAIGZQYA/EVVlXWb2Jo10saN\n0q5dUnFx7TGhoTUni4WGSkOGSD/5yfn3vqDBSkqOy+nMldsdofj4UqWnpygqKtLuWACAC6DMAIBd\nDh+uveKybp11C9m5wsKkkSOl0aOtAnP99RQXL3E6c5WTM0qGYaigwJTTuU7z54+2OxYA4AIoMwDg\nCwcOSCtXSu+9Z9069sUX0ldf1R4TGWltyO/d29rvMm6c9KMf2RI3GLndETK+31NkGIbcbkojAPg7\nygwANLXycmnbNum//kvKzpa++cY6SexccXHSmDG1Txbr2NGevJAkxceXqqDAlGEYMk1TCQllnj8I\nAGArygwAXIrycmnLFmt/y9nbxT77rO7tYtHR1hHJN90kTZxolRdOFvMr6ekpcjrXye2OUEJCmdLS\nBtkdCQDgAWUGABqqqkrasEF66y0pN9c6Zey772qPCQ+3HjaZnGyVly5dpFtvlVrwx62/i4qKZI8M\nAAQY/nYFgPPZv7/2Bv3cXOnkydpjWrWSrrlG+sUvrAJz3XXWpn0AAOB1lBkAkKxVlqws6X/+x3oI\n5cmT1kMmz3XVVdbqzPXXS6NGWRv04+LsyQsAACgzAIJPSFmZ9RyXjRulxYutk8bOnKk9qHNn6a67\nam/Qj4mxJzAAAKgXZQZA83b8uPSXv0gnTlgb9fPydP2OHdYKy1mGIcXGWreL3Xyz9NOfSn372pcZ\nAAA0CGUGQPNRWSn9/e/S229LmzZJBQVSaWntMQ6HTlx/vSKHDbNWXK680nofEmJLZAAA0HiUGQCB\nyTSlvXtrb9DfutVagTlX69bWXpcpU6Tbb5cSE/XFp58qKSnJntwAAKDJUGYABIZt26Q335RycqTP\nP5dOnbJuITvLMKRrr5XatbP2u9x2mzR2rNS2rX2ZAQCAV1FmAPif4uLq/S3KypK2b7duITtXu3bS\nz35Ws0G/Xz+pTRt78gIAAFtQZgDYq6hIWrVK+vJLqbDQKjBffll7TEiI1LGj1LOnNHy4NH689UBK\nAAAQ1BpUZnbu3KnHHntM999/vyZNmqSDBw9qxowZMk1TcXFxysjIUMuWLb2dFUCgO33aeo7Ln/5k\nlZavv5bKy2uPiY6WRo6sveKSkMAGfQAAUIfHMlNWVqa5c+cqJSWl+tqCBQs0ZcoUjRo1Si+//LJW\nr16tCRMmeDUogABTVSV98UXtDfqfflq3vERGSl27SiNGSL/4hdStm7X/BQAAwAOPZSY8PFyLFy9W\nZmZm9bXNmzfr+eeflyQNGzZMS5cupcwAwayqSvroI2nNGumDD6wSc/x47X0uLVpIvXtLffpY12+/\nXbrjDqlVK/tyAwCAgOaxzISEhCgsLKzWtbKysurbymJjY3X48GHvpAPgnw4dqlltyc2V1q+3jko+\nV1iYNGGCdOON1u1i119PcQEAAE3qkg8AMH/4Dcx5uFyuS/1SaALMg38IpHlocfCg2q1fr8jNm2WG\nh6v1zp0K//bbWmOqWrbUmZgYlXbrpu9uvFHHRo7UmY4da3+i7dt9mNqzQJqD5ox58A/Mg/2YA//A\nPASeRpUZh8OhiooKhYWFqbCwUB06dPD4MTygzn4ul4t58AN+PQ/l5da+lt/9Tvr4Y+mbb6SKitpj\nOnSQfvzjmg36/fsrpEMHhUkKkxQt6Qobol8Mv56DIMI8+AfmwX7MgX9gHvzDxRbKRpWZgQMHKjs7\nW3fccYeys7M1ePDgxnwaAHYqL5c++8x6GOXZW8Y++0w6c6b2uOhoqXt36aabpPvvl667jg36AADA\nL3gsM9u2bdOzzz6ro0ePKjQ0VFlZWVqyZIlmzpypFStWqHPnzho7dqwvsgJorMpK6Z//lP76V2uP\ny5491gb9c4WHS/37W6stcXFSUpI0apS1cd9PlJQcl9OZK7c7QvHxpUpPT1FUVKTdsQAAgE08fpfS\np08fvfPOO3WuL1261CuBAFwi05T27699JPLGjdKpU7XHtWolDRxobdJPTrZWXPz8eVFOZ65yckbJ\nMAwVFJhyOtdp/vzRdscCAAA28Z8fuQJonC+/lFassB5GeeyY9O230sGDtcd07mydLnb99dKtt0r3\n3CO1b29P3kvgdkfI+P4WN8Mw5HZH2JwIAADYiTIDBJITJySXy7pd7M03reLywz0u8fHS2LG1Nugr\nOtqevE0sPr5UBQWmDMOQaZpKSCizOxIAALARZQbwV999Z+1z+fbbmtvFPv/cekDlWYZhrbBcc400\nZIj0059aD6VsptLTU+R0rpPbHaGEhDKlpQ2yOxIAALARZQbwB6dPS3/7m/TOO9LmzdLevVJpae0x\nbdpIgwdbqy19+1orMDfdJIWE2JPZBlFRkeyRAQAA1SgzgK+ZpnWa2Lkb9F2uuuXF4ZCuukp6/HFp\n0CCpRw8pNNSezAAAAH6IMgN426efSqtWSTk50s6d6nP6tHUL2VkhIdK119a8v+02a89LJEcOAwAA\nXAhlBmhKx45JW7ZYqy1/+IO0b1/tPS6SKuPi1OLscchnbxlr08amwAAAAIGLMgM01qFD1olihw9L\nu3ZZBWb37tpjQkKkyy6TevaUhg+Xxo9XfkmJkpKS7MkMAADQjFBmgIaoqLA26L/5prXy4nZL5eW1\nx8TESLfcUrPict11UrdudT+Xy+WbzAAAAM0cZQb4oaqqmpWWzZut99u2SadO1R7Xtq1VVu68U/q3\nf5O6drWOSgYAAIBPUGYQ3KqqpNxcac0a6YMPpC+/tE4Vq6ioGdOihdS7t9Sli7W35fbbpR//WGrV\n6pK/fEnJcTmduXK7IxQfX6r09BRFRbHxHwAAoCEoMwguhYU1xyG/+6713jRrj2nbVjp3g36fPk1S\nXOrjdOYqJ2eUDMNQQYEpp3Mdz1EBAABoIMoMmq+vv5ZWrLD2qJw+bRUXt7v2mBYtrA36vXtb+11+\n+lPrYZQ+4nZHyPj+1jTDMOR2R/jsawMAAAQ6ygyah7Iy6aOPpIULpU8+kfbvtwrMuTp2tG4RO7vi\n0r+/FBdnT97vxceXqqDAlGEYMk1TCQlltuYBAAAIJJQZBJ6yspoN+mffPvtMqqysPS4mRureXRo8\nWHrkEenKK/1ug356eoqcznVyuyOUkFCmtLRBdkcCAAAIGJQZ+LczZ6T166W//tVaedmzRzpxovaY\nVq2kG26wVltatpRGjLBuGWvh//97R0VFskcGAACgkfz/uz0ED9O09rScu+KSk1N3xaVVK2nMGOnW\nW60C07OcBXTtAAAgAElEQVSnVWIAAAAQVCgzsM/nn0srV0r/+79WYdm1Szp0qPaYdu2s08X69rXK\nyz33SLGxtsQFAACAf6HMwDeOH7dOFfvjH6V//lM6eNC6hexcCQnS3XfXbNBPSpKio22JCwAAAP9H\nmUHTKy6WNm2yHkB59naxnTtrP8/FMKyTxK65RhoyxHquy7XX2pcZAAAAAadRZWbz5s16/PHHdfXV\nV8s0TfXo0UPPPvtsU2dDICgvl/72N+tt82bpq6+s08bO1aaNdPPN1ib9q6+WEhOllBQpJMSWyAAA\nAGgeGr0yc8MNN2jBggVNmcUvlZQcl9OZK7c7QvHxpUpPT1FUVKTdsexhmtZpYnl5VnE5u+pSUVF7\nnMNhPYTyF7+wbhfr0UMKDbUnMwAAAJqtRpcZ89xbhpoxpzNXOTmjZBiGCgpMOZ3rguco3S1bpNWr\npffft04ZO3FCOnas5vWQEOs5LpWV1gMox4yR7rrLWokBAAAAvKzRZWbPnj165JFHVFJSokcffVSD\nBjXPh/253REyvn/QomEYcrsjbE7kJUeOWOVl40ZpyRLrVLGqqtpjunatOQ45Odk6YczhsCcvAAAA\ngp5hNmKJpbCwUFu3btVtt90mt9ute++9V++9955anOchhS6X65KD2uWll/L1ySf3yDAMmaapfv1W\n69///Tq7Y12SFkeOKGb9ehkVFXLs2CHHjh0K37+/1hgzJERnYmJU2rWrjicn69gtt6giPt6mxAAA\nAAgWSUlJDR7bqJWZjh076rbbbpMkJSQkqH379iosLNTll1/eJKH8yauvdpfT+aHc7gglJJQpLe3u\nwNozU1EhrVol/e1vKv/wQ7U6dEg6dar2mJgYadSomhWXbt1k9OyplpKivn+jxjQdl8sVsL8fmgvm\nwD8wD/6BebAfc+AfmAf/cLGLII0qM++884727dunX/3qVzpy5IiOHj2qjh07NuZT+b2oqMjA2SNT\nWWkdgXx2Y35enrRtW/UG/VZnx7Vta50qdt991j6XLl2so5IBAACAANKoMjN8+HA9+eSTmjhxokzT\nVHp6+nlvMYOXVFVZ+1v+8hfpww+tZ7qcOmUdlXxWy5bWqWLt2knx8dp97bXqNn26FBZmX24AAACg\niTSqgTgcDi1atKips+BCDh6sORJ51Srpiy9qP4RSkjp2lH72s5rbxfr0kcLDq18ucbkoMgAAAGg2\nWE7xR/v2SStWSHv3SoWFVon55pvaY1q0kDp1slZebrlFGjdO6tzZnrzn4Lk8AAAA8BXKjN1KS6V3\n35Vef1365BPpwAHp9OnaYzp2lO64o2bFJSlJiouzJ68HQf1cHgAAAPgUZcaXKiqk7dutW8XObtDf\nvt3auH+umBgpMVEaOVL6+c+l+PiA2aAfNM/lAQAAgO0oM95y5oy0bp309tvSRx9JBQXSyZO197lE\nREg33mjtbZGkO++URoywbiELUPHxpSooMKufy5OQUGZ3JAAAADRTgftdsz8xTenrr2tWWz76yDpp\n7IciIqRJk6wCk5ws9ewZ0MWlPunpKXI6153zXJ5BdkcCAABAM9W8vpP2lR07pJUrpZwcqVUryeWS\nDh+uPaZ1a2uvS79+0ujR0j33WEckN3MB9VweAAAABDTKTEMcPSo99JC11+Xgwbp7XK64wior527Q\nj4qyJysAAAAQJCgzDbFggfVwSsnaiB8XJ117rTR0qHTvvVKXLrbGAwAAAIIRZaYhnnhCuuwy65ku\nAwdKISF2JwIAAACCHmWmIWJipGnT7E4BAAAA4BwsMQAAAAAISJQZAAAAAAGJMgMAAAAgIFFmAAAA\nAAQkygwAAACAgESZAQAAABCQKDMAAAAAAhJlBgAAAEBAoswAAAAACEiUGQAAAAABqUVjP/DFF1/U\ntm3bZBiGZs+erV69ejVlLgAAAAC4oEaVmby8PO3bt09ZWVnas2ePfvOb3ygrK6upswEAAADAeTXq\nNrOPPvpII0eOlCR17dpV3333nU6ePNmkwQAAAADgQhpVZoqKitSuXbvqf46JiVFRUVGThQIAAAAA\nTxq9Z+Zcpml6HONyuZriS+ESMQ/+gXmwH3PgH5gH/8A82I858A/MQ+BpVJnp0KFDrZWYQ4cOKS4u\n7rzjk5KSGvNlAAAAAOC8GnWbWUpKirKzsyVJ27dvV8eOHdW6desmDQYAAAAAF9KolZm+ffuqZ8+e\nmjBhgkJDQ/Xcc881dS4AAAAAuCDDbMiGFwAAAADwM426zQwAAAAA7EaZAQAAABCQKDMAAAAAApLX\ny8yLL76oCRMmaOLEifrss8+8/eVwHhkZGZowYYLGjRun9957z+44QevUqVO65ZZb9NZbb9kdJWi9\n/fbbuvPOO3XPPfcoJyfH7jhBqbS0VI899pjuvfdeTZw4UR988IHdkYLKzp07dcstt+i///u/JUkH\nDx7UlClTNHnyZP3617/W6dOnbU7Y/P1wDr799ls98MADmjJlih588EEdOXLE5oTB4YfzcNbGjRuV\nmJhoU6rg88N5OHPmjJ588kmNGzdODzzwgI4fP37Bj/dqmcnLy9O+ffuUlZWl//iP/9ALL7zgzS+H\n89i0aZN2796trKwsvfbaa5ozZ47dkYLWK6+8oujoaLtjBK3i4mL9/ve/V1ZWlhYvXqx//vOfdkcK\nSn/5y1/UpUsX/elPf9KCBQv4u8GHysrKNHfuXKWkpFRfW7BggaZMmaLly5friiuu0OrVq21M2Pyd\nbw7Gjx+v119/XSNGjNDSpUttTBgc6psHSaqoqFBmZqY6dOhgU7LgUt88rFy5UrGxsVq1apXGjBmj\nLVu2XPBzeLXMfPTRRxo5cqQkqWvXrvruu+908uRJb35J1CM5OVkLFiyQJLVt21ZlZWXiEDvfKygo\n0N69ezVkyBC7owSt3NxcpaSkKCIiQu3bt9fzzz9vd6Sg1K5dOx07dkySVFJSonbt2tmcKHiEh4dr\n8eLFat++ffW1zZs3a9iwYZKkYcOGKTc31654QaG+OUhLS9Po0aMlWb8/SkpK7IoXNOqbB0latGiR\npkyZopYtW9qULLjUNw//8z//ozvuuEOSNG7cuOo/n87Hq2WmqKio1l9SMTExKioq8uaXRD1CQkIU\nEREhSVq1apWGDBkiwzBsThV8MjIyNHPmTLtjBLX9+/errKxM06ZN0+TJk/XRRx/ZHSko3XbbbTp4\n8KBGjRqle++9l98XPhQSEqKwsLBa18rKyqq/cYuNjdXhw4ftiBY06puDiIgIhYSEqKqqSn/+8591\n++2325QueNQ3D3v37tXu3bs1atQofujrI/XNw/79+5WTk6MpU6boySef1HfffXfhz+HNgD/E/xj2\nWr9+vdasWaPU1FS7owSdt956S8nJyercubMkfi/YxTRNFRcX65VXXtGLL76o2bNn2x0pKL399tu6\n7LLLtG7dOi1btowVMj/Cn032qaqq0owZMzRgwAANGDDA7jhBae7cufxwxQ+YpqmuXbvq9ddfV7du\n3bRo0aILjm/hzTAdOnSotRJz6NAhxcXFefNL4jw2btyozMxMLVmyRG3atLE7TtDJycnRN998o3Xr\n1ungwYMKDw/XZZddpoEDB9odLai0b99effv2lWEYSkhIkMPh0NGjR7nNyce2bt2qwYMHS5ISExN1\n8OBBmabJirFNHA6HKioqFBYWpsLCQvYK2GTWrFm66qqr9Oijj9odJSgVFhZq7969+vd//3eZpqnD\nhw9rypQpev311+2OFnTat2+v5ORkSdJNN92khQsXXnC8V1dmUlJSlJ2dLUnavn27OnbsqNatW3vz\nS6IeJ06c0Lx587Ro0SJFRkbaHScovfzyy1q1apVWrFihcePG6ZFHHqHI2CAlJUWbNm2SaZo6duyY\nSktLKTI2+NGPfqRPP/1UknU7QevWrSkyNho4cGD139XZ2dnVRRO+8/bbbyssLEy/+tWv7I4StDp2\n7Kjs7GxlZWVpxYoViouLo8jY5Oabb9b7778vyeoPV1111QXHG6aX15Tnz5+vzZs3KzQ0VM8995x6\n9OjhzS+HeqxcuVILFy7UlVdeWf3Tz4yMDF122WV2RwtKCxcuVHx8vO666y67owSllStXatWqVTIM\nQ4888oiGDh1qd6SgU1paqtmzZ+vIkSOqrKzUE088oRtuuMHuWEFh27ZtevbZZ3X06FGFhoYqKipK\nS5Ys0cyZM1VRUaHOnTvrxRdfVGhoqN1Rm6365qCqqkrh4eFyOBwyDEPdunXTc889Z3fUZq2+eVi+\nfLmioqIkSSNGjODESx84359JL7zwgg4fPiyHw6G5c+de8AePXi8zAAAAAOANPj0AAAAAAACaCmUG\nAAAAQECizAAAAAAISJQZAAAAAAGJMgMAAAAgIFFmAAAAAAQkygwAAACAgESZAQAAABCQKDMAAAAA\nAhJlBgAAAEBAoswAAAAACEiUGQAAAAABiTIDAAAAICBRZgAAAAAEJMoMAAAAgIBEmQEAAAAQkCgz\nAAAAAAISZQYAAABAQKLMAAAAAAhIlBkAAAAAAamFpwHl5eWaOXOmjhw5ooqKCk2bNk3Z2dnKz89X\nTEyMJGnq1KkaMmSI18MCAAAAwFmGaZrmhQasXbtW3377raZOnaoDBw7ogQceUL9+/XTrrbdSYAAA\nAADYxuPKzJgxY6p/feDAAXXq1EmS5KEDAQAAAIBXeVyZOWvChAk6dOiQFi1apGXLlqmoqEgVFRVq\n3769UlNTFR0d7e2sAAAAAFCtwWVGknbu3Kmnn35as2fPVnR0tBITE5WZmanCwkKlpqae9+NcLleT\nhAUAAADQvCUlJTV4rMfbzPLz8xUbG6tOnTopMTFRlZWV6t69u9q1aydJGjFihNLT05s0FLzD5XIx\nD36AebAfc+AfLjgPS5ZIDz0kzZolzZnj22BBht8P9mMO/APz4B8udhHE49HMW7Zs0bJlyyRJRUVF\nKi0tVVpamnbt2iVJysvLU/fu3RsRFQCAepimtGCBFBoqPfKI3WkAAH7M48rMxIkTNXv2bE2aNEmn\nTp1SWlqaWrdurVmzZsnhcMjhcGgOPzUDADSVggLr7Z57pPh4u9MAAPyYxzITHh6ul156qc71NWvW\neCUQACDIde0q7d8vHT9udxIAgJ/zWGYAAPC5qCjrDQCAC/C4ZwYAAAAA/BFlBgAAAEBAoswAAAAA\nCEiUGQCA/aqqpPvuk/76V7uTAAACCAcAAADs99570p/+ZP36zjvtzQIACBiszAAA7LdggfV++nR7\ncwAAAgplBgBgr127pH/8Q0pJkZKS7E4DAAgglBkAgL0WLrTeP/64vTkAAAGHMgMAsE9lpbRunRQf\nL40da3caAECA4QAAAIB9QkOlzz6T9uyRWvBXEgDg4rAyAwCwV1iYdM01dqcAAAQgygwAAACAgESZ\nAQAAABCQKDMAAAAAAhK7LQEAvvfCC4o7flzq1cvaMwMAQCOwMgMA8K0jR6T/+A91XL7cOs0MAIBG\noswAAHzrD3+Qyst1aPx4ygwA4JJQZgAAvnPmjPT730sOh4785Cd2pwEABDjKDADAd/7yF8ntlu6/\nX5WRkXanAQAEOI8HAJSXl2vmzJk6cuSIKioqNG3aNCUmJmrGjBkyTVNxcXHKyMhQy5YtfZEXABDI\n/v536/1jj0knTtibBQAQ8DyuzGzYsEG9evXS66+/rpdfflkvvviiFixYoMmTJ2v58uW64oortHr1\nal9kBQAEumXLJJdL6tHD7iQAgGbAY5kZM2aMpk6dKkk6cOCAOnXqpLy8PA0fPlySNGzYMOXm5no3\nJQCgeTAMqV8/u1MAAJqJBj9nZsKECTp06JBeffVVPfjgg9W3lcXGxurw4cNeCwgAAAAA9TFM0zQb\nOnjnzp2aMWOGjhw5Ur0a8/XXX+uZZ57RG2+8cd6Pc7lcl54UAAAAQLOXlJTU4LEeV2by8/MVGxur\nTp06KTExUVVVVXI4HKqoqFBYWJgKCwvVoUOHJg0F73C5XMyDH2Ae7Mcc+AfmwT8wD/ZjDvxDIM9D\nSclxOZ25crsjFB9fqvT0FEVFBeaJkRe7COJxz8yWLVu0bNkySVJRUZFKS0s1cOBAvfvuu5Kk7Oxs\nDR48uBFRAQBB4a23pPR06cgRu5MAQLPkdOYqJ2eU9u69We+/P1pOZ/DsZ/e4MjNx4kTNnj1bkyZN\n0qlTp5Senq6ePXvq6aef1sqVK9W5c2eNHTvWF1kBAIHGNKUXXrBOMLv3Xik21u5EANDsuN0RMgxD\nkmQYhtzuCJsT+Y7HMhMeHq6XXnqpzvWlS5d6JRAAoBn5+GNpyxbpzjulLl3sTgMAzVJ8fKkKCkwZ\nhiHTNJWQUGZ3JJ9p8GlmAABctAULrPePP25vDgBoxtLTU+R0rpPbHaGEhDKlpQ2yO5LPUGYAAN7x\nzTfSm29KvXpJQ4fanQYAmq2oqEjNnz/a7hi28HgAAAAAjfKPf0iVldL06dbDMgEAaGKszAAAvOPn\nP5cGDJC6dbM7CQCgmaLMAAC8p1cvuxMAAJoxbjMDAAAAEJAoMwAAAAACEreZAQAAwK+UlByX05kr\ntztC8fGlSk9PUVRUpN2x4IdYmQEANJ2vvpIeeUT68ku7kwAIYE5nrnJyRmnv3pv1/vuj5XTm2h0J\nfooyAwBoOgsXSq++Km3aZHcSAAHM7Y6Q8f2R7oZhyO2OsDkR/BVlBgDQNE6ckP7wB6ljR2ncOLvT\nAAhg8fGlMk1TkmSaphISymxOBH/FnhkAQNP405+kkhLp17+WwsPtTgMggKWnp8jpXCe3O0IJCWVK\nSxtkdyT4KcoMAODSVVVJv/2t1LKl9Itf2J0GQICLiorU/Pmj7Y6BAMBtZgCAS/fZZ9KePdKECdJl\nl9mdBgAQJFiZAQBcuj59rJPMzpyxOwkAIIhQZgAATePyy+1OAAAIMtxmBgAAACAgUWYAAAAABCTK\nDAAAAICARJkBADROZaU0bZr0wQd2JwEABKkGHQCQkZGhrVu3qrKyUg8//LA2bNig/Px8xcTESJKm\nTp2qIUOGeDUoAMDP/P3v0qJF1glmN91kdxoAQBDyWGY2bdqk3bt3KysrS8XFxRo7dqwGDBigp556\nigIDAMFswQLr/fTp9uYAAAQtj2UmOTlZvXv3liS1bdtWpaWlqqqqkmmaXg8HAPBT+fnShg3S8OFS\nr152pwEABCmPe2ZCQkIUEREhSVq1apWGDh2qkJAQLV++XPfdd5+efPJJFRcXez0oAMCP/Pa31ntW\nZQAANjLMBi6xrF+/Xq+99pqWLFmi/Px8RUdHKzExUZmZmSosLFRqaup5P9blcjVZYACAvYzTp9Xr\n9ttV1aqV8teskUJD7Y4EAGhGkpKSGjy2QQcAbNy4UZmZmVqyZInatGmjAQMGVL82YsQIpaenN2ko\neIfL5WIe/ADzYD/moAkUFEh79iipb99GfwrmwT8wD/ZjDvwD8+AfLnYRxONtZidOnNC8efO0aNEi\nRUZGSpKmT5+uXbt2SZLy8vLUvXv3RkQFAASstm2lSygyAAA0BY8rM2vXrlVxcbGeeOIJmaYpwzB0\n9913a9asWXI4HHI4HJozZ44vsgIAAD9RUnJcTmeu3O4IxceXKj09RVFRkXbHAhBkPJaZ8ePHa/z4\n8XWu33XXXV4JBAAA/J/TmaucnFEyDEMFBaacznWaP3+03bEABBmPt5kBAAD8kNsdIcMwJEmGYcjt\njrA5EYBgRJkBADRMRoa0apVUWWl3EviB+PjS6mfOmaaphIQymxMBCEYNOs0MABDkCgul1FTpyiul\ne+6xOw38QHp6ipzOdXK7I5SQUKa0tEF2RwIQhCgzAADPFi+WKiqsh2SGsKgPKSoqkj0yAGzH30gA\ngAurqJBefVWKipLuu8/uNAAAVKPMAAAubNUq6eBBaepUqU0bu9MAAFCNMgMAuLAVKyTDkB591O4k\nAADUwp4ZAMCFrV4tffSR1KWL3UkAAKiFlRkAwIW1bCndfLPdKQAAqIOVGQAAAC8rKTkupzNXbneE\n4uNLlZ6eoqioSLtjAQGPlRkAAAAvczpzlZMzSnv33qz33x8tpzPX7khAs0CZAQAA8DK3O0KGYUiS\nDMOQ2x1hcyKgeaDMAADqeust6fe/l06etDsJ0CzEx5fKNE1JkmmaSkgoszkR0DywZwYAUJtpSmlp\n0vbt0p13Sg6H3YmAgJeeniKnc53c7gglJJQpLW2Q3ZGAZoEyAwCoLSdH+te/pJ/9TIqPtzsN0CxE\nRUVq/vzRdscAmh1uMwMA1Pbb31rvp0+3NwcAAB5QZgAANb76SvrrX6X+/aWBA+1OAwDABVFmAAA1\nVq6UqqqsVZnvT14CAMBfsWcGAFBjxgzphhtYlQEABATKDACghmFIQ4fanQIAgAZpUJnJyMjQ1q1b\nVVlZqYcffli9evXSjBkzZJqm4uLilJGRoZYtW3o7KwAAAABU81hmNm3apN27dysrK0vFxcUaO3as\nBgwYoMmTJ2v06NF6+eWXtXr1ak2YMMEXeQEAAABAUgMOAEhOTtaCBQskSW3btlVpaany8vI0fPhw\nSdKwYcOUm5vr3ZQAAAAA8AMey0xISIgiIiIkSW+++aaGDh2qsrKy6tvKYmNjdfjwYe+mBAB4z5df\nSqmp0rff2p0EAICL0uADANavX6/Vq1dryZIlGjVqVPV10zQb9PEul+vi06HJMQ/+gXmwH3NQIyEj\nQx1WrlSBw6Fjt9zi06/NPPgH5sF+zIF/YB4CT4PKzMaNG5WZmaklS5aoTZs2cjgcqqioUFhYmAoL\nC9WhQwePnyMpKemSw+LSuFwu5sEPMA/2Yw7OUVIirV0rxcery5NPSj48zIV58A/Mg/2YA//APPiH\niy2UHm8zO3HihObNm6dFixYpMjJSkjRw4EBlZ2dLkrKzszV48OBGRAUA2G7pUunECemRR3xaZAAA\naAoeV2bWrl2r4uJiPfHEEzJNU4ZhaO7cufrNb36jFStWqHPnzho7dqwvsgIAmlJlpbRwodSqlfTw\nw3anAQDgonksM+PHj9f48ePrXF+6dKlXAgEAfOSjj6SCAumhh6TYWLvTAABw0Rp8AAAAoJm56Sbp\ns88kh8PuJAAANAplBgCC2XXX2Z0AAIBG83gAAAAAAAD4I8oMAAAAgIBEmQEAAAAQkCgzABBMzpyR\nnn5a2rHD7iQAAFwyygwABJO33pLmzZNeecXuJAAAXDLKDAAEkwULrPePPWZvDgAAmgBlBgCCxdat\n0gcfSLfeKvXoYXcaAAAuGWUGAILF2VWZxx+3NwcAAE2EMgMAweDECWn1amtFZtQou9MAANAkWtgd\nAADgA23aSF98IbndUgg/xwIANA+UGQAIFp07W28AADQT/HgOAAAAQECizAAAAAAISNxmBgDNVEnJ\ncTmduXK7IxQfX6r09BRFRUXaHQsAgCbDygwANFNZD/xWj78yXY+8N1/v54yS05lrdyQAAJoUKzMA\n0Nxs3SpNmqSHd+6UIclRWSLDMOR2R9idDACAJsXKDAA0F263NGCAlJQk7dypypAW+mOHp3RrrwMy\nJSUklNmdEACAJkWZAYBAV1YmZWRIvXtLmzZZz5G5916dPHBA/5o0Uld1/UBDhqxTWtogu5MCANCk\nGnSb2c6dO/XYY4/p/vvv16RJkzRr1izl5+crJiZGkjR16lQNGTLEq0EBAD9w5oy0bJmUni4dOCDF\nxEhPPCGlpkrt2ilK0vz5o+1OCQCA13gsM2VlZZo7d65SUlJqXX/qqacoMABgh6oq6bXXpPnzpS++\nkCIipFmzpKeflqKj7U4HAIDPeLzNLDw8XIsXL1b79u19kQcAcCHz5kmRkdIvfynt3m2937NHmjOH\nIgMACDoeV2ZCQkIUFhZW5/ry5cu1dOlStW/fXqmpqYrmL1EA8J7ly6XHH5eOHrX+OSFBWr1aSk62\nNxcAADYyTNM0GzJw4cKFiomJ0aRJk/Txxx8rOjpaiYmJyszMVGFhoVJTU8/7sS6Xq8kCA0AwCd+3\nT12ffFIRX30lSTodFSX3U0/p2G232RsMAAAvSUpKavDYRj1nZsCAAdW/HjFihNLT05s0FLzD5XIx\nD36AebBfQMzBgQPS889Lf/iDVFkpORyS06mWTz6pLnZnayIBMQ9BgHmwH3PgH5gH/3CxiyCNOpp5\n+vTp2rVrlyQpLy9P3bt3b8ynAQD80LFj1mb+bt2kxYut92++KX33nfTkk3anAwDAr3hcmdm2bZue\nffZZHT16VKGhocrKytL06dM1a9YsORwOORwOzZkzxxdZAaD5OnpUuu8+6YP/396dR1Vd538cf10Q\nGEDEhS2UlNDccxtNJHfRk9Wv5ngwnZ84YzPTNGq/FqeOOaYyk5l2xonGPC6jM7k0qFmOnqlBzcYl\nzAUnNUdLjYwsEERZrwJyf398UgQB9Qp8udzn45x74H7v997vGz+yvO5n2yNdvCi1bm2WXP75z6Um\nTnWiAwDQ6N30N2SPHj20ZcuWG47HxsbWSUEA4FYuXZKefFJau9YsuezrazbAnDrVfA4AAKrF230A\nYIWyMrMvzJtvSiUl5lh0tPT3v0tt21pbGwAALoIwAwD17aOPTM/LiRPmfpcuZunlXr2srQsAABfj\n1AIAAAAnpKZKI0dKI0aYINO9u7R1q3TsGEEGAAAnEGYAoK598YX0+OPSj38sbdtmAs3Bg9KRIxLz\nDwEAcBrDzACgrhw6JE2YYHphHA6pb1/ptdekYcOsrgwAgEaBMAMAtS0tTfrpT6VPPzX3fXykVauk\nuDjJZrO2NlQrNzdfCQkpSk/3VZs2RZozJ0aBgQFWlwUAqAHDzACgthQVSQ89JEVFmSDj4SFNnGj2\njRk7liDTwCUkpGjnzpFKSxukXbtGKSEhxeqSAAA3QZgBgDtVWiotXy516CB98IE5Nnq0lJUlvf22\n9KMfWVsfbkl6uq9sPwROm82m9HT2+QGAho4wAwDOcjikd9+VunY1G19euGCWXP7qK+mf/5RatrS6\nQutTYjQAABSKSURBVNyGNm2K5HA4JEkOh0MREXaLKwIA3AxzZgDAGX/7m/TWW2ZVMk9P6amnpJdf\nlsLDra4MTpozJ0YJCVuVnu6riAi7Zs8eYHVJAICbIMwAwO1Ys0Z65hkpJ8fcf/xx6Q9/MEPM4NIC\nAwO0cOEoq8sAANwGwgwA3IqtW6Vf/lJKTzf3W7WSli6Vxoyxti4AANwYc2YAoCbffScNHy6NGmWC\njL+/9PrrUnY2QQYAAIsRZgCgKhcvSi+9JLVvL+3YYfaK+e1vpbw88xEAAFiOYWYAcD27Xfrzn6XX\nXjOrk7VuLc2ZI/3sZ5KXl9XVAQCA6xBmAECSLl0yyyv/619mf5gWLaQFC8xSy77sNwIAQENEmAHg\n3srKpBdflN58UyopkTw8zPCyF1+Umje3ujoAAFADwgwA9/XHP0qzZ0uFheZ+ly7S6tVS797W1gUA\nAG4JYQaA2/E7flx64QXp44/NgYgIacUKKTbW2sIAAMBtIcwAcB8nT0ozZ6rz+vXm/n33mVAzYYK1\ndQEAAKfc0tLMJ06cUGxsrNauXStJysjIUHx8vCZMmKDnnntOJSUldVokANyRb7+VnnpK6txZWr9e\nhV26SB99JB0+TJABAMCF3TTM2O12zZ8/XzExMdeOJSYmKj4+XmvWrNHdd9+tjRs31mmRAOCUM2ek\n6GipbVtp6VKzZ8y77+rE229Lw4ZZXR0AALhDNw0zPj4+Wrp0qYKCgq4d279/v4YOHSpJGjp0qFJS\nUuquQgC4XTk50kMPSZGR0qefmmOvvip9/rk0Zoxks1lbHwAAqBU3nTPj4eEhb2/vCsfsdru8ftg8\nrlWrVsrKyqqb6gDgdpSWSlOmSH/5i1ly2WaTRo82K5S1bGl1dQAAoJbd8QIADofjls5LTU2900uh\nFtAODQPtUMscDjXfsUOtFy/Wj86ckUNSYffuSps7V8Xh4VJamrldhzZoGGiHhoF2sB5t0DDQDq7H\nqTDj7++v4uJieXt7KzMzUyEhITd9Tp8+fZy5FGpRamoq7dAA0A61bMcOafp06cABydNTevJJ2X79\nazXt3Vvdq3kKbdAw0A4NA+1gPdqgYaAdGobbDZS3tJpZZdHR0UpOTpYkJScna+DAgc68DAA47513\npBEjpOHDTZAZO1Y6ftxM9GfTSwAA3MJNe2YOHz6smTNnKicnR56enkpKStKKFSs0ffp0rVu3TuHh\n4frJT35SH7UCcGdlZcrf84l2zFylmIObFWQ/Z47Hxkrz5km8mwYAgNu5aZjp0aOHtmzZcsPxlStX\n1klBANzcpUtmc8svvpBOnDAfU1Kkr75SgKRHfzityMNPWx+YoMe2LrWyWgAAYKE7XgAAAG5bWZl0\n9Kj08cdmiNjx42Zjy8uXpfx8qfLCIk2aSD4+Om8L0Lee9+rTZrFaHjZLkSF79Jg1XwEAAGgACDMA\n6k5RkVlF7GoPy9WPn39uHqvMy0saOFDq1Enq2LH8Y7t2kqenXnnuX9q1a5RsNpscDociIuz1/iUB\nAICGgzAD4M44HFJ6uvSPf0j79pnA8s030oULZt+Xyry8zGaW+fkmpHTrJt1/v5nM37ZtjZeaMydG\nCQlblZ7uq4gIu2bPHlA3XxMAAHAJhBkAt6agQNq928xpqdzTcvHijefbbFLz5tKYMVLnzuU9Le3a\nmWFjTggMDNDChaPu7OsAAACNBmEGQDmHQ8rOlv77X2nlSunYMdPrcuGCVFJy4/leXlL79tLgwVJW\nlgkt999vlku+5576rx8AALgVwgzgjgoLpZ07TU9L06bSqVPlPS0XLtx4vs0mNWsmhYVJEyZIPXua\nXpbISKd7WQAAAO4Uf4UAjVl2dnlIeftt6csvpZycqntZmjSRoqKkQYPMkLBLl6QuXaRhw6QOHeq/\ndgAAgJsgzACurqjI9LLs2SP95z9SQIBZ5viLL6Tz528832Yz54SFmSFiY8dK0dFmWJiXV/3XDwAA\n4CTCDOAqcnIqTrzftEn6+mupuPjGcz09TS/LgAHlyxsHBEg9epjPAQAAGgHCDGCh3Nx8JSSkKD3d\nV23aFGnO9D4KPPKZtGuX6WU5eVLy9pYyMsyQscpsNjPn5WovS8+e0sMPS337mucBAAA0YoQZwCrF\nxXr7yeWK2l2kR+yp6lGwR83eqCawREVJ/ftX3EgyMlIKD5c8POq/dgAAgAaAMAPUl4ICafVqRWzf\nLuXlSZ98ov+zl+9gb7f56pKnr3zbhZvw0rOnFBMjDRliVhIDAABABYQZoK4UFEhr1kgbN0qHDpk5\nL5JCrj7erZt2e0Zqc95EHQmIUbZnqAYP2camkAAAALeIMAPUluJi6eBB6d//Nrddu6TLl8sf9/GR\n7r1X3/fpo7sWLJCCg3Vfbr7eT0hRs/ST6hpxRLNnD7CqegAAAJdDmAGcVVAgrV0rffCBZLdLn3xi\nlkm+qksXs6rYyJHSE0+Y+5K+S03VXcHBkqTAwAB6YgAAAJxEmAFu1eXLZuPJd9+VUlOvDRu7pls3\nM79lyBCz8eQPgQUAAAB1gzADVKfysLHKPS8+PlKHDqbn5emnpXbtLCoUAADAPRFmgKuKison7BcW\nmn1erg8vXbtKd90l3XefNGmS6YkBAACAZQgzcF8lJdL69dKqVWbY2PnzFR/v2rXisLGQkKpeBQAA\nABYhzMB9lJTcOGyssLD88euHjf3iF9cm7AMAAKBhcirM7N+/X88884w6dOggh8Ohjh07aubMmbVd\nW4OQm5uvhIQUpaf7qk2bIs2ZE6PAwACry8KtKCqS3nnHTNj/5htzuz68dOliNqYMDTWrjTFsDAAA\nwKU43TPTr18/JSYm1mYtDVJCQoq+3Hqvnvp+jsokfbL/7xr9/P+YeRNRUZKHh9Ul4qqSEmn7dikx\n0fTAVB421qVLxWFjoaFWVAkAAIBa4nSYcTgctVlHg5We7qtHclbp4ZxV5kCKpJRV5SeEhUnt20ut\nW0vh4eUfS0qkNm3MO/8tW1pSe6NXUmLmulwdNrZnT8WeF29vM2wsNtYMG6PnBQAAoFFxOsycPn1a\nkydPVm5urqZMmaIBAxrnzuVt2hRpZdhLKvAMVJT9iDr7/Ucdm5WYd/3z8qTSUiklRSorq/5FbDbz\nh3XTptLAgWZieeXwExIiNWEKU42uHzZ26JAJLpU3qRwyxPw7x8cTXgAAABo5m8OJLpbMzEwdOnRI\nDz74oNLT0zVx4kRt27ZNTar5Yzw1NfWOC7VKfn6hli9PU2ZmoEJDc/WrX0UqIMC/4kmlpfLKyZHX\nuXPyys6W97lzar5jh7wzMtQkL08edrtsJSWy1XAdhyR5eKjM21tXmjZVaWCgSoKCdHHQIF1u21Yl\nISEqCQ7WlaZNTThyB6Wl8jtxQnetWCH/o0fV5OLFCv+Gl8LDlTdggAr69FF+794qbdXKslIBAABQ\nO/r06XPL5zoVZiqLi4vTG2+8odatW1f5eGpq6m0V1WidO2d2jc/IkL77Tjp7tvzj9u1Sfr7p6amJ\nn5/pzcnNlXx9TY9O69ZSZKQZUjV8uNS2rVmZq5IG3w4lJabH5fphYwUF5Y97e5shfVeHjXXvblWl\nd6TBt4MboA0aBtqhYaAdrEcbNAy0Q8Nwu+3g1LimLVu26MyZM5o6darOnz+vnJwchTKZ+uZCQsyt\nU6fqzykrk06elI4ckY4fN5PUrw8/V29ZWeb8M2ekAwdufJ2goIpD2b7+Wu28vKR+/cz1u3eXOna0\ndmjbpUvS2rVm2NjBgya4XLpU/njnzmbY2NUA46LhBQAAAHXDqb9khw0bpmnTpmn8+PFyOByaM2dO\ntUPMcJs8PEzI6Nix5vMKCqSjR83tyy+ltDQTctq3Lw8+p05Jhw9fe0orSfrww4qvExFhFiq4fv5O\n69ZSdrYJPT17mkUOakNpqZmwv2yZtHmzucb1WrWSJk0qX22stq4LAACARsmpBOLv768lS5bUdi24\nHU2bStHR5laTvDyzv8qHHypr714FFxVJ339vgkRBgeRwSPv3S1eu1Pw6VxcwGD26Yvhp3Vq66y7T\nE+TnV2FfnrvD85XwqJ+aHjxgho3t3l31sLERI8w+Lz163PE/CwAAANwH3SmNXbNmZlWvbt30TWqq\ngqsag1hWZubzXO3ROX1aeu89KTPTzPEpKJAuXzafr1lT/bU8POTr4aUZai5PxxUFXLmgJm9eF5I6\ndTK9Lv37mx4fwgsAAADuAGEGZmhbWJi59e5tjj377I3n5eebuTqVFy/48ktp1y6psFBepZcVpExJ\n0mWbj3a0G62R8/5XGjyYYWMAAACoVYQZ3LqAAHO7555qT3n+mQ90cnsnedlK9I3PvRo8eKtGPj6q\nHosEAACAuyDMoFbN+f1AJXiaOTODI77W7NmNczNVAAAAWI8wg1oVGBighQvpiQEAAEDd87C6AAAA\nAABwBmEGAAAAgEsizAAAAABwSYQZAAAAAC6JMAMAAADAJRFmAAAAALgkwgwAAAAAl0SYAQAAAOCS\nCDMAAAAAXBJhBgAAAIBLIswAAAAAcEmEGQAAAAAuiTADAAAAwCURZgAAAAC4JMIMAAAAAJfUxNkn\nzps3T4cPH5bNZtOMGTPUvXv32qwLAAAAAGrkVJg5cOCAzpw5o6SkJJ0+fVq/+93vlJSUVNu1AQAA\nAEC1nBpmtnfvXo0YMUKSFBUVpby8PBUWFtZqYQAAAABQE6fCTHZ2tlq2bHntfosWLZSdnV1rRQEA\nAADAzTg9Z+Z6DofjpuekpqbWxqVwh2iHhoF2sB5t0DDQDg0D7WA92qBhoB1cj1NhJiQkpEJPzLlz\n5xQcHFzt+X369HHmMgAAAABQLaeGmcXExCg5OVmSdOzYMYWGhsrPz69WCwMAAACAmjjVM9OrVy91\n7dpV48aNk6enp2bNmlXbdQEAAABAjWyOW5nwAgAAAAANjFPDzAAAAADAaoQZAAAAAC6JMAMAAADA\nJdV5mJk3b57GjRun8ePH6+jRo3V9OVRjwYIFGjdunOLi4rRt2zary3Fbly9fVmxsrDZt2mR1KW5r\n8+bNevTRRzVmzBjt3LnT6nLcUlFRkZ5++mlNnDhR48eP1549e6wuya2cOHFCsbGxWrt2rSQpIyND\n8fHxmjBhgp577jmVlJRYXGHjV7kNvv/+e02aNEnx8fF64okndP78eYsrdA+V2+Gq3bt3q1OnThZV\n5X4qt0NpaammTZumuLg4TZo0Sfn5+TU+v07DzIEDB3TmzBklJSXplVde0dy5c+vycqjGvn37dOrU\nKSUlJWn58uV69dVXrS7JbS1evFjNmze3ugy3dfHiRb311ltKSkrS0qVL9dFHH1ldklt6//33dc89\n92jVqlVKTEzkd0M9stvtmj9/vmJiYq4dS0xMVHx8vNasWaO7775bGzdutLDCxq+6Nhg7dqxWr16t\n4cOHa+XKlRZW6B6qagdJKi4u1rJlyxQSEmJRZe6lqnZYv369WrVqpQ0bNmj06NE6ePBgja9Rp2Fm\n7969GjFihCQpKipKeXl5KiwsrMtLogp9+/ZVYmKiJKlZs2ay2+1iEbv699VXXyktLU2DBw+2uhS3\nlZKSopiYGPn6+iooKEi///3vrS7JLbVs2VIXLlyQJOXm5qply5YWV+Q+fHx8tHTpUgUFBV07tn//\nfg0dOlSSNHToUKWkpFhVnluoqg1mz56tUaNGSTLfH7m5uVaV5zaqagdJWrJkieLj4+Xl5WVRZe6l\nqnb4+OOP9cgjj0iS4uLirv18qk6dhpns7OwKv6RatGih7OzsurwkquDh4SFfX19J0oYNGzR48GDZ\nbDaLq3I/CxYs0PTp060uw62dPXtWdrtdv/nNbzRhwgTt3bvX6pLc0oMPPqiMjAyNHDlSEydO5Pui\nHnl4eMjb27vCMbvdfu0Pt1atWikrK8uK0txGVW3g6+srDw8PlZWV6Z133tHDDz9sUXXuo6p2SEtL\n06lTpzRy5Eje9K0nVbXD2bNntXPnTsXHx2vatGnKy8ur+TXqssDK+I9hre3bt+u9997Tyy+/bHUp\nbmfTpk3q27evwsPDJfG9YBWHw6GLFy9q8eLFmjdvnmbMmGF1SW5p8+bNCgsL09atW/XXv/6VHrIG\nhJ9N1ikrK9MLL7yg/v37q3///laX45bmz5/PmysNgMPhUFRUlFavXq327dtryZIlNZ7fpC6LCQkJ\nqdATc+7cOQUHB9flJVGN3bt3a9myZVqxYoWaNm1qdTluZ+fOnfr222+1detWZWRkyMfHR2FhYYqO\njra6NLcSFBSkXr16yWazKSIiQv7+/srJyWGYUz07dOiQBg4cKEnq1KmTMjIy5HA46DG2iL+/v4qL\ni+Xt7a3MzEzmCljkpZdeUmRkpKZMmWJ1KW4pMzNTaWlpev755+VwOJSVlaX4+HitXr3a6tLcTlBQ\nkPr27StJeuCBB7Ro0aIaz6/TnpmYmBglJydLko4dO6bQ0FD5+fnV5SVRhYKCAr3++utasmSJAgIC\nrC7HLf3pT3/Shg0btG7dOsXFxWny5MkEGQvExMRo3759cjgcunDhgoqKiggyFmjbtq0+++wzSWY4\ngZ+fH0HGQtHR0dd+VycnJ18Lmqg/mzdvlre3t6ZOnWp1KW4rNDRUycnJSkpK0rp16xQcHEyQscig\nQYO0a9cuSSY/REZG1ni+zVHHfcoLFy7U/v375enpqVmzZqljx451eTlUYf369Vq0aJHatWt37d3P\nBQsWKCwszOrS3NKiRYvUpk0bPfbYY1aX4pbWr1+vDRs2yGazafLkyRoyZIjVJbmdoqIizZgxQ+fP\nn9eVK1f07LPPql+/flaX5RYOHz6smTNnKicnR56engoMDNSKFSs0ffp0FRcXKzw8XPPmzZOnp6fV\npTZaVbVBWVmZfHx85O/vL5vNpvbt22vWrFlWl9qoVdUOa9asUWBgoCRp+PDhrHhZD6r7mTR37lxl\nZWXJ399f8+fPr/GNxzoPMwAAAABQF+p1AQAAAAAAqC2EGQAAAAAuiTADAAAAwCURZgAAAAC4JMIM\nAAAAAJdEmAEAAADgkggzAAAAAFzS/wMJGIC0sYvqaQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(1)\n", + "X = np.linspace(1,15,10)\n", + "Y = [2*x + 2*np.random.normal(0,1) for x in X]\n", + "\n", + "X2 = X**2\n", + "X3 = X**3\n", + "X4 = X**4\n", + "\n", + "simple = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(X[:len(X)/2])).fit().params\n", + "complicated = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(np.column_stack([X[:len(X)/2],X2[:len(X)/2],X3[:len(X)/2],X4[:len(X)/2]]))).fit().params\n", + "\n", + "simple_model = simple[0] + simple[1] * X\n", + "complicated_model = complicated[0] + complicated[1] * X + complicated[2] * X2 + complicated[3] * X3 + complicated[4] * X4 \n", + " \n", + "fig, axes = plt.subplots(nrows = 2, ncols = 1)\n", + "\n", + "axes[0].plot(X[:len(X)/2], simple_model[:len(X)/2], c = 'r');\n", + "axes[0].plot(X, simple_model, c = 'r', linestyle='--');\n", + "axes[0].scatter(X, Y, alpha = 0.8);\n", + "axes[1].plot(X[:len(X)/2], complicated_model[:len(X)/2], c = 'r');\n", + "axes[1].plot(X, complicated_model, c = 'r', linestyle='--');\n", + "axes[1].scatter(X, Y, alpha = 0.8);\n", + "plt.ylim(0,35);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more information on overfitting, refer to the [Dangers of Overfitting Lecture](https://www.quantopian.com/lectures/the-dangers-of-overfitting). \n", + "\n", + "To see if our unemployment model is overfit let's conduct an out-of-sample validation test. We will use the 2002-2012 data to fit the model and then the 2012-2017 data to test it." + ] + }, + { + "cell_type": "code", + "execution_count": 1081, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAHBCAYAAABkCVTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4lHW2B/DvpPdOSE9IQHpCCSAi0i2oi22tWFbdVXcX\n27rWe12vq6Lucy2s7hXXrogFxIKuiCAKooQESOiEJCQhjTRSSJ+Z+8fJm0mZzEymT+b7eR6eN7zz\nll8YCO+Z8zvnp9JqtVoQERERERE5KQ9HD4CIiIiIiMgQBi1EREREROTUGLQQEREREZFTY9BCRERE\nREROjUELERERERE5NQYtRERERETk1EwKWo4cOYIlS5ZgzZo1PfveffddTJo0Ca2trTYbHBERERER\nkdGgpbW1Fc899xzmzJnTs+/zzz9HY2MjoqOjbTo4IiIiIiIio0GLr68vVq9ejaioqJ59F1xwAVas\nWGHTgREREREREQEmBC0eHh7w8fHps8/f399mAyIiIiIiIuqNhfhEREREROTUvCw5WaVSmXRcTk6O\nJbchIiIiIiI3MX369AH7LApatFottFqt2Td3FTk5OS49fnfA98j58T1yfnyPnBvfH+fH98j58T1y\nfoMlO4wGLbm5ufiv//ov1NXVwdPTEx999BEyMzORnZ2N6upqXH311cjMzMQTTzxh7TETEREREREZ\nD1oyMjLw1Vdf2WMsREREREREA7AQn4iIiIiInBqDFiIiIiIicmoMWoiIiIiIyKkxaCEiIiIiIqfG\noIWIiIiIiJwagxYiIiIiInJqDFqIiIiIiMipMWghIiIiIiKnxqCFiIiIiIicGoMWIiIiIiJyagxa\niIiIiIjIqTFoISIiIlJs3Ag0Nzt6FETUD4MWIiIiIgDIzgYuu0x+EZFTYdBCRERE1N4O/O53gFoN\nPPqoo0dDRP0waCEiIiJ6+mngwAHgzjuBhQsdPRoi6odBCxEREbm3vXuBZ54BkpKA55+Xfa++Ctx9\nt2PHRUQ9GLQQERGRe/vyS5kW9u9/A8HBsu+zz4B//hNoaHDs2IgIAIMWIiIicnd/+xuwbx9w/vm6\nfTNnyjY72zFjIqI+GLQQERERZWT0/b0StOzaZf+xENEADFqIiIiI+lOClqwsx46DiAAwaCEiIiIa\nKD4eiIuTTItW6+jRELk9L0cPgIiIiMjuKiqA2FjDx/zzn0BEhH3GQ0QGMdNCRERE7mX7diA5GfjX\nvwwfd8UVwPz5gEpll2ER0eAYtBAREZH70GiA++8HOjuB6dMdPRoiMhGDFiIiInIfa9dKG+PrrgNm\nzXL0aIjIRAxaiIiIyHS7dgGvveboUZjvgw9k+/TTjh0HEQ0JgxYiIiIy3ZNPAnfdBRQVOXok5jl4\nULqCjRrl6JEQ0RAwaCEiIiLT1dXJ1hUXXdRogKVLgWuuMf2cH34AJk0C3n3XduMiIqMYtBAREZHp\nGhpk++uvjh2HOTw8ZGrbCy+Yfk5IiGRnXPH7JRpGGLQQERGR6U6flq0rZlrMMXky4OsLZGU5eiRE\nbo1BCxEREZlOybTs2QO0tzt2LPbg4wNMnQrk5QGtrY4eDZHbYtBCREREpunsBFpa5OuODiA317Hj\nsZeZM4GuLuCeexw9EiK3xaCFiIiITKNkWTw9ZesuU8Ruuw2YPRtISHD0SIjcFoMWIiIiMo0StJx9\ntmxdqTi9sVHaNf/889DPTU8Hdu4EHn/c+uMiIpMwaCEiIiLTKEFLZiYQHu5amZYDB4C//Q3YsMHR\nIyEiMzBoISIiItMoncPCwoBZs4CCAqC62rFjMtXBg7KdONE61ysqAlatAo4ds871iMggBi1ERERk\nGiXTEhoqQQvgOq2ADxyQrbWClp9/lsL8r7+2zvWIyCAGLURERGQaJWgJC3O9uhYl0zJhgnWuN2eO\nbHfutM71iMggBi1ERERkGmV6WGiotAEGXKeu5eBBIDkZCAqyzvVSUoCYGMm4aLXWuSYRDcrL0QMg\nIiIiF9F7elhEBDBmjEwP02gADyf+HFSjAR55BFCprHdNlUqyLevXA8XFEsQQkc048U8YIiIiciq9\nC/EBmSLW0AAcPeq4MZnCwwO4+25gxQrrXleZImZOG2UiGhIGLURERGSa3pkWQFeMb2yKWF4e8Npr\nthuXo1xwAfDEE8DUqY4eCdGwx6CFiIiITNM/aDG1GP/WW4G77gJKSmw3NkeYMEHWfrFWcT8RDYpB\nCxEREZmmdyE+ICvF+/kZzrTk5gI5OfL1yZO2HR8RDVsMWoiIiMg0DQ2Avz/g4yO/9/YGpk2T6V9n\nzug/5803dV9XVNh+jEQ0LDFoISIiItM0NOiK8BVnny3dufQtMtnWBnzwge73jghaamqAa64BPv7Y\n/vcmIqth0EJERESmOX1aNzVMceGFsn3qqYHrlXz+OVBfr6t9cUTQcuAA8MknwN699r83EVkNgxYi\nIiIyTquVTEv/oGXxYuDii4GtW4GPPur7mjI17L/+S7ZDCVrWrQOWLQOam80fMyCLSgLAxImWXceQ\nZ5+V9sddXba7B5GbY9BCRERExrW1AZ2dA6eHqVTAqlVSkH///boOYydOAN9/Lw/z8+fLvvJy0+5V\nVQX89rfAl1/K4o2DKSkB9u83fC17BC0FBcDOnfA/ftx29yBycyYFLUeOHMGSJUuwZs0aAEBlZSVu\nvPFGLF++HPfddx86OzttOkgiIiJysP6dw3pLTQUeewyorAQef1z2vf22bG+7DQgMBEJCTM+0/PWv\nsl22DLjxRv3HtLdLQJSeDsyeDaxZA3R0DDzu4EEJrMaPN+3e5uheZDIoN9d29yByc0aDltbWVjz3\n3HOYo6z6CuDll1/GjTfeiA8++ABJSUlYb+hTECIiInJ9/ddo6e+vfwXGjAFeeUVaHL/9NhAUJBkT\nAIiNNS1o+fFH4P33ZcHG9etlNXt93n9fWiiPGiUtl5cvB954o+8xWq0ELWlp0vXMVs45BwAQlJdn\nu3sQuTmjQYuvry9Wr16NqKionn1ZWVlYsGABAGDBggXYuXOn7UZIREREjqdkWvpPD1P4+gKvviqd\nxC6+GCgtBa69VgIXQIKW6mqZYmbI//yPZEb+7/8AT8/Bj6uqkuzNjh1Afr4ETcuXDzzu44+BF180\n/v1ZYswYYMQIBDLTQmQzRoMWDw8P+Cj92Lu1trbC29sbABAZGYnq6mrbjI6IiKifovIGbNh2HGqN\n1vjBZD3GMi0AsGSJtBeuqpLf33ab7rXYWNlWVhq+z/r1MtVr1izDxz32mNTIxMVJJuX55yWI6U2l\nAhYtAi65xPC1LKVSAbNnw7ey0vS6HSIaEi9LL6Dt395wEDnKarguytXH7w74Hjk/vkfOzxXeoze+\nO4WTNR0oPFGK+ZNDjJ8wjDjy/QnfuxepAEoaG1FtYBzet9yCiRs3oj0+Hoe9vGSqGIAEDw+MBHB4\n61a0TJpk+GZnndVznqvwvekmaG+/HR3l5VxE08m5ws85GsisoCUwMBAdHR3w8fFBVVUVoqOjjZ4z\nffp0c27lFHJyclx6/O6A75Hz43vk/FzhPSqtasLJmpMAgB8PNGLxnEnIGDPCwaOyD4e/P90PekmT\nJyPJ2DgOHkSAvz+m934+mDoVWLMG48PCgKF+H5WVskjlPfcA3TM9nM706Y5/j8govkfOb7Cg0qyW\nx7Nnz8amTZsAAJs2bcLcuXPNHxkREZGJNmeVAAAum5cGD5UK/7smB/VNbQ4elZswZXqYIjkZ6P+B\npjI9zJwsxDPPSM3Kl18O/VwiGhaMBi25ubm49NJLsXbtWqxevRqXXnop/vznP2PDhg1Yvnw5Ghsb\ncfnll9tjrERE5Ma61Br8kF2K4AAf3LR0PG6+eALqm9rxwju/Qn3vvdJJimxHCVoGK8Q3RglazKn5\nuOsu2b70knn3JiKXZ3R6WEZGBr766qsB+9966y2bDIiIiEif3Ycqcbq5Hb+ZmwpvL09cNi8N+wtq\nsPtQFdb9Wo5rPv0UuO8+Rw9z+DK0TospDGVaamsli3L22frXUxk/HliwAPjhByApSRaUNHccROSS\nLC7EJyIisgdlatiSWckAAJVKhXuT23DPr9X4cPa12F7eAfxja8/x08eNxC2XTIBKpTJ67S61Bv9a\nl4tjJfV99seNCMJDN2bC09Os2dTDy1Cmh+kTFydbfUHL3r3ArbcC//3fwJNP6j//rrskaDl1amCX\nMGeiVgOtrbpWz0RkFfwpTERETq+2oRU5h6swJjEMKbHdD6xdXQi5/248vPF5xDRUok7thbrGNtQ1\ntqGyrgWfbTuOL34qMOn67359CJuzSnCqvqXnGhW1LfhlfwXyS0/b8DtzIcbWaTEmOBgICNAftBR0\nv09paYOff8UVwLPPAllZ0mLYCfkdPy5/Po8/7uihEA07zLQQEZHT25pdCo0WWDIzSbfz//4P2L8f\nYxcswOq3/wTccgvwwtsAgPrGNtzzwja8vfEQxiSGY2Jq5KDX/jm3HJ//WICE6CD87z3nIcBPulPt\nyC3Dc+9lI+94DcalRNjy23MNDQ0SLAQHm3e+SiVTxPTVtJgStHh6Ag89ZN697aQjPh5oaZHAiois\nipkWIiJyalqtFpuzSuDj7YnzpibIzlOn5NPs0FBZhR3QTV8CEB7ih4dumgEAeO693ahv1N9h7OSp\nJrz88R74+XjikZtn9AQsADA5LQoAkHecCygDkD/fkBDAw4JHh9hYee/U6r77TQlaXIDG3x+YOBHY\nswfo6nL0cIiGFQYtRETk1A4W1qKi5gzmpMci0L87qHj0UZmu9Pe/A6NHy75eQQsATEyNxC3dHcae\n/yAbarWmz+tt7V1Y+e5utLarseLqKUiK6VsnERrki5TYEBwuqkNHZ7+HbHd0+rTlxe+xsYBGI4FL\nbwUFMnUsJsay6zuDmTOlpuXQIUePhGhYYdBCREROrX8BPrKygDffBCZPluJsb2/A339A0ALIei6z\nJ8fiQEEt3v3mMJpbOnp+vbouFyWVTbjk3FG6DE4/6WOi0NGlwdHier2vu5WGBsuDlsGK8S+7DPj9\n7522VmVIZkiGj1PEiKyLNS1EROS0Wto6sSO3HLFRgZik1KU8+6xs//lPwKv7v7HQUL1Bi0qlwr3X\nTkVxRSM2bDuODduO93l9bHI4br100qD3zxg9Al/+VIjc49WYPDrKKt+TMRqNFve9+CPGJofjj1dl\n2OWeRmk0QGOj+UX4it5rtUybptv/xBOWXdeZzJgBBAYC9Qx0iayJQQsRETmtHbnl6OhUY9GMRGld\n3NoKbNoEjB0LzJunOzA0FKir03uNAD9vPH772fho81G0tevqDIIDfHDDhePg7TX4pIOJqZHwUAF5\n+TXAhVb7tgw6Vd+CwvIGNLV22OeGpmhqArRa60wPA/R3EBsupkyRANrT09EjIRpWGLQQEZHT2rK7\nBCoVsGB6ouz4/nvpzrRsWd8DQ0KAoqJBrxM/Igh/uX76kO8f6O+N0YlhOFZSj9b2Lvj72v6/zcIy\nyRhV17eirb0Lfna4p1GWrtGicIegxZJGBUQ0KP7LIiIip1Re04xDRXVIHx2F6PAA2fnFF7LtH7SE\nhgIdHUB7u9XHMTktCmqNFoeL9GdyrK2wXDfNrbzmjF3uaZQStFg6PczQApNERAYwaCEiIqe0NbsU\nALBoRvfaLGo18NVXQHQ0MGtW34OVDICeuhZLpY8ZAcB+rY+Lyhp7vj55qsku9zRKWVjSWpkWfWu1\nEBEZwKCFiIicjkajxdbsUvj7emH2pO4H3V27pFXupZcOrBewYdAyISUCXp4q5B6vsfq19Smq0H0P\nZaea7XJPo6w1PSw8HPD17ZtpeeUV4I03LLsuEQ17DFqIiMh5tLcDa9bgwJFyVNe34tyMOF1Nx2BT\nwwCbBi1+vl4YmxyBwpOn0dxi2+L4ppYOVNe3InFkEADgpLMELUqmxdLpYSqVrMXSO2h56ingmWcs\nu64zKi0F/vMfR4+CaNhg0EJERM7j3/8Gli/Hljc2Aug1NQyQoCUgAFi8eOB5NgxaACB9dBQ0WuBA\nYa1Nrq8o6q5nmTE+Bj7enjhZ7SRBi7UyLYBMEauslDbKzc1AVZVugdDh5JZbgKVLbfZ3ksjdMGgh\nIiLn8c03aPH2w89dYYgJ9saEURGy/+hR+XX++bKQZH92CFoAIM/GU8QKu+tZ0hJCET8iEGXVzdBo\ntDa9p0msVYgPSDF+VxdQWwsUFsq+tDTLr+tslEUmc3IcOw6iYYJBCxEROYe2NmDbNuyctADt3n5Y\nWPAzetZHV6aGXXaZ/nNtHLSMTQ6Hj7cn8vJtUIzf2Sl1HXV1PZmWUXGhSIgORnuHGrUNbda/51BZ\nqxAf6FuMX1AgXw/noCU727HjIBomGLQQEZFz2L4daG3FlgXXAAAWfvkG8M038trnn8v6FxdfrP9c\nGwct3l6emDAqAsWVTTjdZOW2yu+9B6xYATz1FIrKG+Dj7Ym4EUGIH6HUtThBBzFrTw8DpK5lOAct\nU6fKdt8+x46DaJhg0EJERM7h229RGToSBxCGyTH+GHmmFrjvPilo/vVX4Nxzgago/efaOGgBdFPE\n9hdYeYrYJ58AADrXb0BpVRNSYoPh6aFCQrQELWXOUNdizelhvYOWOXOAxx7TPeAPJykpQHAwkJvr\n6JEQDQsMWoiIyCmov92EV8//MwBgycLxwB//COTnA5dfDmi1+ruGKewQtGR0r9fy6wErLoxYUwNs\n2QIAKG1VoUutxag4+V7io52og5g1p4f1XmBy9mzpHpaSYvl1nY2HB3DttcB558nfXyKyiJejB0BE\nRITSUqwNS8e+xMmYMWEk5k1NAEY9AaxZoytkdnDQMiYxDHFRgfh1fwXOtHYi0N/b8ot+/rksmjlv\nHgqrZe2Z1PjuoKV7ephTrNXS0AB4eelvgjBU7rTA5OuvO3oERMMGMy1ERGTc6dPAyZM2u3z2+h/w\n8dnXYKRXF+6/bho8PFRARATw97/LARMnGq57sEPQolKpsHBGIjq6NNiRa6UH7u6pYVi9GkXxZwEA\nUmNDAAD+vl6ICvVznpqWsDBZZ8VSvaeHERGZiEELEREZd/PNwJQp0uHLyqrqWvC/J/zg3dWBR5aN\nQVCAj+7FP/wBuPde4NlnDV/EDkELACyYngiVCtiyu8Tyi9XUAFu3SpepsWNRNHYaVFoNkqsKew5J\niA5GTUMbWtu7LL+fJU6fts7UMEDqkry8GLQQ0ZAwaCEiIuN275Z1NX75xaqX7ehU49l3stDs6Ys7\n8z5D2uzJfQ/w8gJefBG45BLDF/L1BXx8bB60RIcHIGP0CBw+UYdySwvkN2yQqWFXXw2tVovCgBGI\nPV0B/8/X9xwS7yzF+EqmxRo8PICRIxm0ENGQsKaFiIgMa27WPWBu3QosWGDWZarrW/HaZ3k43azL\n1pxp7URZ9RksPvA9zh8fbtn0o9BQoLHR/PNNtHBGIvblV2NrdimWXzTe4LGdXWq89tl+nKjoG0yl\nxofhD+vWwxsArroK1fWtONOlwpS6UuCndcDKlYCqVwexU80IstH3Y1RnJ9DSYr1MCyDF+Hv3Anff\nDfzpT8DYsda7NhENS8y0EBGRYceP677u7nQ1VF1qDZ5/ayeyDlWiqLwRJ7p/Vde3YqpHA+7c+jpw\n4YWWjTM01OaZFgCYPSkW/r5e2JpTanS1+je+OIDvdhWjsKyh53suLGvAt7+cwDudicDMmUBKSs+i\nkqlR/rJ2SXebXN1aLQ7MtFhzjRZFbCzQ1QX8859AXZ31ruuMsrOBp58GTp1y9EiIXBozLUREZFh+\nvu7rrCygqUnWnzCmowPYuBHYuhXvl/ngSOo8nHfkJzxQuhmqjRuBpCQ5bsYMABqzMzg9QkOBsjLL\nrmECP18vnJsRh81ZJdhfUNPTCrm/H3JK8c3OE0iJDcE/7p4LPx/5L7e1vQt/eeILfDn1EowLm465\nAArLJUOUOmsi8CaAdeuAKVOQEC1/zmXVzRg3wgpF8Oaw5hotCqUYHxieC0v29s03wN/+JmvRLF3q\n6NGQu9m8GZgwAYiPd/RILMZMCxERGaZkWjIypAZj+3bTzvuf/wGuvBK7v/kVn6XOQ1z7afwpqAKq\n/fslw5CVBVRXS0vjc881LRAyJDQUaG2V6Uw2tmiGBFyDFeQXVzTilU9zEeDnhUduntETsADSFeyR\n/R/Bv6MV/zwTj9Kqpp5My6hLFwABAcCnnwJaLSJD/eDr4+nYDmLWXKNFoQQt/v7ACP1B37CRkSFb\nLjJJ9nb0KHD++cDZZzt6JFbBoIWIiAxTMi133CFbU6eI7dyJmuAovHjN4/D28sBDj1yGgI8/BFat\nkmBl3jzg/vtl4T1Lp4YBdusgBgATRkUgJjIAO/dXoKWtb5DU0taJle9moaNTjXuvnYq4Ef2qUaqr\nkfjtBqwo/BatnRqsfDcL+SX1CAn0QcTIcPk0/tgx4OBBeHioED8iCGXVZ6Bx1AKFtpoeBkjAYo02\nys6MQQs5Sna2bG3Yrt6eGLQQEZFh+fnS8emGG6RL19atxs/RaqHel4vnr3wMTR1a3L5sUs+iiVix\nAvjqK+kM9sEHss/FghaVSoWFmUlo71Bj+75ydHZpun+pserjfSirPoPL54/G7MlxA0/u7ho2d+Fk\n/GZuKkqrmlHT0IbUuFCoVCrgqqvkuE8/BQAkjAhCR6cajS1qm39fetliepiySKWl2TVXkJwMhIQA\neXmOHgm5m127dF83OcF6TxZi0EJERIbl5wMpKfLgdc45wL59ssaIIUVF+Cr1XByOGIU5GXG4aHZK\n39eXLgV27pQHukmTgPR0y8dpx6AFABZmJgIAXvl0H6546KvuXxvxc145JqZG4ualejqLNTUBL70k\nX191FW65ZCLGp0QAAEYpQd3FF8tD/Zo1gEbT00GsptFBa7XYYnrY5O7W1rNnW++azkqlkr/fR4/K\n9EUie7ngAmDaNODnn3UfFLgwFuITEdHgGhuBqir5zw8AFi0CfvgB2LZNlxHQZ+9e5CbJtJg7Lpss\nGYT+Jk+WTlnt7daZImTnoGVkRACWXzgOBwpr++wPC/bFrZdMhKdnv88F1WrguuuAw4cl25ScDG8A\nD92UiQ/+cwRLZnY3JggKAq65BnjnHWDLFsRHS/BT02j7Wh29bDE9bMoUmQI3apT1runM7rgDuPJK\n+TtAZC8XXyy/hgkGLURENDilCH/MGNkuXCjbrVuNBi0F0WmI8lMhPMRv8OM8PaXw3BrsHLQAwDVL\nxuIaUw9+6CHg66+lMPaFF3p2R4b6455rp/Y99s47JWh57TUkrHoLAFDr6EyLNaeHAbq/U+5g+XJH\nj4DI5XF6GBERDU4pwlceMDMzJRNgpBi/Pu8I6oMikJYYbuMB9uKAoMVkb74J/O//AuPGAR9/LPU8\nhsycKdmIL75AXJe0Q3bY9DBbZFqIiIaIQQsREQ2uf9Di7S1dv44dM9iRpuCkfDqfNsqO7WydNWjZ\ntk0yJxER0oDAlIyFSiXnqNXwe+8djAj3d3zQYu1MCxHREDBoISKiwfUPWgDdFLEfftB/TmUlCrwl\nw9LTMcwenDFo6eiQ+hQAWL8eGD3a9HOvv166a73+OuKjAtHUqh7QXtkubFGIT0T256i26VbCoIWI\niAaXny9TmVJSdPuUoGWwKWJ796IwOhUAkJZgx0/nQ0Jk60xBy8GDwKlTwC23APPnD+3c4GCphTh5\nEkkt0q1tZ16F1YdoFKeHEbmWujrgkkuADz+U32/YACQkAJ984thxWYhBCxERDS4/Xzo89a7BSE8H\nIiOlGF/fJ3d796IgOhUh3kBkqIEifGtzxkzL3r2yzcw07/zuBT0v/nEtfL1VeG1DHoorGq00OBM1\nNEizBG9v+953uNm5U7JnP/3k6JHQcJeVJU0/Dh+W34eEAGVlLr/AKYMWIiLS7/RpWY+l/5QmDw9g\nwQKgtFTXXayX5n0HUBUWg9TYYP2tjm1FCVoa7fxQb8iePbKdNs288zMygNmzEffVJ7hyjBbtHWqs\nfDfLvtPETp9mlsUaamuBtWuBjRsdPRIa7rKyZDtzpmwzpP08gxYiIhqe9NWzKJQpYps2DXipqFjW\nLUlLG2mrkennrJkWT0/dYormuOsuQKvF/B2f4/L5o1FWfQarPt4Hrb3mpzc0MGixhsWLgREjgH//\n27kCaxp+du2S7axZso2KAuLjZWFgF8aghYiI9DMUtCxbJhmXd9/tu7+hAQVdMiUsLd7O3ab8/WUa\nm7MELWq1fLI5YQLgZ8E0uauuAiIiEPXFF7h5cRompkbi57xyfPFTofXGOhitVv482TnMcv7+wD33\nSObq9dcdPRoarrRaCVpSUoDoaN3+KVOA8nLJnrsoBi1ERKSfoaAlLk5WWs7O7vvp3b59KOgpwrfz\np/MqlWQEnCVoyc8HzpwBpk41fqwh/v7A8uXwrq+H5y878eCNmQgL9sU7Gw/iUFGtdcY6mNZWoLOT\nmRZr+eMfZZ2jF14A2tsdPRoajgoLZSqiMjVMkZEhPyOPHnXMuKyAQQsREemn1KsMtnL57bfL9s03\ndfu6i/D9PbSIiQy07fj0caagRSnCtzRoAYBzz5VtTg4iQvzw4I2ZUGu0eP8/hy2/tiFco8W6wsNl\n/Z2ODuDQIUePhoajxERp+vDQQ333P/AA0NQEzJnjmHFZAYMWIiLSLz9fOkYlJel/felSIDYW+OAD\n+UQeQNvePJRFxGPUiAB4eNixCF/hTEGLpUX4vSndx3JyAACT06IwMTUSBwtrUXO61fLrD6a+XrYM\nWqznsceA4mLrBLNE/fn4ALNnD/y5Ex4OBDrggyQrYtBCRET65ecDqal92x335uUl64+cPi3rAAAo\nLqiExsMTaaPtXISvCA2VKVldDlo9vjcl0zJliuXXSklBV0iITMfrdt7UeGi1wPZ9ZZZffzBVVbLt\nPTeeLBMW5vIPj0SOwKCFiIgGqquTX4NNDVPceqts33gDaG1FwRnJrqQmhNt4gINwlrbHWq0ELWlp\nukUvLaFSoWXcOKCgoGeF+jnpcfD0UOGnvSctv/5glKBlpIOCUCKibgxaiIhoIENF+L2NHi0rvf/w\nA/DFFyh3N3XwAAAgAElEQVSMSgHggCJ8hbO0PS4pkaDPGlPDup2ZMEG+6J52FhrkiylnjcDxkw0o\nq2622n36YNBCRE6CQQsREQ1katAC6AryH3wQBdGp8FZpkTgy2HZjM8RZghZrFuF3axk3Tr7ormsB\ngPOmJgAAftpjPNtSWXsGL67dgxMVg2eh9h07hVc+3Yczrd2LVzJosb3aWmmPTWQPDQ3AqVOOHoVZ\nGLQQEdFAQwlarrgCCAtDV1k5TkQlIzncB16eDvrvxdmCFitmWlrGj5cvetW1nD0pBj5eHvhxb5nB\nxSY7OtVY+e5ubM0uxd/f2oXmlo4Bx5TXNOOZd3Zj06/FePnjvXI95eGGQYttnDghCwDee69MKSSy\nxMqVUoe4e7f+13fvlpqqZ5+177isxKz/VbRaLR5//HFce+21uOmmm1BUVGTtcRERkSMNJWjpXkek\nNCIBXV7eSEtz4AOuswQtSucwK2ZaOuLipANQr0xLgJ83ZkyMQVl1MwrLBv+e3/rqIArLGjAyIgCn\n6lrwwto90Gh0D8kdnWo89142Wtu7MDIiAL/sr8DnPxYw02JrYWFAQADwyivywElkiWPHgKKiwbv9\njRsna7Xk5tp3XFZiVtCyZcsWNDc346OPPsJTTz2FZ100YiMiokEUFUm744QE046/7TYURKcBAFKT\nImw4MCOUondHBy1798oCnNbsuqVSSevjXsX4ADBvajwA4Ke9+ruI/Zxbjq9/LkJSTDBW/WU+ppw1\nArsPVWHd1vyeY5SgZsnMJPxjxVxEhPjina8P4UCrj7RQtUYzARooLAz49ltpK/7YY8Dbbzt6ROTK\nCgvl50Rysv7Xg4OlOci+fS6Z2TMraDlx4gTS09MBAElJSSgtLTWYliYiIhdTXQ2MGAF4epp2/JQp\nKLzqZgBAWrwDV093hkzLqVNAWZlVp4b1mD5dtkomB8D0cSMR4OeFn/ae7JM9AaSOZdUne+Hr44mH\nbsxEgJ83HrhhOqJC/bDm28PIPVbdJ6j5w+WTER7ihwdvnAEAeP6sZahPGi0PQmQbcXHApk1ARATw\n+98DGzc6ekTkqgoLZXFJH5/Bj5kyRZqElJbab1xWYlbQMmbMGGzfvh0ajQaFhYWoqKhAvbIAFRER\nub7qaiAqakinFIwYBQ8VkBzrwE/l7d3y+OOPgS++6LvPBkX4PZSgpVddi4+3J86ZHIeahjYcPlHX\ns7+zS43n3s9GS1sX7roiHUkx8r6EBvnioZtnwMNDhec/yO4Jah6+aQb8fGRNnompkbhl6XjU+4fi\nufPugFqtsf73Qjrjxkmw4uPTZ/ofkcna2uTDktRUw8fNkA8kkJVl+zFZ2SArhhk2b9485OTk4IYb\nbsDUqVMRHR3NTAsR0XDR0SEP/SNGmHyKWqNFUXkjEkYG9zz4OoQ9My2trcDNN8tClt99ByxcKPtt\nUITfIzNTtv0ebM9Lj8H3u0vwyKs7oPLozopotdBogYWZiVg0I6nP8eOSI3DrpZPw+uf7AQD3Xjt1\nQMe3y6ZF4/CLb+KXMbNxxUNfGcy2+Hp74sk7ZmNcsgOnBrq62bOBQ4eAlBRHj4RcUUmJTPkyFrTM\nmgWMGiVBjotRaS2MNrq6unDeeedh586dgx6Tw08NiIhchnd1NdIvugh1S5agyMTi4Iq6Dqz+9hSm\npgZg2dmOe3D1KyzExKuvRvUVV6Dk0Udteq+gnByMveMOAEBXaCgOv/8+OuLiMOrhhxHx/ffY/9VX\n6IiNte5NtVpkLF6MruBgHPz8857dIVu24ustpShNHIPW0aN79kcGe2FpZhh8vAZOrNBqtfjxQBM8\nPYC5Ewdmx3xLSjDq2uV4+aYncTJtwqBD0mi0KKvtxKRkf1w1J9LCb5CIzOXR3AyPjg50RRj4GazV\nusR0z+lKVrkXsz4OO3LkCD744AM89dRT+PbbbzFz5kyzbu4qcnJyXHr87oDvkfPje+T8et6jvDwA\nQMRZZyHCxPfsi58KAJzC/FnjMH16og1HaURMDABghI8PRtj679s338j2ssvg9fnnmPz448DPP0sb\n2/BwTL74Yqs+HOTk5GB6ZiYwcya8Nm/G9NRU6SYGAA88gHu3bZNMU329yfdVEjd6tbYCHS14NKoG\nePiiQQ/TarX44/NbcbSsBWeNn4zgAAPz6Yc5/pxzfnyPTFBcDHh5AfHxDrn9YMkOs2paxo4dC7Va\njauvvhpr167FI488YtHgiIjIidTUyHYI08P2H5dzJqU5+JN2e04P++kn2f7738Af/iAdeW64ATh+\nXKaG2erTzP7F+Pv3A9u2ydcNDTJNxBpMbHesUqmwZGYyOrs02JZjfJFLInJiarVMUTQ2zcwBzApa\nVCoVVq5ciU8++QRr1qzBSPZvJyIaPqqrZWtiIb5Go8XBwlqMjAhAdHiADQdmgsBA6Xhm66ClsxPY\nuROYOFH+nFatkpoEZcqWLYrwFf3rWl55RbazZsnWWmswDGGNlgWZCfD0UGFzVjFrXImsQeOg5he/\n/irbjg6nq3tx0JLFRETktIaYaTlR0Yjm1k5MThtatzGbUKlkTRFbBy179gAtLcB558nvfX2B9esB\npYbFlkGLkmnJyZHWpe+/L5+MPvyw7O+e3mexU6dka0LQEh7shxkTRqKovBEFBha5JBOcOAG8/jpw\n9KijR0KONHYscOGF9r/v11/LdvJkoL3d/vc3gEELERH1pQQtJmZa9hfI8ZNHO0kRdmio7YOWH3+U\nrRK0ABKwfP01cNttwKWX2u7eycmypkd2NvDWW1J78qc/6bqVOSDTAgBLZsmCdpt3FVvn/u7q11+B\nO+6QRSfJPdXUyDRTDxMf07XaoWdFcnLkA4/+vv5aPoT55RfddFsnwaCFiIj6GuL0sAPdQcukVCfI\ntAD2CVqUepa5c/vunzoVeOMNWXnaVlQqmSJWWAi8+CLg7w/ceqssKhcWZv2gJTrapMOnj41GRIgv\nftxzEu2dauuMwR11L95ttYwZuR6lXq2yEti1y/jxNTW6nwOmuv9+4JZbgObmvvtfeAF46SWZautk\nGLQQEVFfQ5geptFocaCgFtERAYiOcHA9iyI0FGhqkoJSW1CrgR07gLQ0h3XX6ZkiVl4OLF8umReV\nCsjIkE9oz5yx/B5VVVIfFGlaBs3T0wOLZiThTFsXfskrt/z+7uqss2SRSQYt7ksJWvbulQ8mjCks\nlK3STdAUM2dK3Uz/Tl2LFgF33mn6deyIQQsREfWlZFpMeFgtrlTqWZxkahigm9LQ1GSb6+/fL5mc\nefNsc31T9G7ZumKF7uuMDJkqsn+/5fc4dUoCV1OnqABYPFMWsdycZaUOZu7Iy0saPBw4YLvAm5yb\nErQAQG2t8eOVoGUoHb+Uxh2mZHKcBIMWIiLqq6ZGitl9jK+3obQ6dooifIWt2x4rU8N617PY28yZ\nEkwsWCAFs4qMDNlaY4pYVZXJ9SyKuKggTEqLRN7xGlTWWiHb467S06VG4fhxR4+EHOHECfnQKCBA\nmm0YU1Qk26EELcoaiwxaiIjIZdXUmNw57EChfAo4yZmClpDu1d2Hc9CSmAhs2QJ8+GHf/dYKWlpb\nJVNlxpIGS2ZKQf73zLaY7/LLgUcflYdWcj+7dgFHjkjgYkrQYk6mJTFRFuPNytL/elYWcM89TjVN\nkUELERHpaLUyPcyEInypZ6lBdLg/RjpLPQtg20yLVitBS0KCtBl2pPnz5aGjt4kTpQ7F0qBliEX4\nvZ2THosAPy9s2V0CtYZrtphl2TLg6aflwZLcj0olP4MjIkwLWhoaJPOanDy0e9x1l3Q77Ooa2H3s\n6FFZf2rHjqGN3YYYtBARkU5TkyycaELQUlzZiKaWTufKsgC6oKWx0frXPnJEgrrzzrPdiveW8POT\n9R3y8ixbnG6I7Y77DMHHC3OnxKOmoQ37j1ebPwYid3f++cDSpfJhiSGffirNN/z8hnb9xx8HnnhC\nPuiYMEHupZg0SbbWqI+zEgYtRESkoxThmzA9rGd9Fmcqwgdsm2lxhqlhxmRkSBtTZZ67OYawsKQ+\nCzMlQ7Alu9T8MRC5u+efB9auNe0DkqEGLL0dPCg/L3qvyzJ+vAQzBw6Yf10rY9BCREQ6Q1hY8kCB\nE9azAAxaTK1raW4G7r1XHoz6syDTAgDjUyIQGxWInXkVaGnrNOsaRGQnGzfK9uKLdfv8/IAxYyTT\nYizTYycMWoiISMfENVqU9VlGOFs9C2C7oEWrBX78UQK6ceOse21rMiVoycsDZswAXn5Zaif6P5RY\nGLSoVCosykxER6caO3K5ZguRSdragEOH7N/q+uuvJZtz4YV990+aJD9HT56073gGwaCFiIh0lOlh\nRjItJVVNaGrpwOS0KKicrbbDVkHLiRNAWZnz1rMoDAUtWi2werWs0XDkiASnjY1ASb9OXxYU4isW\nZCZCpQK2coqYefLzpXvTV185eiRkL7t3SzONRx6x3z3r6oCdO4HZswf+3L/rLmDNmr7TxhyIQQsR\nEemYOD3saLF0tJkwKsLWIxo6WwUtytzuzEzrXtfaYmIkGOkftLS0ANdeK6tdBwQAX34p08OAgW1N\nLcy0AEB0eADSR0fhYGEtKmq4ZsuQNTdL96ZvvnH0SMhelEUlp0wx/ZyKCsuajuTmStOOOXMGvrZw\nIXD99bo28g7GoIWIiHRMnB5WcFICgrSEMFuPaOhsFbQoayGkpVn3utamUkm25cSJvn8Gd98NfPKJ\nPJzs2wdceqksYggMDFqUQnwT1+sZzMLMJADMtphFKYR2onUyyMaUoGXaNNmeOiWdwQz9HVixQn7m\nVVaad8/ZsyU4/tvfzDvfVDU18rNTXw2diRi0EBGRjonTwwrLGuDpoUJyTLAdBjVEtgpazFl12lGU\nKWJKu9JPPwXefBOYOlUWpVTW/5g8ue9xiqoqWdjO29uiYZwzORb+vp7Yml0CDddsGRqlffX+/Za1\nrybXkZMDBAZKATwg9S1XXw2sWzf4OYWFgL+/+VlRPz8JfAIDzTvfVL/8ImNtbTX7EgxaiIhIx4Tp\nYWq1BkXlDUiKCYa3l6edBjYEQUGSbbBVpsWVgpbcXKC4GPj972VK2Nq1gK+v7rikJJn6oW96mAVT\nwxR+vl6Ykx6PU/WtOFBYY/H13E5GhqydVFzs6JGQrbW0AIcPy9Qwz+6fq5Hd7eQHW2BSqwUKCuRn\nkjPX2QFSNwMA55xj9iUYtBARkU51tfyHGTb4tK+T1c3o6NIgLd4Jp4YBsjJ0SIhtgpbQUCA83LrX\ntQUlaNmzB1i+XP4sVq2ST+57U6lkitjRo7oVsTs75SHJgiL83hbN6F6zZTeniA3ZYNP3aPipqQHO\nPbdvO/WI7prBwYKW+nqpZ3GFD1J++UV+3syaZfYlGLQQEZFOTY1kWQx8aldYJsFAarxzdJTRKzJS\nV5dhDVqtBC2u8IkmIC2Zvb2Bd98FduwAfvtb4NZb9R87ebJMPzp0SH5v4cKS/U0YFYmREQHYmVeO\nusY2q1zTbSxbJt2bLHjQIxeRlCQt1Z95RrdPCVpqa/WfY4/s77ZtwOLF0hbZXJ2dQFaW/KyxoKif\nQQsREekoQYsBuiJ8Jw5axo6VKU719da5XlWVzMUeNco617M1Hx9gwgRZ7yEpSdocDxZsKZ/mK3Ut\nVg5aPDxUuHz+aLR1qPH8+9noUrM+w2Tjx0v3ppgYR4+EHMHfX2pOBsu0NDfLzySlBsYWOjulDm7X\nLvOvcfiw/Py0YGoYwKCFiIgUXV3ykG+kY1RhWQNUKmBUnBMHLRMnyvbgQetcz5XqWRTnnitT/T74\nwPCUtv5TkKzQ7ri/peekYE56HA4W1uK9bw5b7bpEw9711wNLluh/bf58+dn0pz/Z7v6TJsm2f7OO\noUhPl2xRXZ18KGbmYpUMWoiICADgpdSAGMi0aLVaFJadRlxUIPx9vew0MjMoQYuytoqlXKlzmOIf\n/5Ai3blzDR+nPJTYMGhRqVS4+5opiB8RiA3bjmNnXrnVrk00rL35Zt8pY/YWEyPTbS0JWgCZ6hYZ\nKcGLmevKMGghIiIAgJcylcpApqWqrgVn2rqctwhfwUyLTC1JTjZ+XEgIkJKieyhRghYrFeIrAvy8\n8cjNM+Hr44mXPtqLsupmq16fiGxApZIPNgoLdT8bzBXc3SKfQQsREVnC6/Rp+cJApqXAFYrwAann\nANw7aBmK9HR5IFF+AVbNtCiSY0Pw56sy0NrehZXvZKGtvcvq9yByOatXA59/7rzr8Zx/vjQjycqy\n7DpKEX5Tk1mnM2ghIiIAJgYtJ+UYpy7CB2ShtFGjrBu0qFSmZS5cUe9FJq1ciN/f/OmJWHpOCoor\nm/DJlmM2ucew8uKLwAUXWK+pBDmXzk7gwQeB++933s6EDz8MfP89cOmlll2HmRYiIrKGnqDFwPQw\nXbtjJ58eBsgUsVOndAtmWqKwEEhIkK5cw1HvYnwbZloUt/1mEoL8vbE5q4TdxIw5dAj47jvLp+aQ\nc9qxQx7iL7lkaEFLS4t09Bqss5g1eXgAixaZd25hoYwVYKaFiIisw5RMS2FZA6LC/BES6AIP79aq\na2lvB8rKhu/UMKBv2+OqKnm48POz2e18vD0xf3oCTje1I/swH8YNUj5EqK527DjINjZulO0ll+h/\nPT8feOcd3RRVxf79wNlnA08/bdPhGaXVGn79mmukPq6zU9aLqqqSjmhmYNBCREQAjActdY1tqG9q\nR5qz17MorNVBrLhY/mMezkHL6NGAr68u02LlInx9zp8lU+027yqx+b1cGoOW4e3rr2U667x5+l/f\ntg343e+AnTv77i8ulq0jp6xu3y7jHiybfeYMsHevTD/19pbvMzra7Iw1gxYiIgIAeBvpHqZMDXO5\noMXSTMtwL8IHAC8v+fM6eFAejm04NUwxKi4UoxNCkX2kCnWNbTa/n8tS/j1aY5ojOZf8fODoUVmH\nxddX/zEREbLtPw3MGYKW9eslcFmwAKisHPh6drYscGvhopIKBi1ERATAeKZFV4TvAvUsgKwmrlIx\naDFVerpMhdNo7BK0AMDimcnQaLTYml1ql/u5JOXfIzMtw09MjCz+evfdgx8zWNBy4oRsHRm0vPAC\nsGKFZLPnzRu4aKSSHWLQQkRE1uRVXw8EBQ1ay+Ay7Y4V/v5AWpoELcbmXRviLkGL0kEMsFvQMm9a\nAny8PPB9VjG0lrxHw1lmJvDVV2bXAZATCw4GbrhBMhWDceZMi4cH8PLLwEMPAceOSXCyY4fudSVo\nmT3bOrezylWIiMjleTU0GC3CDwn0QWSo7Qq0rW7iRFmBWWnjaw4laBk1yjpjclZKMT5gt6AlyN8b\n56THoaz6DA4V2aELkiuKipIi7eH+94/0GyxoSU6WgDbMwZlvlQpYuVJ+VVTIdDBFdDQwcyYQF2eV\nWzFoISIiQKuV6WGDBC3NLR2oqmtBWnwoVM66loA+1qhrKSoCAgLsUpzuUL2DFjt+r0tmJQEAvttV\nbLd7ErmMyEjJxpx7bt/9r74K7N7tHGu7qFSylktRUd+GAm++KW2ZFRqNTIm78EKzbsOghYiIgDNn\n4NHePngRfrmLTQ1TWNpBTKuVTEtqqnM8HNhSdLQuWLFTpgUAJqVGYWREAH7OK0dLW6fd7kvkEgIC\npO7lzjsdPRLjEhIMv+7hATQ3m535ZtBCRES6zkSDZFp6Ooe5ShG+wtJMS12dLPw23OtZFEq2xY5B\ni4eHCktmJqG9Q43t+8rsdl8ih9FogDY37ZgXHGz24pJeVh4KERG5IqUz0aCdw1ys3bFi7FjA09P8\noMVdivAVl1wi6yqMH2/X2y6akYQPNx3BR98dxd5jui5ZI8MDcMOF4+Dj7WnX8RDZVG4uMHeu1IGs\nWOHo0dhXSAigdKocIgYtRESky7QMMj2spLIJvj6eiIkMtOOgrMDPTxZOVDqIDXWKl7sFLXffDdxz\nj91vGxXmj3PS47Ajtxw1ueV9Xmtu7cSKq6fYfUxO5amngG+/BTZtkgX6yLUdOiQLL3q44YSn4GCg\n1LwW5wxaiIjI4PQwrVaLitpmxEYGwsPDBes6Jk6UBdwqKobexaaoSLbu0rnJgXU7D96YiTsu7+j5\nvVqjwZNv7sJ3u4oxPiUci2c6sLWrox07Bvz8s2REGbRYz5tvAk8+CfzlL8Af/yiLrNrDkSOyHTvW\nvPNzcqQ2ZNasQVvUO62QEKC1FejqGvKftxuGeERENICB6WENzR1obVcjNspFH5YsqWtxt0yLA6lU\nKoQF+/b8igz1xyM3z0Cgvzf+b31eT12VW1IyoFxg0rpSU4GSEskuTpsG/PSTfe579Khsx40z7fhd\nu4B//UvatwMyrWz+fLOnWTnUunVSJ+g59CmfDFqIiMjg9LCKmjMAgFhXmxqmsKSDmBK0pKRYbThk\nupjIQNx//TR0dGmw8t0sNLe6aXcx5d+l8u+UrGPBAulkddttwP790q739tstW4zWFEeOSMYsPt60\n49etA/70J6CgQH5fXAz4+rpmG/aICJkiZkZWl0ELEREZnB5WUdsMAIhx1UzLpEmyNTfTEhsrbUfJ\nIWZOiMFvF41BZW0LXlq7BxqNjR8onZHy75KZFusbMQJ44w3g119l+uh770kAM5imJssyHFqt1HSM\nHWv6g3v/BSaLi4GkJLeriWFNCxER6R6G9GRayrszLXGummkZM0bmTg81aOnslKkjZ59tm3GRyW64\nYByOFtdj18FK3PjEtxbXVsVEBOCpu+bA11W6knF6mO3NmiXTtvz8DNdaLFsG1NdLlz1zqFTyIVH/\nFe4N6R20tLTI34OMDPPu78IYtBAREVBTA62HB1RhA9dhqaxpAQDXrWnx8QHOOks69igdxBob5dPU\nhAQgMVH/J5alpYBazXoWJ+Dp6YG/Ls/Ei2v3oKquxaJrtbR14khxPX7JK8f86YlWGqGNzZkDbNli\n91bUbicoyPDrGg3www/yM8USnp6DdmrUSwlaamt1nbeS3a8xBYMWIiICqqvRFRICbz3FkRW1zfDy\nVCEyzN8BA7OSiRMlaHn8cenCtH27dK8BAH9/CWrGjgWWLgWWL5eHCnfrHObkwoJ98T9/mG3xdcpr\nmnHHyi3YnFXiOkFLVBSwcKGjR0FKwHDllfa9b//pYZdfDsy2/N+Cq3GvyXBERKRfTQ26wsP1vlRR\ncwYjIwLh6YrtjhVKXctTT8knpVOmAPfeC1x7rXTwyc8HPvkEuOUWYOpU4Lvv2DlsmIqLCsKktEjk\nHa/paTJBLqa+XhZl/Ne/zL/G1q3ArbcCu3ebfs6xY7I96yzz72uO1FTg97+Xn01jxwKffSbNA1zR\nunVAaCjw9ttDPpWZFiIid6dWA3V16EpKGvBSc0sHmlo6MTY5wgEDs6Lbb5dPKadOBS68EBg5su/r\nGo105lm5EnjnHeCCC3SfbjJoGXaWzEzGgYJabNldguUXccqVy/H2Bl55BTj/fFlfxRy7d8uD8xVX\nmH6OvqBFrQbWr5cauBtuMG8sxowaBbz+um2ubW+enjI9t2HoLcyZaSEicnd1dYBWiy499SwVtd3t\njl21nkURFwe89BJw880DAxZAalrGjAHeeksKbJcs0U3FSEuz71jJ5s5Jj0WAnxe27C6B2h27kbm6\noCD5UKGkxPxrKFO9EvtNEdRqZSHa9vaB55SXy7Z30OLhAdx1F/C3v5l23/Jy27dUdmYhIbJtahry\nqQxaiIjcXXe7Y71Bi6uv0WKOjAyZHrZ5M/DRRxLw0LDi5+OF86YmoKahDXuPnnL0cMgcycnS+tfc\nAGCwoOXRR+XffHb2wHOeflqyBL07d6lUQGamZGqNdQRrbJS1WZYtM2/Mw0FwsGwbG4d8KoMWIiJ3\nd0oe2oZ1psUcixcD11zj6FGQjSyZKdMhN2cVO3gkJnrwQVm1vdNNF9hUaLXyKzkZaG01f8HN0lJp\nwtG/lk+ZDqpMBesvOFimp/U2Y4Zs9QU6vR09Klt3bu5h70xLS0sLVqxYgZtuugnXXXcdduzYYc5l\niIjIGVRVAQA69S0sWePGQQsNa2MSw5ASG4Ksg5VoaNYzFcjZnDghUxdra40fe/758ms4+v57meK5\ndav8vtjMoPPkScmy9F/gccwY2ebnm36tzEzZmhq0jB1r+rV76+qS2pZdu8w73xnYO9OyYcMGpKam\n4r333sPLL7+Mp59+2pzLEBGRM6isBAB0RkYOeKmi5gw8VEB0OFeEp+FFpVJhycwkdKm1+CHnpKOH\nY5ypC0yq1TK1sfvf9bCTlyd/BnfcAaxZA6SkmHedN94Anntu4H6lXmUoQYuSaTHWiezIEdmOG2f6\ntRXffCMdD++4A1i1aujnO4vYWAm83313yKeaFbRERESgvr4eANDQ0ICICBfvKkNE5M6UoEVPpqWy\n9gxGhAfA24uziWn4mT89EV6eHticVQytsxdHmxq0KLUa6em2HY+j7N8v29tuA66/XtawMcdvfgNc\ndtnA/bGxQGDg0IKW+HjggQdkPIZYkmlZvRp49VX52pUXlvTwkCYK/afYmXKqOfe76KKLUFlZifPP\nPx833XQTHn74YXMuQ0REzqA7aOnql2lpa+9CXWO7exXhk1sJCfTB2ZNiUFLZhGMl9Va9tkajRc6R\nKrS1d1nngsrDubEaDuVhe/Ro69zX2eTlAX5+tvv+VCoJ+Pz8+u6vqQHOGFjX5x//AH77W+PXHjnS\nvOYevRMErhy0WMCsdVq+/PJLxMTE4PXXX8eRI0fw3//93/j0008NnpOTk2PWAJ2Fq4/fHfA9cn58\nj5zT6KNHEQqgMyKiz3tUWd8BAPDStvC9cxJ8H6wvJbwDOwCs/WYPLp2pf4HVoVDeoy25Ddh+sAkL\n0kMwb1KIxdcNb2pCKoCSnBxUG2jDHbV1K5IBFHl6om64/X3p6sLUgwfRmpaGI/v2mX0Zo/+OVq2S\nAKPXcUlPP40RGzbgwLp1aDd3StpDD0lDhT17hnxqQmcnlGbt+R0daBxu760JzApa9uzZg7lz5wIA\nxn6N6UgAACAASURBVI0bh8rKSmi1Wqj6FzP1Mn36dPNG6ARycnJcevzugO+R8+N75MRaW4GAAGgC\nAvq8R7/sLwdwCunjUzB9+jD91NaF8N+QbUyZqsV/9n6HIyfb8cjtU+Dr7Wn2tZT3KOtQJbYflDqZ\nulYf67xvycnAwoVIGj0aSXrqz3p8+CEAYNSSJRg13P6+FBQAGg0Czz7b7D9Ts/8d1dUBKhUmXXzx\nwCyMPYzXLYI6ZskS8+piXMRgQaVZQUtycjL27duHJUuWoKysDAEBAQYDFiIicmKVlUBMzIAuOuwc\nRu7A00OFhZmJ+HRLPnYdqMB5UxMsul5l7Rm88OEe+Hh5IMDfG0eL66FWa+DpaWFdWFSUafUbF10E\n+PrKQ21LCxAwjJpopKUBzc3yy96OHZPA0REBC6CbHubhASQlOWYMDmbWv6BrrrkGZWVluPHGG/HX\nv/4Vf//73609LiIisge1WtZpiYkZ8FK5Oy4sSW5pYaYsMLglu9Si63SqtVj57m6cae3EXVemY9bE\nGLR1qFFUMfT2rmZbvBh45hkpMo+LG36rr/v6Akqm6eWXpbWzvlqTri5dt67+HnoIuO46oKPDtHs2\nNQEVFbrOYo4wbZp0D/v1V9cPRK+4AvDxGfKaQ2ZlWgICAvDSSy+ZcyoRETmT2loJXPQELZXdC0uO\njHTx/yCJjEiIDsbY5HDsO3oKtQ2tiAz1N+s6/8k+jcKyM1gyMwmLZyZDpVJh06/FOFRUi9EJAxdv\ntanISKChQTKpsbH2vbe9HDgg7Z1LSvpMnwIgq9c/8QTw3XfAkiV9X/v2W6Cw0PQOVkpzA2UNl8Gs\nWyetfF991frZkFmz5NdwoNVKwNLU1LfBgBHsYUlE5M6UtRz0BC0VNWcQGeoHPx+zPt8icimLMhOh\n0cLsNVu2ZpdgT8EZpMaH4o4rpN3whFGSEThcVGe1cZpMeYgfLNvgzDZvli5hxihdtPQtMJmRIdtt\n2wa+NtjCkr2VlgI7d8rXp0/L8cZaFRcWAhs3AllZA1/LypLgioCQ7sYUQ1xgkkELEZE7GyRo6exS\no/p0K2I4NYzcxNwp8fD28sDW7JIhr9mi1mjxwbdH4O2lwiM3z+gp5o+JDEBYsC8OFdXZfx0YpVD7\n8GH73tdSnZ0y5SsjQ2pyDFGCFn3BwOzZsu3XZUzV1iZF9YmJhq995ZXAggWSiV64UO7x5z8bPicz\nU7bZ2QNfW7YMmD/f8PnuIjhYtk1NQzqNQQsRkTsbJGipqmuBVgvEsQif3ERQgA9mTYxBaVUz8ktP\nD+nc3PxqVNe3YlKyf59AX6VSYcKoCNQ1tuFUfavlg7zzTmDCBNPqVFw109K7yF5ZTBGQbEf/hTWV\nKVj6Mi0jRwKpqVIDotH07PZRfuYlGGm4cNZZUvPSOyAy1nRK6Uq2e3ff/co0PXMWlRyOmGkhIqIh\nGyRoYecwckeLZshD8Pe7hzaN5/ssOX5a6sB/L+NTZIrYoaJaC0cHKQY/fFge4PV56y0p1q6qkgdk\nT8/Bj3VW4eFAfT0QFgY8+6w88APSyjk6Gli7VnesoUwLAJxzjmRVjh3r2eVz6pR8YSzTotSvKPUs\npggNlWAnJ6dPoISjR2U7jNsUDwkzLURENGRGghZODyN3MvWsEQgP9sX2vWXo6FSbdE7jmQ78sr8C\nCdFBSIjyGfD6hFFSaGyVuhal5XFNjf7Xv/xSOmp5eABBQdJV6733LL+vvYWFySKMdXXACy/Ivv37\nZdu74D4hAVi/HnjsMf3XmT1bArdDh3p2tYwbB2zaJN3DDDEnaAGAGTMk0Dp+XLdPyXYx0yLuu0+m\n/l1wwZBOY9BCROTOqqpk2z9oqWWmhdyPp6cHFkxPRHNrJ7IOVZp0zrY9pehSa7Cku1tYf6nxofD1\n8bROpmXECNn2nyalyM+XqTdKcOPra/k9HeXuu4GlS4F58+T3eXkSgPQOWry8pH1u/wxGeblM7brx\nRsk0XXFFz0vqkBCpmTEWQCjtjXtlaUzywANSwK9kgQAgN1e2zLQIPz/A39/4dLt+2BKGiMidKZmW\n6GhZr6VbBddoITe1cEYiPtt2HP/8ZB/e2aj7hD4syBf3XDsViSODe/ZptVps3lXSs0BlwbGGAdfz\n8vTAWYnhOFBYg+aWDgQFDMzGmEwJRvQFLRqNrBg/adKQHwadUmAg8PXX8rVGI5mWceNMC8SuuELa\nIZ8+LYGNOcaMAaZOlfOzs+XeQUHGz5syZeC+O+4AVq0CJk40bywEgJkWIiL3VlkpffL7PQiUV59B\naJAPAv1NXMeAaJhIjgnBwsxEBPh5Q63Ryi+1BkdL6vHse7vR1tHVc2zByQacqGjEzIkxCAse/GF6\nwqgIaLXAkeJ6ywanZFr0TQ8rKwPa24HRoy27hzMqLpb6h/R048eq1ZKVSUszP2ABpD5lzx4JAmfM\nAD76yPxrjR4N7N2re//ILMy0EBG5s8pKve2Oq+rOYHz3GhNE7ua+66YN2Lf6szxs/LkIr2/Yj7uv\nmQoA+C5LulYtmWl4IcHx3XUth4pqkTl+pPkDu+QSyTj0nnqkMHUBRGe3YYNkfufM0e2rrZVpYVOn\nGj//+HGgtVW3ToullOlhlvy5enhI8EMWYdBCROSu2tul0LXfdIbymjPQaIGEaBOmQhC5iVt/MxGH\ni+uwOasEk0dH4Zz0OPy05yQiQvwwbWy0wXPHJUdApQIOWVqMHxkpv/SZMAF4//2BD8f19TL10xWK\nwLVaqUMZM0YyE4rMzD7F9AYp9SPWDlqUGheyHq12SFMZOT2MiMhdKTUs/TItJ0/JOgnxIxi0ECm8\nvTzx4I2Z8Pf1wr/W5eLT74/hTFsXFs1IhKen4cepQH9vJMeEIL+kHp1dGoPHmi0mBli+vO+HEFqt\nrFVy+eW6fUVF8iDe0SF1H61WWD/GWurqpONZkuHMVR+5ucDcucC//qX7PdD3z6GhQdoQNzVh/A03\nAE8+afr1jx2TWpZ+PyfJApWVQECA8Q5u/TBoISJyV4O0Oy7rDlqYaSHqKy4qCCuunoK2DjU+/l4+\ngV9sZGqYYsKoCHR0aVBQZsd1U1QqKSDPz5eV5gHgmWck67JoETB5stRtOAtlvRV9098G4+UF7Nih\nC1YAyUb1zrTMni2r2hcXI+DoUan/MYVGI9PNzjpreDQ3cBZBQRIsc50WIiIyySBBy8lT8h9JPIMW\nogHmTonHReekAAAmpUUiLsq0fydKjdj+44OssWIr48cDXV1AYaFkHD78EEhJAX73O3n94EH7jscQ\nJWgZSqZFObZY6ovw9NPSXU3ptAYAs2bJ6uubNsnvExJMu/bp0/LzsXebZbJcYKAEgY2NQzqNNS1E\nRO5qsExLdTO8PD0wMjzAAYMicn63/2YSgvy9cU56nMnnTBsbDS9PD/yQcxJXLRyjd00Xm1DWBjl8\nGNiyRRb1+8MfdJ24DhywzzhMoQQeQ8m0BAcD4eG6gAcYmBU55xzgnXeATz6R3ycmmnbt8HDgL3+R\nrBRZj0ol7xszLUREZBI9QYtWq8XJU82IjQo0Ok+fyF35eHvipqUTMDohzORzQgJ9cPakGJRWNeFo\niQWtj6+/Xtr5trebdrySJTh8GHjtNZlOdeutsl+lcq6gJSUFuPLKoWc2kpMl4NFq9b8+e7Zss7Jk\na2rQolIBf/4zMy22EBw85EwL/0ciInJXStAyUteC9XRTO1rauljPQmQDS2ZJBmHzrhIjRxoQFydT\nvVav1u3btQu44ALgyy8HHj9+vG6dkP37pSh/5EiZojNqlHMFLb/5DbBu3dDbAycnSwaptlb/6xMm\nACEhut+bOj2MbCckBGhuHtIpDFqIiNyVnkzLSRbhE9lMxpgRiArzx/Z9J9Ha3mX8BH0eflg+pf77\n33WfVOflAd99p/+hffRoKcR/8UXgkUeAu+/WvXbeebJKe0uLeWNxFitXSm1O2CCZLw8PCdbmzcPR\n116TYI0cKydH93+QiRi0EBG5q8pKwNOzz7oPJ6sZtBDZiqeHCotnJKG1XY2fc8sHvN7RqcbR4jpo\nB5vmBEiB+UMPATU1wD/+IfuOH5etoQUQ4+Olc9i55+r2vf028MMP0n7WlY0fL9mU774Djh7Vf8w7\n7wDbtqE5MxPw8bHr8EgPf38JJoeAQQsRkbuqrJSVpz09e3b1dA7jGi1ENrF4ZhJUKmBzVnGf/RqN\nFivf3Y0HVm3HFz8VGr7IvfcCsbHACy8A/8/efcdHVWaPH//MTHqvBFIhdBJCQghFinR7XUVFwd5d\n61p/u+rq7tfu2nBd1grq2kVUUCBUQUkIAUIvgXQgvZCemd8fTyaFtMlkkpkk5/16zevCzL13njAw\n3HOf55yTk9MYtAwb1k2j7gWqq+Hyy2HxYmuPRHQTCVqEEKI/MhhU0NJGj5agAe7WGJUQfV6Ajwvj\nhvmz/3hBw00CgBWbjrLjwCkAPvppH/tS28jPAJWP8o9/wK23qlmDI0dU74sm+Wn9zsGDqhdN0/4s\nok+RoEUIIfqjsjK1jr1Fj5YyvNwdcXO2t9LAhOj75k1SvUXWJaiE/APHC/hk1QF8PBx5YnEcAC8v\nT6SwpLLtk9xyC7z1Fvj4qJmWYcNsrwFiSQnMnAlffNHxvkePqupmhw+b917G5pIStPRZErQIIUR/\ndErd0W0atNTUGThdWC75LEJ0s8mRg3Bztid+RwaFpZW8/OkOMBj4yw0TmDoukBsvHE1BSRWvfJpE\nXZ2+/ZMZDLBlC7zzTs8MvjNWr4ZNm+Cuuxq/c9qyeTPcfbfqbm+OXbvUVoKW3kOvVw8TSdAihBD9\nUSuVwwpKazEYJJ9FiO7mYK9j5vhgikqreOztLeQVVXDdeaMYO1R1cb9i5jAmRw4k5Vgey1cfaP9k\nWi3ExsLUqeYNJi0Nvvyy7XLBXbFundqeOaOCkvYYm0N2prFkU6+/rrbGppnCtv3rX6pn0C+/mHyI\nXTcORwghhK1qJWjJK6kBIFjyWYTodvMmhfHT1uOczC9n3HA/rp4zouE1jUbDg9eO56E3NvHthqMU\nllbh6NBYMGNokBfnTTbz4v5sy5bB00/Dzz/DhRda5pxG8fHg6an6yIwc2f6+afWFCUJDzXuvDz5Q\ngU/TfizCdjk5qVnC0tKO960nQYsQQvRHrQYtqm+ELA8TovuFB3kyZogPpwrKeWRhLDpt83wUV2d7\nnrwxjieW/Mb6HRktjo8a5scgP9euD8TYyHHvXssGLdXVqlmkVttxwAKNMy2mdqs/2y23mHecsA73\n+ptjxl5DJpCgRQgh+qNWgpZ8CVqE6FHP3XkOdXV6XJxaL3wxJNCTD/46n4Liiobndh46zQcr9xGf\nmM4NF4zu+iCaBi2W5OAAb7xh+v7p6ar6mZOTZcchbJNxRkyCFiGEEO1qY3mYvZ0Wf+9e3mhOiF7C\n0V4H9rp293Fztm9WzW+Ajwv/W3OI+MR0rjtvVIsZmk4LD1eBwr59XTtPV91wA9TVWXcMoucYZ1o6\nsTxMEvGFEKI/OitoMRgM5JXUEujn2vWLICFEt3FysGNGTDB5xZUkHzrd9RPqdKqb/P79PRc0pKS0\nfO6ZZ+C553rm/YX1GWdaystNPkSCFiGE6I9OngRn54a7XQUllVTXGgiSpWFC2Lx5E1Wy+tqENMuc\n8OqrVaPKTlxAmu2ZZ1SFr4MHu/+9hO2KiVHNQF9+2eRDJGgRQoj+6ORJNctS34wuK7cMkMphQvQG\nw0O8GDzIg4R9Jykuq+r6CZ94QvV5ce/kv/+6OlUBqjMiItT2vfc6d5zoW7RaVfK4M4d001CEEELY\nKr1eNXprks+SeVoFLdKjRQjbp9FomDsxlNo6AxuSMq0ziLIyiIuDuXPVHfOmnnwS/v731pebXX65\n+u755JOemdkRfYYELUII0d8UFEBtbbOgJeu0caZFghYheoOZ44Ox02lYm5CGobOzHZbw6KOQnAzr\n1zdf4lNTo2ZtPv9c5cuczcEBbrsNiorgiy96bryi15OgRQgh+ptWKodlStAiRK/i6ebIpMhBpJ8s\n5XB6Yc+++YEDanlXRAQEBqpZFWPJ5MRENQszZ07bx99xh1oe9O676vcffKA6pNfWdv/YRa8lJY+F\nEKK/aS1oyS3DzVnbZr8IIYTtmT8xjK27s1mbkM7IMJ+ee+PRo2HNGhgwALKz1WzLsGHqtfh4tW0v\naAkJgdtvV99BtbWwZAkcOgQPPtj9Yxe2w2BQTUgdHU3aXYIWIYTob4xBS0AAAFU1deQWlhPmb9p/\nHEII2zBuhD9+Xs5sTs7itksjcXLswmXdkSPw8cdw4YUwdWrH+8+bVz+IcXDBBY3Px8erAh+zZrV/\nfNNE/LQ0CA1tKAwi+omYGMjMhLw8k3aX5WFCCNHfnDXTkp1bhsEAfh5yH0uI3kSn1TAnLoSKqlpW\n/36iayfLzIT/+z/47jvzz1FeDr//DuPHg4+JMz9lZSrPLizM/PcVvZOzM5SUmLy7BC1CCNHfnBW0\nGPNZfCVoEaLXueicIXi6ObBs1X4OphWYf6LJk1WS/MaN5p/DyQkSElR+iqnS09U2NNT89xW9k4eH\nKtxQZVrZbglahBCivzl1Sm3rl4cZe7T4eUg+ixC9jbeHE49ePwG93sBLnySa37fF2VkFLsnJqrKX\nObRatVxs+nTTj5Ggpf/y9VXb1FSTdpegRQgh+pvC+kpD9f9hZJ4yBi0y0yJEbzRuhD8Lzx9FXnEl\nr36WRJ3ezBLIM2eq5OgtW1q+9uyzcP31jTc9LCU8HJ5/vv3EfdE3XXSR2n75pUm7S9AihBD9TUmJ\nSnh1dQUgK7cUBzstni6t9FQQQvQKV88ewYTRAew6nMv/1hw07yQzZ6rt2UvEDAZYtgx+/BG8vLoy\nzJZGjIC//hWmTLHseYXtu+wy9fep0LSS3XJbTQgh+puSEnB3B60Wg8FAVm4Zgf5uaLVSuUeI3kqr\n1fDIwvE88K9NfLn2MJ6ujgzwdm5zf41WQ2S4b/My55Mnq8aQ8+c33zklBY4fh2uuMbk8rRAdcnOD\nnByVC2UCCVqEEKK/KSlRCZBAQUklFVV1BElTSSF6PTcXB55cHMdj72xh6YqUDvefOT6YR66PbXzC\n2RnuvbfljitWqO3ll1topELUMzFgAQlahBCi/yktVU3haMxnCfZ3A8qtOCghhCUMC/Hi5fumsze1\n/d4XP/12nK17srnzyijcnDsowvH992Bvr3q4CGElErQIIUR/U1ICQ4cCkFlfOSx4gAQtQvQVw0K8\nGBbSfu5JTa2eZasOsGVXFhdMGdz2jrm5cOCASpSvn6EVwhokEV8IIfqTqiqorm64+Mg8XQogy8OE\n6GdmxYag0cD6xPT2d/T3V4HLkiU9MzAh2iBBixBC9CfG7sMNQYuaaQnyl6BFiP7Ez8uZccP9OZhW\n2HDzohmDAfR69Wt3d1WaWIjuEh8PixdDRUWbu0jQIoQQ/clZQUtWbhm+nk7NKwgJIfqFOXGqoeP6\nHRnNX/jmGwgKgp9/tsKoRL+0bh0sX97u3zkJWoQQoj9pErRUVtWSW1ghsyxC9FOTIwfi4mTHhh0Z\nzRtS+vqqUrRn92sRorssXKi2n33W5i4StAghRH/SJGjJzjsDGJPwhRD9jZODHdPGBZFXXEnK0dzG\nFyZPBgcHCVpEzxk7Vj1WrWpzF7OClm+++YZFixaxePFiFi1axPjx480eoxBCiB7UJGiRJHwhxJy4\nEADiE5ssEXN2hqgo2LkTsrKsNDLR7yxcCLW1bb5sVtBy1VVXsXz5cpYtW8b999/PFVdcYfb4hBBC\n9KDS+oRbDw+yThvLHbtbcUBCCGsaPdiHQX6ubEvJobyypvEFY+L9PfdYZ2Ci/7njDsjMbPPlLi8P\nW7JkCffIX2ghhOgdms20NG0sKYTojzQaDXMmhFBdU8dvu7MbX3jtNXXn+913rTc40b/4+MCgQW2+\n3KWgJSUlhUGDBuHr69uV0wghhOgpxqDF3Z3M3DIc7HX4eTlbd0xCCKuaNaG+Z0vTKmLBwSopOijI\negMTogm7rhz89ddfc+WVV5q0b1JSUlfeyup6+/j7A/mMbJ98RtYXeOgQg4AD2TlknByAj7sdyck7\nG16Xz8i2yedj+3rrZxTi58C+1Hx++z0RZ4e+Xaept35G/V2XgpaEhASefvppk/aNjY3tyltZVVJS\nUq8ef38gn5Htk8/IRri6AuAXEUPNwUxGDB7Q8LnIZ2Tb5POxfb35Mzqcd5DP1xxC5xZM7Ni2l+j0\ndr35M+ov2goqzQ6lT58+jaurK3Z2XYp7hBBC9KT65WGZNaqZpPRoEUIARA33B2BP09LHQtgQs4OW\n3NxcyWURQojepj5oyarUANKjRQihjAj1xsFeR8rRPGsPRYhWmR20REREsHTpUkuORQghRHczzrSU\nqFr40qNFCAFgb6clYogPaSdLKSyttPZwhGihb2daCSGEaK60FJycyMqvAGR5mBCi0dhhfgDsPZpv\n5ZEI0ZIELUII0Z+UlNT3aCnFz9MJZ0fJSxRCKOPq81p2S16LsEEStAghRH9SUkKFly95xZUED3C3\n9miEEDZkaJAnLk527JG8FmGDJGgRQoj+pKSErIDBgOSzCCGa0+m0RIb7kZN3htzCCmsPR4hmJGgR\nQoj+oq4OysrI8g0BpHKYEKKlqOEqryXlmCwRE7ZFghYhhOgvysoAyPQcCEgSvhCipaj6ZPzdR2SJ\nmLAtErQIIUR/UV/uON11AIDktAghWggb6IGHqwN7juZhMBisPRwhGkjQIoQQ/UVJCQZgv6M/vp5O\n+Hk5WXtEQggbo9VqGDvUj7yiCnLyz1h7OEI0kKBFCCH6i9JSMn2CKdI4Ehnuh0ajsfaIhBA2yJjX\nskeWiAkbIkGLEEL0FyUlpARHAjB2mK+VByOEsFXGvBYpfSxsiQQtQgjRX5SUkBJSH7QM9bPyYIQQ\ntirI3w0fDydSJK9F2BAJWoQQop8wFJewNzgCHzs9g/xcrT0cIYSN0mg0RA33o6isivSTpW3ut/tw\nLgfTCnpwZKI/k6BFCCH6icyCCopcvYn01kg+ixCiXeNHqiqDy1YdQK9vOdty8EQBTy/dxlPvbuVY\nZlFPD0/0QxK0CCFEP7G3/rpibIBUDRNCtG9GTDDjhvuRsP8k32440uy1iqpaXv98JwagplbPC58k\nUlZebZ2Bin5DghYhhOgn9lY6ADA21NPKIxFC2DqdVsOjN0zA19OJT1cfYM/R3IbXPli5l5z8M1w5\ncxjXzB3BqYJy/vW/5FZnZISwFAlahBCiHzAYDKToPfApKyAwyNvawxFC9AKebo48sTgOjUbDK8uT\nyC+uIGHfSX79I40hgR5cf/4orjtvFNHD/VudkRHCkiRoEUKIfiArt4xCrRORmXvReMpMixDCNKMG\n+3DrpZEUlVXxwseJvP3VLuzttDyyMBZ7Ox06rYa/3BCLX/2MzO7DuR2fVAgzSNAihBD9QMqxfAAi\nM/aCh4eVRyOE6E0unjaEGdFBHEovpKisisUXjiFsUOP3iKebI4/fGIdWq+GVz3ZQXFZlxdGKvkqC\nFiGE6Af2HlNN4sZm7wcXFyuPRgjRm2g0Gu5bEM2YIT5MGxfIpdPDW+wzKsyHq+eMoLismuRDp60w\nStHXSdAihBB9nMFgYO+xPLyrSgmqLQUpdyyE6CRnRztevHcajy9WMyqtiRqmmtamZpf05NBEPyFB\nixBC9HHZeWcoKKki8vQRNLI0TAhhpo76Ow0JVPlyx7OKe2I4op+RoEUIIfq4hqVhmZLPIoToPq7O\n9gT4uHA8pxiDQcofC8vq30HLwYMQFgY//2ztkQghRLdJOVqfhH90hwQtQohuFR7kSXFZNQUlldYe\niuhj+nfQ8s47kJ6utkIIYUm//w6nu5iMWlEBhw93eSh7U/PwcnMgODddghYhRLdqWCImeS3Cwvpv\n0FJZCZ99pn69bh0UFlp3PEKIvuP4cZg2DW67rWvneeIJiIiArCyzT1FQUkl+cSWjBrmiAQlahBDd\nKjxQfcekSl6LsLCeD1pqatQdSGuvdfzhBygqAn9/qK2FlSutOx4hRN/x88+g18Pq1V27IfLzz+r7\n6eBBs09xLLMIgHAvO/WEBC1CiG7UONMiQYuwrJ4NWmprYcECOOcc+Mc/evStW/jww+bbb74x/dja\nWsuPRwjRd6xapba1tfD99+adIyMDjh1Tv05PN3soxrudQ13qbxRJ0CKE6Eb+3s64OttL0CIsrueC\nFoMB7roLVqxQv3/+edi/37LvYWowkZ4Oa9eq4Onii2HcOFizBopN+AeWmQnBwTBrlvq1EEI0VVEB\nGzbAoEHq9199Zd55Nm5s/HVamtnDOWYMWuzrO1RL0CKE6EYajYbwQE+y885QUSU3eYXl9FzQ8tRT\n8MEHEBurcklqauCWW6CuzjLn//JL9Z/xp592vO8nn6gg6pZb1O+vugqqq+Gnnzo+9qGH4NQpdUER\nHW3aMUKI/mPjRpUzt2gRxMWpnLm8vM6fZ8OGxl93YablWFYxXm6O+FSXqifc3c0+lxBCmGJIkAcG\nA6TlSDK+sJyeC1pefBFGjFDLJhYuhGuvhe3b4e23LXP+775TdzgXL4aPP257P70ePvoIXFzUUjVQ\nQQt0vERszRq1z5Qp8O67UFYGl1yiApnqaov8GEKIXs64NOyCC9R3TF2deUvENm5snBUxM2gpLa/m\ndEE54UGeaErrgxaZaRFCdLPw+ryWVFkiJiyo54KWwED49VcYMED9/q23wNcX/t//g9TUrp3bYICt\nW8HLC7y94eabYenS1vfdtElV9rn66sY7jqNGqQo9q1eD8T/2s1VVwX33gVarApa771ZB18iR8MYb\ncP/9XfsZhBC9n8GgghZ3d5g6VX3PgJoJ7oy0NPU9NXu2KhZiZtBizGcJD/KEkvo7nhK0CCG6mZQ9\nFt2h54KWNWtg8ODG3/v7q8ClvBxuv71r1cTS01VJ0Fmz1JIKf3+4805YsqTlvh99pLbGpWFGf3PG\nCAAAIABJREFUV12lAhPjXdKzvfoqHDmiApfoaPXcuHGQlAShofC//6njhRD915Ej6ibM/Plgb6+a\n106erL6XOtOzxZjPMnOm+n5JTzfrO7IhCT9YghYhRM8JCXDHTqfhuJQ9FhbUc0FLRETL5667TiXC\nr1+v8l3M9dtvajttGkRFqf/wAwJUgHHXXWp2pa5OJdp/8w0MGwbTpzc/RztLxByys+Gf/4SBA+G5\n55q/6Oqqji0pUWvXhRD9V9OlYUbXXKOWpX77rennMeazzJqlAp+qKsjN7fRwjmXKTIsQoufZ22kJ\nCXDneE4JdXort7gQfYZ1m0tqNPDee+Dk1PqsiKm2blXbqVPVdswYFaiEhsJ//qPuVg4cqPJPKirU\n8jGNpvk5IiLUUq9Vq+DMmWYvhbz6qjru1VfB07Pl+//pT2rbmYsSIUTf01rQYrwh0pkqYhs3quWz\nkZHqewzMqiCWml2Ei5MdA31cG5e+StAihOgBQwI9qa6pIzu3zNpDEX2EdYMWgKAgGD0aDh1SdyPN\nsXWrCnxiYhqfGzlSLdX45Re1VEyngy1bwM5OJeufTaNRFxfl5SppNjFR5cXcdBNemzerwGfhwtbf\nf/JklbPzww+qKpoZ8osr2JyciV7uSAjRO5WVqZsl0dHq+8AoOFjNAm/aBDk5HZ/n+HEVoJx7rsqh\nMwYtncxrqayqJfN0GUMCPdFqNTLTIoToUeFB6ibvibPyWtJOlpB08JQ1hiR6OesHLaCqilVUmNf3\npKgIUlJg0iRwcGj+moMDnHeems3JylLBzZYt6iKiNcY7oosWwcSJKtj55BNqvL3VTNDZszNGWi1c\neSUUFDTvrdAJS1ek8MqnSXy74YhZxwshrGzDBlVFsOksi9GCBSonxZTZ2Kb5LGB20HIipwSDAYbW\nXzhI0CKE6EmtVRA7XVjOk0u28vf3/+B0Qbm1hiZ6KdsIWkaOVNvDhzt/7B9/qIsB49Kwtuh0qpnk\n5Mlt7zNunJpNOeccuPdelWeTnEzKqlVqyVl7jAGPGUvESs5Uk7DvJACfrj7AnqOdX7suhLAy49Kw\nCy9s+dpVV6mbHqZUEWuazwJmBy3HMouA+iR8aAxapE+LEKIHDAlUN0iMQUtNbR0vLUuktLwagwE2\nJGVYc3iiF7KtoOXQoc4fa8xnmTat6+PQaFTjy61b4Z13VIWx6GgM9vYdHzttmirn/P33nW6YuTk5\nk9o6AzNigtBoNLyyPIn84gozfwghRI8zljr28mr9xsigQTBjhioasmJF++fZuBH8/BpvlISFqW1n\ng5aGcsde6omSEnB2VktkhRCim7m5OODv7dxQQeyDlfs4nF7E1KhAHOx1xO/IwNCVyrGi3+n9Qctv\nv6lgY8oUy46ps3Q6uPxyVdbUWM3MRPE7MtBqNdx2aSS3XhpJUVkVLy3bQW2dmTk+QoiedeCACirm\nz287KHj5ZVVt8JprVM+q1qSmQkaGWhqmrf969vcHR8dOBy2p2cU42GkJGeCmnigpkaVhQogeFR7o\nSWFpFSs2HePnrccJG+jOg9fGcM7YQeTkneHAiQJrD1H0IrYRtAwfrradDVpqalSDx4gIdYfT2jqz\nROzmm2HWLNJ+WMvRjCLGjxyAt4cTF08bwozoIA6cKOCjn/Z173iFEJaRkKC2xjyU1kycCD/+qIKR\nyy9XiflnOzufBdRNmdDQTlUPq6nVk5ZTQtggD3S6+q95CVqEED3M2GTyg5V7cXa048mbJuLkaMec\nuBAA4hNliZgwnW0ELR4eavlEZ4OW5GSVwG+JpWGWMHMmeHuroKW9Smh798LHH8PGjax/7TMA5npV\nAqDRaLhvQTQhAW6s3JzKb7uzun/cQoiu2b1bbY2NZ9syaxZ8951aQnrxxeqmC6hlYUVFsHp1435N\nhYaqPi0Vpi0bzThVSm2doaF6DyBBixCix4UHNX7nPHhtDEH+auZ37DB//Lyc+W13FpXVtc2O0esN\n/G/NITbuNKM4k+jTbCNoAbVELD3d5P+UgZb9WazN3l7dQc3ObrwYac1//wtA3d+fY0P0fNwqS5l4\n7Tx1bEmJuhtx40ScHHS89WUyGadKe+gHEEKYZdcuNSMydmzH+15wAXzxhfqumzcPRo1SyfHGGx4D\nBqgy8E0Zk/EzTLsr2ZiEXz8DXVenyrlL0CKE6EGjB/vi4erANXNHcE5UYyl4nVbDrNhgyitr+WPv\nyWbHfLvhCJ//epB/fZ7ErsOne3rIwobZVtBiMMDRo6YfY2tBCzQ2mvzmm9Zfr6yE5cshIIDkK2+h\n0N6VGaP9sJ88SfV5ufxyqKwkJMCd+xfEUFFVxwufJFJRVdv6+YQQllddbfq+BoOaaRk6FNzcTDvm\nyith2TK1VCw/Xy2RvfhiuPtu+PTTluXVO1lBLLU+8bWh3LE0lhRCWIGXuyOf/v18brhgdIvX5sSp\n77X4xMbvtd1Hcvl09QG83B3RajW88mkSeUVSmEgothO0jBihtqYuETMYVMJ7YCAMHtxtw+q0uXPV\nhcG336oxnu3bb6GwEG66ifid2QDMuXSSWst+xRWq3On110NdHdNjgrhkejgZp0p55+tdUmVDiJ7w\n1VcqYb692dKmMjPVv+mOloadbeFCdVxurlrq+uOP8O67avblbJ2sIHYsqxitVkPYoPogRXq0CCGs\nRNNGj7sgfzdGhXmz+0gueUUV5BdX8MqnO9BqNfy/mydy26WRlJyp5qVlidTUSmEiYUtBS2criKWm\nwqlTapalraaP1uDoqGZL0tLgf/9r+Xr90rCyRTfzx96ThAS4MTzES1Uc+vxzlRfz3Xdwzz1gMHDz\nxRGMCvNmc3IWq7Ye79mfRYj+aOlSqK1t+LfaoV271HbcuM6/l6nfXZ2YaanTGzieXUzIADcc7XXq\nSQlahBA2aE5cKAYDrE1I56VlOyguq+aWSyIZFebDhVOHMCMmiINphVKYSAC2GLSY2mDSFpeGGT3z\njOqH8OCDUNCknN/hw6pi0KxZbCl2oLZOz5wJoY13IZyc1BKxmBh14fS3v2Fvp+XxxXF4uDrw/sq9\nHEqT8oBCdJvc3MYKXt98A1VVHR9jTMI3J2gxlTFoMaGCWE5eGZXVdS2T8EEaSwohbMq06CAc7LR8\nseYgB04UMCM6iIunDQHqCxNdHU1IgDs/bkllS7IUJurvbKfL2ODBKpHd1JkWYy8UW6kc1lR4ODz7\nLDz+ODz6KHzwgXq+/s5t7a23s/r3E2g1MDM2uPmxHh6qgtDUqfDPf0J+Pn5PPcVjN0zg6aXbePyd\n33Aw3j0FXJ3tefCaGMaN8O+Zn02IvuyHH1TSur+/CmBWr1Yzp+3piaAluP57opWZli/XHuK7jUcb\nVqPW6dUvGpLwQWZahBA2yc3ZnsmRg9i8K4uQADfuWxDdbDmZKkwUxyNvbuKtr5IZPcQHPy9nK45Y\nWJPtzLTY2alE1kOHWs8FaUqvV3dDXV2790KhKx56SI3tww/VWKur4ZNPwNeXT5xHczy7hHPHB+Pr\n2co/voAAWLtWBT/vvQfh4Yx78XHumz6QIYEeDPJzbXgUlVby0vIdnC4s7/EfUYg+x1hA47331Pbz\nzzs+ZtcuVfkrJKT7xuXsrKqKnRW0GAwGVv9+gtpafcN3QvAANyLCfZkSOahxRwlahBA26qo5wxk/\nagBP3jgRZ8eW99JDAty58aIIKqvriN/RuSa7om8xO2hZuXIll112GX/605/Y1FqTNHOMHKl6FeTm\ntr/fsmVw5Ahcemnb3aetzd5ezaxoNHDnnSq5NzeXrYsfZsXWNIIHuHHXlVFtHz9kiOqy/dFHMGwY\nfPQR866Ywr82/os3vY/z5sJRvPnwTO64fCyl5cZEtbqe+/mE6GsKCiA+HmJjVVGMUaNUcnxpOyXH\ny8rg2DF1g6K7c+tCQ1XJ4yY9oHLyzpBfXElcxEDefHhmw+PFe6cxwMel8VgJWoQQNmpIoCd/v30K\nIQFtL1+dFRuMg72O+MQMKUrUj5kVtBQVFbFkyRK++OIL/vOf/xAfH2+Z0ZiS11JUpJZdubjASy9Z\n5n27S1wc3H+/+nluv51M70DedIjEyUHHkzfG4eJk3/7xDg5w002wb5+qOjZ+PKxcCbfcoppxTpjA\n+es+ZWZ0IIfTi/hgpQmJahUVcO+9kJhokR9RiD5j5UqVgH/VVSoAWbhQlShfsaLtY1JS1MxwT8z4\nhoWpHJsmN3V2H80DYNwwv/aPlZLHQohezMXJnnPGDiIn7wwHTkhub39lVtCybds2pk6dirOzM35+\nfjz33HOWGY0pFcSeeQZOn4a//rV7l2NYyvPPQ3AwlbUGXrjm71TUGLjv6mhCB3bi4kGrVX0dEhPV\n7Mtrr8GcObBnD5pnnubeE2sIG+jOz1uPd9xBdvlyVVbVUp+ZEH2FcWmYsdfSddepbXtLxIz5LJ0t\nd2yOViqI7TmiApio4R3ktMlMixCil5sTp6751u8wrcmu6HvMClqysrKoqKjg7rvv5oYbbuD333+3\nzGg66tWyZw+8845qxPbww5Z5zw4YDAZKK7qw7MrdHcN//sM7591Huos/F08bwrnjgzs+rjUajVqy\n8vDDsG4d5OSAhwdO/17CkwtjcHa0452vd5F2sqTtc/znP2q7bh2cOWPeOIToa4qLYc0aNWMyfLh6\nbtgwNVu6dq26UdKarpQ77qyzgha93kDKsTx8PZ0I9HNt/1gJWoQQvdzYYf74eTqxZVcWVTWyHL4/\nMitoMRgMFBUV8e677/LCCy/w1FNPWWY07c20GAxw331qPfdbb6l+KN3MYDDw9le7eH1FDscyi8w+\nzy9eo9k0cjojw7y55ZJIyw3Q1xduuw1ycgjauIoHro2hqrqOt7/c1fr+O3bAzp2g06llL2vWWG4s\nQvRmP/4INTVw9dXNn1+4UFUT+/rr1o/bvVvl1Y0Z0/1jPKvscfqpUorLqoka5tdm87YGErQIIXo5\nnVbDrAkhlFfW8kdKjrWHI6zArCx2Pz8/YmJi0Gg0hISE4OrqSkFBAT4+Pm0ek5SU1PGJDQbGeXhQ\nu3s3+87a3/uXXwjfsoWic8/lmL8/mHK+Lko6eoa1CYUALP9xB5dM9O70OXIKq3n/19M4O2i5MNqR\nPbuTLTpGh3PPJfKNNyj/v//D6ZORDA904lB6Iavi/yDAq3nOTOg//4k/kHX77QS99x55H35ImvFC\nqA8w6e+YsCpb/YyGvv8+XsDeUaOoajJGu9GjidJoOLN0KYcmT25+UF0d0bt3UzV4MAf27u32Mbqc\nOcNo4NSOHWQmJfHHQZWn4mF/psM/1yFpafgAu48fp7aknZlYbPczEop8PrZPPqPuE+BcA8D38Xtx\nM5wy+zzyGfVOZgUtU6dO5amnnuL222+nqKiI8vLydgMWgNjYWNNOPmYMdjt2EDtuXGNlsJISuOQS\ncHLC6+OPiR082Jxhd8rRzCJ++WoLbs72YKjjQGYVT9w6DicH0//IyitrWPqvTdTp4dFFccSNGWj5\ngcbGwmWX4fr998RWVVE5dywvLkvkZLk7F86JaNyvpEQtcxk8mKC334YffsDv99/xa/rn3IslJSWZ\n/ndMWIXNfkalpfDHHxAZSaQxn6Wp2bNxi48n1tdX9ZMyOnwYKipwmTy5Z36u+hy+gMpKAmJjWb17\nO1DMpXMmNK8U1hqd6u00bto0VcSkDTb7GQlAPp/eQD6j7rcuZTOH0gsJGzrGrJ4t8hnZvraCSrOW\nhwUEBHDeeeexYMEC7rzzTp5++ukuDa6ZESNUBZ/jxxufe+QRlb/x5JPNLxq6SWl5NS98kkhtnZ5H\nro9l/FBXyitr2bbH9OlIg8HAkm92k513hitmDuuegMXowQfV9o03mBgRgJuzPRuSMqirayyNymef\nqRyW229XQcqll0J+Pmzb1n3jEqI3+PlnVZXrqqtaf92YkL98efPne6KpZFP+/uDkBOnp1OkN7D2W\nx0Bfl44DFlA3LXQ61e9FCCF6sdlxoRgMsCFJEvL7G7P7tCxYsICvv/6ar776ipkzZ1puRGfntfzy\nC7z/vroweOIJy71PG/R6A69/vpPTBeUsmDuCCaMDiB6qklzXJqSZfJ4129PYnJzFyDBvFl84uruG\nq0yfDjEx8N132Gdlcu74YIpKq0g+XF8a1WBQCfh2dqpcMsBll6ntypXdOzYhbJ2xalhbQctVV4GP\njyqx3rS5Y08HLRqNymtJTyc1q4gzlbVEDeugaphRSYnKZ+nuXjJCCNHNpkcHYW+nlZ4t/ZDZQUu3\nGTmS0+5+JO3OUD1ZbrtNNWr85BPVt6SbfbP+CDsOnCJ6hD/XzR8FgI+bHVHD/Nh7LJ/svLIWx+w+\nksuPW1IbHt9tOMrS71Nwc7bnsRsmYKfr5j9mjQYeeEAVKViyhNkT1DKSdYn1F1gJCeoC67LLYGD9\njM/s2eDmBj/8oIIaIfojvV4tmxw6tO1kek9PeP11NVN5992N/156snKYUWgo5Oay54Ca9Y3qqD+L\nUWmpJOELIfoEN2d7pkQOIiu3jMPphdYejuhBNhm0vHne/TxbEMiGx16DrCx4+ukeuTAoLqvif2sO\n4uvpxF+uj0WnbbwrOW+iSlhfl5De7Jjte3P463vbWLoipeHx0U/7qK7V8+C1MaYt3bCEa6+FAQPg\nv/9luLcdIQHubN97krLy6sYyx3fc0bi/oyOcfz4cPap6vwjRHx0/rmYhJk1qfxZi8WKYOxdWrYIv\nv1TP7d6tmrwOGNAzY4WGCmJ79mUDnQhajDMtQgjRB8yu79my9qxrMtG32VzQcsonkD2hUQC84zSW\ntOnn98iyMIBNyZnU1hm4YuYwPN2al1SeEhWIq5Md8YnpDbkiRaVVvP31LuzttDxwTQxP3BjX8Hjz\n4ZlMihzUI+MGVBByzz1QVITmjTeYG+lHbZ2ezduOwhdfQHi4uuhq6tJL1faHH3punELYkp071TYm\npv39NBoV/Ds7w/33w5EjkJnZs7MsAKGh1Gjt2JdzhpAAd7w9nDo+prBQPQb14PeREEJ0o+gRAxp6\ntlRW11p7OKKH2FzQsn6vysOYemgr1faOvDDnz5TX9szypfjEDHRaDefGtGz+6Giv49zxwRSUVLHz\n0OmGHi7FZdXceNEY5k4MZWpUYMMjPMizR8bczF13qSV0Tz/NzAUz0er1rP98HVRUqAR87Vkf90UX\nqeRcCVpEf5VcX4J8/PiO9w0Ph+eeg9xcuOIK9Vx0dPeNrTVhYRweOJyqOhhn6ixLQoLaTpzYfeMS\nQogepNNqmBMXWl8kKdvawxE9xKaCFoPBwPod6Tjqa7h/zdtc4VJAVkkNb36Z3O3JVsezi0nNKmbC\n6AC83FtvXDlvYhigpiPXbE8nYf9Joob5ccm08G4dm8kCAlSTvIcewmfmOcTkHuKQdxgZYaPh5ptb\n7u/jo5L4t29X1dmE6G+MQYupwceDD6oAZ98+9XsrzLTsCR0LwFgJWoQQ/djc+mX7a7bLErH+wqaC\nlv3HCziZX845Ya64PPkYN/7tBiLCfdm2J4cfNqd263uv36FK582pXyfZmqHBngwJ9CBh30ne/yEF\nV2d7Hrx2PFqtDVXkmT9fJQ3/9BNz/rIIgPVvfqECmtYYq4j9+GPn3uf4cThxwvxxCmFtBoNaHhYW\npgJ4U9jZwX//29D3xCpBS0gUGoOByKEmBi3bt6vtpEndNy4hhOhhA31diRrmx77UfLJzWxZJEn2P\nTXUVjK+vdjXnogkw/AJ0wGOLJvDA6xv5+Kd9HDiRj6adZFkvN0eumz+yRT5KR2rr9GxMysTdxYEJ\no9vup6LRaJg3MYylK1Koq67jL9dH4+9tu30PJkUMxNXZnvW7clh4UST2dq3EqJddBg89pJaINU3U\nb6KuTs9nvx5kUsRARvo5qiUyr7+uLvTS01U+jRC9TU4OnD4Nl1/euePGj4dXX4XNm1VfqR5UFTCI\ng4NGMqQiFw9XE6opGgwqaBk8uGcLBgghRA+YNzGUPUfzWJeYzuILm1eATMsp4Zc/TrDogtG4ONlb\naYTCkmxmpqWyupbfdmfj7+3M2CZ3EH08nHh80QQc7HVs25PD1t3ZbT5+3nqcVz9Lok7fuaVkOw+d\npqisinPHB7V+Yd/EzNhgvNwcmT0hhHPHt8x9sSUO9jrmTAihoKSSj3/a1/pOQ4bA2LGwbp1aq9+K\nP/ad5Ov4I7z/yW8QGQkvv6xeOH0aVqzoptEL0c06k89ytgcfhO++a5xx6SEJx4qotbMnJmuvaQec\nOAF5ebI0TAjRJ7VWJAmgrKKG5z/czk+/HZcKY32Izcy0/JGSQ0VVLZdOD2+x3CpyqB/Lnj2Pyqq6\nNo83YOCtL3ex48ApvlhziOvPH2XyezfM8EwI7XBfdxcHPn56vm0tCWvHDReMJvnwaVZuSWXUYB+m\nRwe13On221VFpHffhWeeafHyuj9OAHCw2EBWWR1Bjz8O11yjLvY++ED9WojextTKYTZk7XbV4HZO\nwo+g/1fL4hpnk6VhQog+zFgkadW2EyQdOs3EMQMxGAy89WUypwrKAdWq4tLp4e2u1BG9g83MtMQn\nqpwSY2PEszk52OHl7tjmw9vdiYcXjmeAjwtfrD3EjgOnTHrfkjPVJOw7SdhAd4YGm1bxS6fT9pq/\n/M6Odjx540ScHXW8/VUyGadKW+50883g7Q3vvKMqjTWRX1zBzkOncaipAiD+1eXw4ovqQm/qVNWY\nT3JbRG9knGnpJUHL6cJydh3JZVRVLiGnjsMpE77jJGgRQvRxxiJJxj56P289zu8pOUSE+zI5ciAn\ncko4klFkzSEKC7GJoCW3sILdR3MZPdiHQH83s8/j7uLAk4vjsLfT8vrnSZyuj7Lbs6W+N8ucuNBe\nE4h0VkiAO39eEENFVR0vfJJARdVZNc3d3FSn77w8WL682Uvr1u9Hj4Ybd36Ls4OODWmVjcvvbrtN\nbT/6qAd+CiEsLDlZ5XkEBlp7JCaJT8zAYIB5jvUdoNNNWPKQkKCWsPWSwEwIITqraZGkHQdO8cHK\nfXi4OvDoDbGcN3kwIE0o+wqbCFo2JKn/jNur3GWqYSFe3HnFWErLa3hhWSI1tW0vKQNYtyMDrVbD\nTBvPT+mq6dFBXDo9nIxTZbzz9a6WJaTvu0/1eHntNdCrdaF6vYF1mw7hWFPJ3OtmMT0mmLziSlKO\n1ue+XH01uLuroKWu/T9nIWxKQYGaIYyJUY0jbZxeb2BdYjpODjqmhdQ3lOwoaKmpUUvgoqLAxaX7\nBymEEFZgLJJUpzfw/Ifbqa3T8/DC8fh6OhMzUjWh3JycKU0o+4Aey2lZ9Owvbb5WVl6Dg52WaeNa\nybcww/xJYRw4UUB8YgaLn/0Vu7aS6w1QVFbFhNEBpnWW7uVuujiCIxlFbE7OYveR3GYzS8NDvHjs\n+sU4ffQ+/PwzXHIJ+37ewkmdK7NPJePyr78xO62INdvTiE/MIHrEAHB1hWuvVSVg166F88+34k8n\nRCfs2qW2vWQGYs/RXE4XlDM3LhQXp/r/eNPSOjhoD1RWShK+EKLPmxkbzIc/7qO2Ts9Vs4cTO0q1\neTA2ofxy3WG27clpkYLw82+pbNiZyd9vn4Krs1QYs3U9NtPi6mTf5iPAx4Vr5o202F8YjUbDXVdG\nMW1cIJ5ujm2/t7M9gwd5cNXs4RZ5X1tnb6fl8cUTiB7uj5uzQ8Ofg51WQ+L+U3w4ZaHa8dVXQa9n\nzZebAZi/YAbodIwZ4sMgX1e2peRQXlmj9jUuEfvgAyv8REKYqSuVw6zAuLRh3qRQCK0vGNLRTIux\nqaTkswgh+jh3Fweumz+SWbHB3HBWISZjE8q1Cc1v9Ow+ksvSFSkcSitk657sHhurMF+PzbS898Sc\nnnorQCXuP744rkffszfw9XTm+bvOafZcdU0dj7y5mdUHS4i5+i6mfP0eZX9+iG2+UwmsLWXM5ZcC\nKhicExfCp78c5Lfd2cyfFAZxcaoM8g8/qJLJ/v7W+LGE6JxeVDmsrLya31NyCPJ3Y/RgH/Cof6Gj\noEWS8IUQ/ciCua33zTI2odxzNI/sPNWEMr+4glc+3aFWnBgMbE7OVNc0wqbZRE6LsC4Hex2P3hCL\ng52Wt8PPJ8/Nl82/HabazpG5M0c1W0Y2K1ZNrRrLRKPRqNmWmpoWSfxC2KzkZJWPFR5u7ZF0aOPO\nTGpq9cyfVF8sxMdH5aiYErS4u8PIkT0zUCGEsFHz6mdb1iWkU6c38NKyHRSXVXPLpRGMCvMm5Wge\nBSWVVh6l6IgELQKA0IEe3HZZJKU18PrVf2XN2HloMTBnTmSz/Qb4uBA1zI/9xwsa7lhwww0qif+D\nD1QHbiFs2ZkzcOiQmmXpqM+JDVi7PR2tVtNwwwCNRi0Ray+npagIDh5UM6E93ABTCCFsTWMTygx+\n3VnMgRMFTI8O4pJp4cyICUZvgN92ZVl7mKIDtv8/tugx508ZzOTIgaR4D+FYwFAmjBqATysFCubE\nqTsWP289TnZuGdl6R7KvWkR2diHZ8dvUc7llnMw/07JKmej70tPhySdVErgt2rNHVcjrBUvDjmUW\nkZpdTNzZxULCwlQFtLKy1g/csUNtZWmYEEI0NKEsKKkk4XAZIQFu/HlBNBqNhmnRgWg1sDlZghZb\n12M5LcL2aTQa/rwghiMZG8gvrmTelCGt7nfO2EG8952OlZtTWbk5VT058BK45RJYnQer4xv2nTJ2\nEE8sjkOrtf2yssJCXnwR/v1vVWr3uuusPZqWelFTSWOztBZrrY3J+BkZMHp0ywON+SxSOUwIIQDV\nhHLVthPY22nqm26rS2Bvdyeihvuz63AuJ/PPMNDX1cojFW2RoEU04+HqwNO3TibxwEnixgxsdR8n\nRzseuHY8Ow+ebnzyzBn43+cQNhjmzQPgaGYRv6fk8M36I20myIk+aN06td2+3baDFhuvHFZTW8em\n5Ey83B2JHTWg+YvGoCUtrf2gRWZahBACUE0o77h8LFWlOYQEuDd77dyYIHYdzmVTciYuKTf5AAAg\nAElEQVTXzJU8QFslQYtoITzIk/Agz3b3mRoVyNSoszqJ/3UB7NfAfx8FoLisigdf38hnvxxgZKg3\n40ZIZbE+Ly0NjhxRv/7jD+uOpS07d4KjI4wa1fG+VpSw/xSl5TVcfu5QdLqzVvK2V/bYYFDljkNC\nYNCg7h+oEEL0AhqNhkumh5OUVNjitcljA1nyzR42J2dJ0GLDJKdFWM7EiZCVpR6Ap5sjj9+oloa9\n8tkO8ooqOn/O/Hy11KhWOtn2CsZZFlAzGlVV1htLa2pqYO9eGDsW7G27kdj6xAygMYesmbD65WKt\nBS3p6XDqlCwNE0IIE7k52xM3JoD0k6WcyCmx9nBEGyRoEZYTV98XJzGx4alRYT7cemkkxWXVvLQs\nkZpavennMxjgppvgnnvgp58sO1bRPYxBy6xZUF0Nu3dbdzxnW7FCjcvGl4YVllay4+AphgZ7MniQ\nR8sdmi4PO5ssDRNCiE6bERMEwObkTCuPRLRFghZhOcY7u02CFoCLpg5hRkwQB9MK+finfaaf74cf\nqPplDbtDoqhL2WvBgYpuoddDfDwEBqpgE2xridjx43D77arHyQMPWHs07dq0MxO93sCcCa3MsgAE\nBanSx63NtEjQIoQQnRY3ZiDOjjo2JGWyZntawyM+MZ2y8uo2j6uprSNh30nq6jpxU1aYRXJahOVM\nmKC2CQnNntZoNNx3dTTHs4tZuSWVUWE+TK+/o9GmsjL0f76fly96lIShcSzI2Meibhq2sJA9eyA3\nF268ESZPVs8ZL6CtrboarrkGiovh449hzBhrj6hNBoOB+MQM7HSahjt/LTg4qOCwraBFp4PY2O4d\nqBBC9CGO9jqmjA1k/Y4M3v5qV7PXwgM9eeX+6TjYN+97ZTAYePurXWxIyuSuK6O4aGrrVVeFZchM\ni7AcLy8YMULNtOib33FwdrSrLzGo4+2vk8k4Vdr+uZ59lm8HTSRhqFpy9rXbaJIPnW7/GGFdxqVh\nc+fC8OHg7W07My2PPqr+Xt50kwqqbFhqVjEnckqIGzMQTzfHtncMDYXMTKira3yupgaSkiAyElyl\nbKcQQnTGbZdF8sj1sTx03fiGx9RxgaRmF/PBypYrPn75I40NSWo52brEVm4iCYuSoEVY1sSJ6m72\n0aMtXgoJcOfPC2KoqKrjhU8SqKhqI7l+9252f7OOT6ddj5+HI8+kfI5Or+e1z5LILzYjmV/0DGPQ\nMmeOWro0aRKkpqrZF2v67jt46y01u/LOO9YdiwnW76hPwJ8Q0v6OoaGqQEVOTuNze/aopp7GmS4h\nhBAmc3dxYOb4YGZPCGl4PHhtDGED3Vm17QS/7W5sQHkko5Cl36fg7uLAyDBvjmYUkXZSkvi7kwQt\nwrKMeS1nLREzmh4dxKXTw8k4VcY7X+/CYDA030GvJ//+v/DKBQ+h1Wp5/KaJTBjoyM2bP6b4TDWv\nfbaTOr2h1XMLK6qqgs2bISKiscyuMaeijb8LPSI1FW65ReWxfP21zc8+1NTq2bgzE083B2JHB7S/\nc2sVxCSfRQghLMrJwY7HF8fh6KDjrS93kZN3hpIz1bz4SSJ1ej1/uSGWK84dBjRWfRTdQ4IWYVnG\nCmLtXKjedHEEowf7sDk5i59/3qUutDZvhnXrqH3mWV4aNIdiFy9uuWwso8J8YMwYLkn+icm+kHIs\njy/WHOqhH0aYbNs2qKhoaCwKNN7tt+YSsX/8Q838LVli03ksRjsOnKLkTDXnjg/G7uzeLGdrrVeL\nBC1CCGFxIQHu3POnKCqqanlpeSKvfZ7E6cIKrps/ivEjBzAxIgA3Z3s27syQhPxuJIn4wrKio8HO\nrkUFsabs7bQ8vngCD7y4lg/WpXL40BY09TMuuR7+HAgZzYyRPlw8rT6hbcwYNMADHCLVO5ov1x0i\nJ+8MOp2m4Zx2daWMH29Ao9G0eL/yyhq+WX+EuRNDCfRzs+iPK+o1zWcxMs66WTMZf+9elbS+qHeU\ncVi/QwUgc1vrzXK21soe//EHeHjYfONMIYTobWZPCCXlaH5D7sr4UQO4Zu4IAOztdMyICWLVthMk\nH85lQkcz5cIsMtMiLMvJCcaNU40Fq9suEehrb+DR9UvQ6uvYMGYW6yNmsz5iNikhYwn3ceC+G6c0\nBiD1d8jdDu7l8cVxODnYsSk5k/U7Mhoea5KL+W5DyzwagKUrUvg6/gifrj5o8R9X1Fu3TgWrM2Y0\nPufjowozbN/eojBDjzAY4PBhGDZMVdOycXV6A8mHcwkJcGNIoGfHB5w901JYqH7eiRNBK1/tQghh\naXdeOZahwZ4E+bvyyMJYtNrGG6XGRsDxkpDfbWSmRVheXJyqYJSS0nbZ1WefZVzCGpbNGE/Zk39r\n9pKfpxO6pktjhgwBR0fYv58Rod58/PR8SstrGl6urKrlySWbWLZKvT52mF/Da9v2ZBNfv8b095Qc\nSs5U4+HqYLmfVaiL5R074JxzwN29+WuTJsHy5XDICkv6cnPV0rBZs3r+vc2QdbqUquo6RoR6m3bA\n2TktxiWZsjRMCCG6hZODHa/dPwMDtFjCOzzEi5AAN7bvO0lZeTVuLnKtYWlyO05YXgfJ+CQlwWuv\nwdChuP79bwT4uDR76M5ey6/TqeUuBw6AXo+Lk32z/cMGeXD1NF80Gg0vf7qDgpJKAApKKnnn6904\n2Gk5b3IYtXV6Nu2UTrcWt2GDmklpms9iZM1+LYcPq+3w4T3/3mZIzSoGYGiQl2kHeHqqINEYtBj/\njKVymBBCdBudTttqzqFGo2HOhFBqavVs2ZXVypGiqyRoEZZnDFpay2upqYHbblMXuUuXqqpOphgz\nBsrLW2+mB4T6O3LzJREUlVbx0rJEamr1vPVlMqXl1dx8SQQ3nD8anVbD2oS0lhXLRNe0ls9iZLzr\n31EyfmUlHDtm2XEdOaK2I0ZY9rzd5Fh90BIeZMLSMFBlpUNDG3NajH/GMtMihBBWMTM2GK2GhhUe\nwrIkaBGWN2qUKi3b2kzLa6/Brl2qDO3s2aaf01j5af/+Nne5dHo4U8cFsv94AY+9vZmkg6eJGeHP\nhecMwcvdkYkRAzmeXcKxzOJO/kCiXb//Ds7OjZXjmoqKUnlOHc20PPccjByp+oxYinGmpZcELalZ\nxWg0MCTQw/SDwsLUErjiYvXvbcgQ8PfvvkEKIYRok6+nM9EjB3AovbDjJtqi0yRoEZan08GECSrA\nKG3yj/bgQXj2WQgIgFdf7dw5TQhaNBoN9y+IJsjfjaOZxbg52/PAtTENiXLzJqokuTUJaW2eQ3SS\nwaBmSIYNA3v7lq/b26u8pj170Fa00xh040bV2X3ZMsuNrRcFLQaDgWNZxQT6ueLi1MqfY1uMyfgb\nNkB+viwNE0IIKzM2Bn5iyW/c9s+1DY//9++tVNXUWXl0vZsELaJ7TJyoLmh37oTdu+HWW1U55Koq\n1ZXc28RkYyMTghYAFyd7nropjohwXx65PhZfT+eG18aPHICPhyObd2a2/OIwGCBL1qB2Wl6eCkzD\nw9veZ9IklYt04EDrr9fWqtk3gP/9TwUvlnD4sMr5CLD90pOnCso5U1FDuKn5LEbGoOWrr9RWloYJ\nIYRVTY4cRORQXxzsddTpDdTpDZRX1rDnaB6/78m29vB6NakeJrqHcanQdddBTo769bBh8Nhj8Kc/\ndf58Q4equ/YdBC0AoQM9ePHeaS2e1+m0zIkL5ev4I2zbk82s2JDGF//5T3j6aXXxHBXV+fH1V6mp\najt0aNv71N/9d01Jaf31Q4dUY0qA7GzYtKlzSwdbo9ernJaICJX7YeNSO5vPYmSsIPbjj2orQYsQ\nQliVg72OF+5pfg2SnVfGnS/EszYhnZlNrz1Ep8hMi+gekyerXhE5Oaqq1E8/qYvT22837yLS3l4t\n89m/X82KmGlu/RKxdQlNEvorKuCNN9R5N2ww+9z9kjF5vqOZFtoJWpKS1Pbqq9X2s8+6Pq6MDDWr\n1wuWhkHTymGdDFqMMy1lZerfSHS0hUcmhBCiqwL93Igc6sueo3nk5J2x9nB6LQlaRPcICYHfflNB\nxpo1cNFFXW94N2aMWorUhWVcrX5xfP65ygeA1iueibaZMtMSEgJDhuC+Y4daCnY2Y9Dy4INq32++\nUdXEuqKvVw4zMgYtADExquiBEEIImzNvopoZl+aT5pOgRXSfKVNg9GjLnc/EvJaOGL84Vm07Tn5R\nOfnvfUi+hz/lnj6qSaIwnSkzLRoNnHcedmVlrVeUS0pSxRtiYtRywpISNTPXFb0oCR8gNasIP08n\nPN0cO3dgYKD6swNZGiaEEDbsnKhBuDjZEZ+YTp1eWi+YQ4IW0XtYKGgxfnGs2HSMm55fy00zHuOm\n2/7Lopv/w85KZ1U+VpgmNVUFJYMHt7/f/Plq++uvzZ+vq4PkZPXZOjvD9der57u6RKwXBS2FJZUU\nlFQxNLiTSfgAdnYQFKR+LUGLEELYLCcHO2bEBJNXXEnyodPWHk6vJEGL6D0sFLQ4Odhx39XRnBsT\nzLmlxzj3wCZmhDii1+p49cKHOf2bLBEz2bFjakmXg0P7+82ejUGnaxm0HDqkmoaOH69+HxUFY8fC\nqlVQWGj+uIxBy/Dh5p+jh5i9NMzIuERMyh0LIYRNM7ZeWCutF8wiQYvoPYYPV0thuhi0AEyPDuIv\nU7z4y/t/4S/5W3n0gfO4I9xAqbMHL23Oo6ZWaql3qKJC5Re1l89i5OlJ2dixKmeooKDx+Z071TY2\ntvG566+H6mqV22Kuw4dVk0UvM2YvepjZSfhGjz0GTz3V/hI9IYQQVjc8xIvBgzxI2HeS4rIqaw+n\n15GgRfQejo6qbHIXK4g1ePttdZ4HHgCNhvMvGs/sfes5XOvM+z/s7fr5+7oTJ9TWxIvlksmTVSni\n+PjGJ41J+E2DluuuU9tPPzVvXNXVamy9YGkYwLGsIoDO92gxuuQSVbK7F5R2FkKI/kyj0TBvYii1\ndQY2JGVaezi9jgQtoncZM0YtGzp1qmvnKSmBDz+EQYPgqqsA0ISFcffubxlcnM2qbSfYmJRhgQH3\nYcYkfFNmWoCSKVPUL5ouEUtKUlXlmpbqDQ2FGTNg82ZIN6PKyvHjKlemlwQtqVnFuLs44Ocllb+E\nEKKvmxkbgp1Oy9qENAyWuAHbj0jQInoXC+W18PHHqnzyvfc25mNoNDjFRPHEt//A2UHHO9/sJi2n\npGvv05eZUu64ifJRo8DHRwUtBoOadUlOVhXmXFya73zDDWr77393flw2moRfcqaaw+nN83TKKmo4\nmV/O0GBPNDJTIoQQfZ6HqwOTIgeSfrKUHzansjk5s+FxurDc2sOzaRK0iN7FEkHLwYPw3HNqudkd\ndzR/LS6OoKJsHhyloaq6jhc+SaSiqpXeIsK0csdN6XSq0WhmJhw4oIKLsrLGJPymrr4aBg6EF19U\nj86w0ST8t75M5pE3N5Ow72TDc8e7ms8ihBCi15k/SbVe+GDlXl75NKnh8cBrGzmZL80n2yJBi+hd\nIiLU1twmkBkZqvxufj4sWaKStZuKiwPgnPSdXDojnKzcMv797W6Zwm1NJ2daADjvPLX99dfWk/CN\nvLzU8rDQUHjySfUw9TOwwZmW/OIKEverYOWNL3Y23E3rcuUwIYQQvU7MCH+evDGOe/4U1fC4cuYw\nyipqeHFZItU1UgyoNWYFLQkJCUyZMoXFixezaNEi/vGPf1h6XEK0buxYVWL3++9VqdzOyM9XF80Z\nGfDCC3DrrS33mTBBbRMTuemiCIaHeLEhKVM62Lbm2DEVXHh7m36MsV/LmjWtJ+E3NXw4bNmiti++\nCPfdp5aUdcQYtAwbZvq4ull8YgZ6A0QN86O0vIZXlu+gtk7fkIRvVo8WIYQQvZJGo+GcqEAuOGdI\nw+PmSyKYNzGUY5nFLF2RYu0h2iSzZ1omTpzIsmXLWL58OX/9618tOSYh2qbVwqJFKh/lhx9MP66s\nDC68UC1LevhhePzx1vcbOBCCgyExEXudhscWTcDVyY5/f5dC2knJb2mg16uE987MsoBqhBgZCZs2\nwdatquJV0yT8s4WGqsAlKgrefRfuvrvj9zhyRB3n7Ny5sXUTg8HAuoR0HOx1PHXTRGbEBHEwrZBP\nVx8gNasYZ0cdg3xdrT1MIYQQVnbnlVGEB3ry6x9prEuQm6VnMztokeUywmoWL1bbZctM27+6Gv70\nJ0hIUMe+8kr75WEnTICTJyE7m4G+rjxwbQzVNXW8tGwHlZLfouTkQGWleb1B5s9XPV62b4dRo8DN\nrf39AwJg40a1NHDp0vYripWVqd4xNrQ0bG9qPjn5Z5gaNQhXZ3vuvWocgX6ufLvhKBmnShkS6IlW\nK0n4QgjR3zna63jypjhcne3597e7OZ5dbO0h2RQ7cw88duwY99xzD8XFxdx7772cc845lhyXEG0b\nORImTVJLjLKzITCw7X1ra2HhQrXvxRfD+++r2Zr2xMXBihUqbyYoiCljA7l42hB++u04z77/B6ED\n3Rt2dXaw49IZ4fh6tn5XP/N0Kau3naCmrv1lTRFDfDl3fHDjE6dOqYt1W9XJcsfNnHcevP66+nVb\nS8PO5u2t+unccQd8/jk88UTr+x09qrbdnIR/8EQBG5IyaHrrxtFexyXTwhng07wS2trtqvPxvPrE\nSxcnex5fHMdf3tpMTa1e8lmEEEI0GOjrysPXjef5D7fzjw+3Ezu6c9cCbf1fZHQ0o4h1ienom0w+\nONrruGr2cDzdHLs09qYKSyqJ35HB+ZPDcHNxsMg5zQpawsLCuO+++7jgggvIyMhg8eLFrF27Fju7\ntk+XZFy/3kv19vH3Nf4zZxK6fTuZL7/MqUWLgFY+I72esOefx+/HHykdP54jTzyBYc+eDs/t7unJ\nCCBn5UqyQ0IAiA4ysMvPgX2p+exLzW+2/++707hl/gDsdc3vlpdX6fnPL6coPtNxQt3qbSdISztO\nRKgLHtu2Mfz++zn20ksUzZnT4bHW4Lt+PYOBNJ2OvE7820hKSkLj6kq0oyPaqioy/P05beLxumHD\niLK3p+q//2X/3LmtzpZ5r11LOJDh7Gzyec3x319PkZVf0+L5bbvSuP28AOzt1Ngqq/Vs2ZWDj5sd\nVYUnSEpKa9j3vPEe/JRQhKumxKa+X2xpLKIl+Xxsn3xGts/WPyMdcG6kO5v2qhufnbVtdzq3n9fy\nuqSwrJb//HKKyuqWq6VKinKZEeFh5oj/f3v3HR5VlT5w/DuTSSYdUgjphRpCSCAxQbqEIlWigrvS\n1N2VVSyADV3XldVdXXUR+7qysqAQ8LeKiIWFUERdqalAgIQkpBBSII2QnpnfH5cEQgrJpMwQ38/z\n8MzzzL1z59y8zMx97znvOY3V6fT8O7qA7IvV/BSTyoLbnDtlRIFBSUvfvn2ZPn06AF5eXjg7O5OX\nl4eHh0eLrwlt6x1VExQTE3NTt79H8vWFN9/Ec88ePNesISY2tnGM9HpYvhy+/hrCwrDbvZsQ+zZ+\nGP384NFHcTt3DrdrjnnLofc4dy4THn0Meit3x7/Yd4a9R7M4mqHh0XlXazP0ej1//fdhSi7XMTdi\nIBNDPZu8Tb2iS1X8Zd0hvjlSQsSY4XjmbgWg/44d8Mwzbf+bdKdt2wDwiYjAp42fjUafo9tug507\n8YqMxKs9n63Zs7HaupVQjab5WpgdOwDwmjSpfcdth8sVNZzf/B0DvXqz/NcjGp7/6oc0dh3KIOGc\nBb+/K0hpzoGz1NblMGv8QG65pfGQtdBQmD+7Glsrc5NZo0W+60ybxMf0SYxM380So9BQWFRYTlV1\n+4alb9ufSvThTBJztCyJHNbwfHVNHc+89yOV1Xp+NyeQEYOU2VMrqmp56p0fuVhu0Wl/l39/fYLs\ni9VYac1Iza0ipdCW+bf7t/n1LSWVBiUtX3/9NRkZGTz66KNcvHiRwsJC+pryUBbR8zg5wezZsHUr\nxMc33f7ii/DOO0rR944d0NaEBZQFEPv3h6NHr06z+8c/YvbKK3gDfPGpMsxs5kyWzg3mbE4pOw9m\n4O/jyORwbwC2/5jGoRO5BA1wZuH0IZi1cofB2xUenTecv2+K4dUNR1h9MhlLUOo40tIMqxvpavXT\nHRvatlWrlEUl2zusdOFCJeYbNzaftKSkKI9dWNNyIv0iOj2EDHbB2/Xq/6sldw7jVEYh3/wvnRGD\nXQgf6kr0oQzUKoi4xavZY9l1Upe5EEKInqdvC0O8WqP8FhXx9Y9pjBjUh7AAVwA+2naM1OwSJod5\nM2d846Hdvm72nEwvpKa2DnONWYfafCQpl63fn8Gjjw0vLRnNcx/8xJbo0wz2cSDUv2O5gkGF+BER\nERw/fpx7772XRx55hFWrVrU6NEyILtFcQb5eD3/4A7z8spJ47NqlJDjtFRYGhYVK7cYTT8ArryhT\n6L74ovL8rFnw29+irbisFM1ZahqK5pIzi1j/zQl622l5akFoqwlLvQkhnswa40dm7iXetwi4Wiux\nfn37294dUlNBo1GmnzbErbfCmjXKMdpjxgxlmuWoKKhrZthdcrJyTF9fw9rVBokpFwAIGujc6Hmt\nuRlPL7wFc42at7bEEXsqn5SsYkL8+7ZY8ySEEEJ0JksLDU8vDG34LSosrWTPkUx2HszAz92eh+4O\navKaoAHOVNfqOJVR1KH3LiiqYM3mWMw1alYuDsPF0Zpn7wvDTK1m9aYY8gvbuVTFdQxKWmxsbPjw\nww/ZvHkzW7ZsYdy4cR1qhBAGmT5dSUiiopSC+5oaeOABZQ2WgQNh925wczPs2PXrtcydC2+9BQEB\nymKHq1YpPTDDh8O6dRAUhOuFbFbcG0J1rY5X1x/htU+PUqfT89T8UBzsLdv8lr+5I5DBXr343iOE\nHTMfBDs7JWlp7uLc2NLSlMTArGN3ZNpNq4V77lFmL9u3r+n25GSl96cLb6IkninAXKPG38exyTZf\nN3t+M3sol8qreXndIQCmjvTusrYIIYQQ1/Nz78X9swIovVzNX/99iA++SMTGUsNz94WjNW/6ux00\nQLkJV39TzhC1dTre2HiUS+U1PDgnED93ZRj9QC8Hltw5jEvlysKZNbWGX9NI94i4eVlYKDODvfsu\nDnv3wksvwXffKb0k337bdLX79ggLUx4TEpQEZdeuq8cbNkyZrvfFF5VFD194gZH/93/MjRjI53uV\n4Um/mjKI4EHte39zjZqVo3qzLDmLtYOmM8TLHr8PV8PevTBliuHn0tkuXYKCAggJMc77L1yoTH28\ncSNMnnz1+f/+V+kFGzu2y966pKyK9JxSggY4Y9HMFz/AzDF+xJ0u4HBSLr1ttQ1d80IIIUR3mT22\nH3GnCzh6Mg+ApxeG4+bc/JpgQ/s7o1YpN+UW0LT25H8JOWyJPt3qcidVNXXkXixn3HAPpo3ybbRt\n2q0+nDpbyN6jWXzy3Ul+e0egQedk8DotQpiEK0PE/F54QUlYbr9ducjvSMICygW5g4MyjKm541lY\nKEPGhg+HL76As2dZOM2f20I9mTDCk3untr3g7Fp9MlN4bNf71KrUfD30SqKybl3HzqWz1dezGDLd\ncWcYM0bp5fniCyi/0tUcGwvz5ik9MS1Nh9wJjqcqM8ddPzTsWiqVisd/NZzBPg7MmzwQjZl8zQoh\nhOheKpWK5b8eQYCfIw/MCuDWwJZHnthamdPfszenM4qarEen1+vZ+N+TZOSWUlha2eK/yxU1BA1w\n5tF5wU0ml1GpVDx8dxAOdlpluQAD13qUnhZxcwsNhSFDUJ08CYsWwccfg7l5x49rawtnz4KNTctD\noFQqePJJ5X3ffhuzNWt4cn4HZ95ISmJk6mFcLOGnnBoeDAzG6ssvlR4Ex6bDkYyifo0WY00QoFbD\nggXw17/C9u1KYjlzJly+DJ9/DqNGddlbJ5wpACB4QOtJcS9bLX9/fHyXtUMIIYS4kV62Wl57tG0l\nHEEDnEnJKiYpvZAQf5eG55Mzi8jOL2NssDsrF4cZ3BZLCw3BA/vwfWw2WXmXGk1k01ZyC1Dc3FQq\n+Owz0l96San/6IyEpZ69/Y1rNu65R1nc8l//gpJOWLn25EnU6Jkc7EpFVR0/zVsKVVWweXPHj91Z\nOrKwZGdZsEB5/Mc/YNo0yM2Ft9+Gu+7q0rc9duYCVlozBnj17tL3EUIIIbpT0EDlZlzilZtz9fYc\nzQJgUljH6zMD+yujFI6lXrzBns2TpEXc/IYNo3DGjBuvdN8VLCzg8cehrAzWru348ZKSwMaGSZMD\nUakg2ra/kjj9+9/tP1ZeHhw7ptTlxMYqEwicP9/xNnZ0uuPOMGSI0sv2ww9w+jQ8/TQ89liXvuXF\nkgqy88sI8HOSIV9CCCF6lABfRzRmKhLPXC3Gr66p44e4czjYaRvWdemIYQOU2VyPpRpW8C+/vEJ0\n1JIlyjCyd95RZjAzVG2tMvvVkCG4ONowfGAfTp4rIytyPsTEKMnHFTqdvvUxoZmZynTEQUFK3U1o\nqDK5QECAMoyqI4w9PKxe/ZTX996rTIjQxY5d+SIPusHQMCGEEOJmY6nVMMjbgdTsYsoqlGuZw0m5\nXK6oYWKoF2adcLPOzckGR3tLTqReNKiuRZIWITrKwQF+8xvIylJqKgyVnq4MBRsyBIApI30A2D3m\nbmX7ld6Wyqpannx7P3/4x/+ormlh6sDoaCWBmjpV6YFYvhzGjYPiYvjpJ8PbCEpPi4uLUvdjTEuX\nKpMvbNjQLb1s9XefWivCF0IIIW5WQQP6oNPDiSs9IXuOKEPDIsIMXJPtOiqVimH9nSkuqyI7v6zd\nr5ekRYjOsGyZUl/z5pvKApeGOHlSeQwIAODWQFfsrM3ZW2xBrVMf2LYNgHVfn+BMdgnHUy/y0bZj\nzR9r/37l8c03lR6gNWvgT39SnouONqx9oPQGZWQYt56lnkajrNXTmXVMrUg4cwFbK/OGueeFEEKI\nnqT+plzimQsUllYSeyqPAV698TGgaL4lHRkiJkmLEJ2hf3+4806lbuTHH5XnSnDN/gMAABroSURB\nVEvhxImryciNJCUpj1d6Wsw1ZtwW6kVxWTVHJs+DjAyOHDjNjgNn8XG1o597L3YezGDPkcymx/rh\nB2XhzSvHApT1SywtO5a0ZGUpiYuxh4Z1s9yLl8kvLGfYAGfM1Kobv0AIIYS4yfj7OGChUZN45gLf\nx2Sj08PkWzqnl6VeQzH+GUlahDCeJ55QHiMjoVcv5V9gIAwd2rbE5bqeFoAp4cpsHdE+Iymxsued\n7afQmKl5ckEoz94Xho2lhg8+TyA955qZyzIylH/jxzceNmVpqQwRS0xUivQNsX698hgUZNjrb1JX\n61lkaJgQQoieyVxjRoCfE2fPl/Ltz+lozNSMG+HZqe/h7myDo72W42ntr2uRpEWIzjJ6NMyZowwP\n8/GBGTOUxS71evjmmxu/PilJmY3Mz6/hKT/3Xgzw6k1MbS9en/kUxdWwaPoQ/Nx74eZsw4p7Q6iu\n1fHqhiNcvlI41zA0bHwz64TUryC/Z0/zbdi69WpP0fVOn1YK3j094eGHb3w+PUiiJC1CCCF+AeqH\niOUXlhM+tC/2NhadenyVSkVgf2eKL7W/rkUWlxSis6hUDXUnDfLywNUVdu1SpuVtiV6v9LQMHqzU\nalxjarg3H2QVk+gdRODlHOZMuKNh28hAN+ZGDOTzvSmsjorh9pE+8PNp6BeG2YBwgmvrMNdcs9bM\nlCmwcqUyRGz+/MZtSEkh94GHyXDtD396AYKHA2Bvo2WIr4OSqFRXKzUydnYG/Ym6W2V1LQVFFXj1\nbbm9haWVpGQWtXqchJQCettpWz2OEEIIcbO79uZcZ6zN0pxh/Z35Ie4cx1MvNPldTTvX8pp3krQI\n0ZX69lWmHP7xRygvB2vr5vfLylKmIr5maFi9cSM8+df2E2jKy1ix4y3MVA812r5wmj/JmUUcScrj\nSFIe2IRDZDjsKyAw8wB/+f3oq1MVBgeDszPs3q0kSqqr9Rmp72/gmfvfpVqjhdhqiD3csO3VAZcJ\n3LcPZs9Whr/dBGpq6/jDB/8jJauYF347kvAA1yb75BWWs+zN76/2UrViwghPVCqpZxFCCNFzDfDs\njY2VOeYaNSGDXbrkPQL71xfjX2T66KujS3YcOMsHnyewan7zQ9IkaRGiq91+O8THK8Xx06Y1v891\nRfjXsrUy5y+/H43Fn57HJTNZmRr5mkJ4MzM1zz8Qzv7YbKouFMGf/wwBAcSMmU18SgGf7jjJ/bOG\nKjur1TBpEnz2mTLcy98fgLL8Qv522Ztqey33uNVgt2Uj2NpQ/LulfBF3geidCQRaW8O77zZKdEzZ\n2q+Ok5JVDMCbUbG8tWICrk42DdtranW8/qkyrG72uH64OFi1eCy1SsWYYPcub7MQQghhTGZmal5a\nMgpzjbrLFlL26GOLg52W46kX0Ov1qFQqkjOL+OjLY9hZtzwcTZIWIbra1Knw2muwc2fLSUszRfjX\nGuLnCCGDYCNw+HCT2busLc2VuxVbDkHsdvj1WKbcF8aKt/bzxb4z+Ps6cmugm7Lz5MlK0hIdDf7+\n6HR61ry7i1z7vvxKm8fCp5aAdT488gi6c0f4acaL/Ow1godeWIWVj08n/VG61r6YLHb8fBZfN3um\njfLlw62J/O2TI7z+6DgszJXhcp98l0RyZjETQz15cE6g9KIIIYQQwCBvhy49fv16LT/En+NcQRn2\nNlr+9skR6nQ6nloYir4sq9nXSSG+EF1tzBhlWNiuXS3v00pPS4PwcOXx8OGW97mmCN/Gypzn7gvD\nwtyMtzbHknPhSsHblCnK4+7dAHyxN4XD5VYMz0zk3seu1MssXQrPP4/6TAqTDn9NpYUVP9829wYn\nahrOni/lvf8kYG2p4bn7w5g5xo+pI31IzS5pWNfm0PHzbNufiqeLLQ/fHSwJixBCCNGN6oeIJZ65\nwOqoGAqKKrh3qn+rQ9IkaRGiq2m1cNttSmKS1fzdA06eBDMzGDiw5eOMGKHsc6OkxcYGQkIAZfax\nR+YGcbmylr9tOEJVTZ0ys9nAgbBvHwknz7Nxx0mcL13gKesMzNyuqft4+WV46CEmph8EYE9sTjtP\nvPuVV9bw6vrDVNfUsfzXIbg72wLw+zuH0c9DWdfms+jTvLUlDguNmpWLw7DSSoezEEII0Z3q12v5\n5LuTxJ7KJ8TfhV9NHtTqayRpEaI73H678tjcwo56vZLQ9O+vJDgtsbZW1n2JjVUWeLxefr6S/Iwe\n3WiV+IhbvJk2ypf0nFJe/vggH28/zsfTlvLxiLt549MjqPQ6Vn7zBr0e/X3j46lU8I9/4Jp+ksD+\nThxLvUDuxcsGnHxTOQVlfPtTGnW69s3R3hq9Xs87n8WTc+Eyd08cwKhhbg3bLMzNeO6+MGyszNn4\n31OUVdSw5M4gfN06b5VfIYQQQrSNp4stve20XK6ooY+DFU/OD0V9g8WbJWkRojtMnao87tzZdFt+\nPhQVtVjP0kh4OFRUwIkTTbfVr68yYUKTTQ/OCWSwtwMJKRfYtj+VbeZ+bLslkpIqPb/b9y/8fRwg\nLKz597SyYtItyrSH+2Kyb9zGNvhwayIffnmMrftSOuV4AClZxfwvMYcAP0cWTW86zM7VyYYn5oeg\nVquYGOrJ1JFdM5WjEEIIIVqnUqkIG9IXC42aZxeHtWk9GBkXIUR3GDwYvL2VOpK6OmWYV7221LPU\nCw+HtWuVIWLBwY23tbKopIW5GX97dCxnc0rRo4dLZTBpErYVl3AryYVNm1p929FBbnz4ZSJ7j2by\n6ymDOlQDkl9YTnxKAQBRO08RMtiF/p69DT5evT1HMgGYN2nQ1SmerxMe4MonL96OvY2F1LEIIYQQ\nRvTw3UEsnhFAb7tWRplcQ3pahOgOKpXS21JYCDExjbfdYOawRlorxv/hB2V4Wf0+19GYqRng1ZuB\nXg4MDPBioI+jkrC4usLc1ovsrS3NGRPkTu7FcpLSC2/czlbsOZqFXg+3hXhSW6dndVSsUmvTATW1\ndfwQdw4HOy0jBvVpdd9etlpJWIQQQggjM9eYtTlhAUlahOg+9XUt188i1p6eloAAsLJqmrQUFUFi\nItx6a+t1Mdeqn0XsoYfA4sbdspPCvICrPRqG0On07D6SiaWFGUvnBjNrjB9ZeZf45Lskg48JcPhE\nHmUVNdwW6tViL4sQQgghbl7y6y5Ed5k0SVnc8dq6lsLCq7UoVxZ6bJVGA6GhcPw4XL6mKL5+hftm\n6llatGyZshDlE0+0affAfs64OFjxU8I5KquamQigDRLPFJBfWM644R5YaTXcNysAjz62bP8hjfjk\nfIOOCbDnqJJITbrFy+BjCCGEEMJ0SdIiRHdxcFCGbh04ACUlsHGjkqgkJsL06cpUxW0RHg46nTKL\nmE4H77wDixYp22bMaHt7nJ3hT38CO7s27a5Wq5h4ixcVVXX8EH+uxf2S0i/y2idHyC8qb7It+pCS\nXEwJVxaptLTQ8OSCEMzUKt7aEkfp5eoWj/v53hTWf3MC3XUzjhWVVhJzKp8Bnr3wkdnAhBBCiB5J\nkhYhutPUqUohfliYkmiUlcFrr8FXX7X9GPU1K199pSQ7y5Ypice2bTByZNe0+4op4T5YaNSs236c\n8xeaTn9cWFrJK+sP81NCDn/bcISa2qu1KuVVOg4cP4+niy3+vldX2x3o5cC9tw/mYkklq6NimiQl\nAN/HZLHh2yS+2HeGrd+fabwtNhudTs+kMJkNTAghhOipJGkRojvV17WkpMDMmUo9yzPPNFpX5Ybq\nk5bVq5X6mOnT4dgxmDOn89t7nb6O1jx8d3DjxSqvqNPpWb0phpKyajxdbEnJKmbtV8cbth87W05N\nrY4p4T5NCuHnRQwixN+F2FP5fLY7udG27PxLvP95AlZaDY72lnz6XRKJZ5TZx/R6PXuOZKIxUzF+\nhGcXnrkQQgghjEmSFiG60623wuuvw5dfwtdfg69v+4/h66v8s7SE99+Hb79VZgDrJpPDvbn9Vh/S\nckr459bEhuc/iz5N4pkL3BroypoVE/B1s2fHz2fZF5MFQFzaZczUKibe0jS5UKtVPDk/lD4OVmze\ndYrYU0p9S1VNHa99cpTK6joemzec5+4LQ6VS8canMVwsqSD1XAkZuZcIC3Bt0xzvQgghhLg5SdIi\nRHdSq+HppyEyUpkG2RAqlVK8n5YGS5cafpwOWBI5jP6evYg+nMmuQxkkJBewJfo0Lg5WLPvVCCwt\nNDx3fxjWlhre+08Ce49mkltUQ1hAXxzsLJs9pr2NBc8uDsNMrebvm2LILypn7bZjnD1fyvRRvowb\n4YG/ryO/uWMoxWVVvPbJUXYdygCkAF8IIYTo6SRpEeJm5OkJbm5Ge3sLczOeXRyGrZU5H25N5I1N\nR1GrVDyz6BZsrZUeD3dnW5b/OoTqmjrWbI4DYMpIn1aPO8jbgSWRgVwqr+bZ939i58EM/Nzt+d2c\nwIZ9Zo/tx7jhHpw8W8iOn8/Sy9aC0CF9u+5khRBCCGF0krQIIQzi6mTDE/NDqKnVUVJWzf2zAhjs\n49hon1HD3LjrtgEA2FqpCR3scsPjThvly8RQTwqKKrDSmrFycRgW5mYN21UqFY/dMxxPF1sAbgvx\nQiNrswghhBA9msbYDRBC3LzCAlxZ9qvh5BdVMGd8/2b3WTxjCHU6PRa6ojYt/KhSqVg6NxgbS3PC\nh7ri0ce2yT5WWg1//M1Ituw6TeSE5t9XCCGEED2HJC1CiA6ZHN76kC8zMzW/mxNITExMm49paaHh\n93cFtbqPRx9bnlwQ2uZjCiGEEOLmJWMqhBBCCCGEECZNkhYhhBBCCCGESZOkRQghhBBCCGHSJGkR\nQgghhBBCmDRJWoQQQgghhBAmTZIWIYQQQgghhEmTpEUIIYQQQghh0iRpEUIIIYQQQpg0SVqEEEII\nIYQQJk2SFiGEEEIIIYRJk6RFCCGEEEIIYdIkaRFCCCGEEEKYNElahBBCCCGEECZNkhYhhBBCCCGE\nSZOkRQghhBBCCGHSJGkRQgghhBBCmLQOJS1VVVVMmTKFbdu2dVZ7hBBCCCGEEKKRDiUtH3zwAb17\n9+6stgghhBBCCCFEEwYnLWlpaaSnpzNhwoTObI8QQgghhBBCNGJw0vL666/z7LPPdmZbhBBCCCGE\nEKIJg5KWbdu2ERYWhru7OwB6vb5TGyWEEEIIIYQQ9VR6AzKOFStWkJ2djVqtJjc3F61Wy5///GdG\njRrV7P4xMTEdbqgQQgghhBCi5wsNDW3ynEFJy7Xee+89PD09iYyM7MhhhBBCCCGEEKJZsk6LEEII\nIYQQwqR1uKdFCCGEEEIIIbqS9LQIIYQQQgghTJokLUIIIYQQQgiTJkmLEEIIIYQQwqRJ0iKEEEII\nIYQwaZK0iJtGWVmZsZsgbiAvLw8AnU5n5JaI1sj8K0KInkyuF0yfIdcLv/ikpbS0lHfffZf9+/dT\nWFgIyA+6qSktLWX16tWsX7+e6upqYzdHNOPSpUusWbOGefPmkZubi1r9i/9qMTklJSWsW7eOtLQ0\nysvLAfmuMyWlpaWcPXvW2M0QrZDrBdMn1wumryPXC7/oK4s9e/bwyCOPUFFRwYEDB/j73/8OgEql\nMnLLRL2oqCgeeOAB7OzsWLJkCRYWFsZukrjOZ599xsMPPwzAPffcg1qtlh9yE3PgwAGWLl1KQUEB\nO3bs4NVXXwXku85U1NbW8sADD/DRRx9x7tw5YzdHNGPv3r1yvWDiNm/eLNcLJq6j1wu/yKSlrq4O\ngJycHCIjI3nmmWeYPHky/fr1a9hHLrqMr7CwkPj4eMLDwxu+gEpLSxu2yxAk4ztz5gz5+fm88cYb\nrFixgsTERKqrq+WH3ETUf9fl5eURFhbGypUreeSRR4iJiWHXrl2AfI5MQU5ODlZWVmg0GpKSkuQO\nsQk6f/68XC+YsPPnz5OYmCjXCybs+PHjXLhwoUPXC2arVq1a1XVNNC3Jycl89NFHpKenM2TIEHJz\ncxk1ahTV1dUsX74cc3Nz8vLyCAoKkosuI7k2RiNGjMDa2pr8/HwuXLjAhg0b2L9/P4cOHWL8+PES\nIyNJTk7mn//8J2fPnmX06NGMHj0aOzs7ALKystBoNPj6+hq3kb9w9Z+jtLQ0hgwZQkJCAmq1Gnd3\nd2xtbUlJSeE///kPixYtks+REWRmZvL999/j7+8PKD0t48ePByA2NhYfHx8cHR2N2cRfvOtjlJ6e\nzujRo6mrq2PZsmVyvWACMjMz2bdvH/7+/tjZ2aFSqcjPz6eoqIj169fL9YIJuDZGLi4uhIeHd+h6\noccnLXq9HpVKRXp6OqtWrWL8+PEkJCQQFxfH+PHj8fLy4sKFCzg7OzN79mzWrl1LTk4O4eHh6HQ6\n+Y/eDVqKUXx8PH5+fhQXF7N161amTZvGokWL+OSTTyRG3ay5GCUmJnLw4EHc3d1xcnKitraWvXv3\n4u/vj7u7u8Smm7UUo6SkJFxcXMjIyODnn38mLi4Od3d3srKyKC8vZ/jw4Q2vFV3n2r/xH//4R37+\n+We8vLzw8vLCzMwMJycnfHx82LdvHzqdDg8PDywtLamrq5MasW7SXIw8PDzw9vZm8ODB2NraUlBQ\nINcLRnR9jA4cONAQI2tra5KTk/nqq6/kesGImotR/XddfY+XTqdrSGbac73Q478Ja2pqAEhNTcXR\n0ZE777yT559/Hq1W21BM5+Xlxdy5c/Hz82PVqlXs3LmTqqoq+aHoJi3FyMLCgtTUVIYMGcLjjz/O\nzJkz6d27Ny+99BLfffedxKgbNRej5557Djs7O3788Ufy8/PRaDR4eHiwYcMGAIlNN2vpcwRw+fJl\nZs6cyahRo7CxsWHx4sU8+OCD5OTkyA95N6mPT1paGlqtlsjISLZt24Zer0er1VJXV4eVlRURERHE\nx8c3DG2RYS3dp7kYbd++vdFFmFwvGFdrMXJ1dWXixIksWbKEWbNmyfWCkbT2XadWq9HpdJiZmeHp\n6dnu64Ue29Ny8OBBXnvtNeLi4rCzs2PgwIENWZ2rqytqtZrjx49jbm6OXq+nsLAQR0dHjh07hl6v\nZ+LEicY+hR7vRjFSqVScOHECd3d3JkyYQEVFBRYWFpw4cQK1Ws2ECROMfQo9Xls+RydOnECr1eLr\n68uAAQOIjo7G3d0dV1dXuYPfDdryOUpISMDDw4OIiAj8/f3RarXs2LEDFxcXhg8fbuxT6NHq4xMf\nH4+NjQ1Dhw5l8ODB9OvXj7i4OAoLCwkICECn06FWq/Hz8+PkyZPs3r2b1atXY2lpSWBgoLFPo0dr\na4xqa2tJS0uT6wUjuFGMLl68yNChQ3FycmLAgAFyvWAE7f2u69evH7t3727X9UKPTFry8/N58cUX\nue+++3BycmLPnj1kZ2fj7+/PqVOnCA0NxdPTk/j4eNRqNZWVlXz++eds2bKF+Ph4IiMj8fb2NvZp\n9GhtjVFcXBzV1dVYWFiwbt06Pv74YxITE4mMjMTLy8vYp9GjtedzVFlZSXBwMOXl5WRnZ1NYWMiI\nESMkYelibY1RQkICFRUVuLm58emnn/L2229z/vx55syZg5ubm7FPo8e6Nj6Ojo7s3r2boqIiRo0a\nhbm5OWq1ml27dhESEoK9vT0A1dXVvPXWW+Tk5PDEE09wxx13GPkserb2xujgwYNs376dqKgouV7o\nJm2JUXR0NCEhIdjZ2ZGYmMimTZv46KOP5Hqhmxj6XXf27FmKiorafL3QY5KWuro63n//fVJSUkhL\nS8Pb25u77roLHx8fHBwciIqKYujQoeTl5TV0S1VXVxMVFcVTTz3FmDFj6NOnD48//rh8AXURQ2O0\nZcsWlixZQnBwMM7OzqxYsUK+gLqIITGqqalh06ZNzJ07F0tLS7y9vRk3bpyxT6XHMjRGUVFRLF68\nmJEjR+Lq6sqyZcskYekCrcWnd+/erFu3joiICOzt7dFqtWRlZZGfn09QUBCpqakNvcuvvvpqoxmq\nROcxJEa5ubkEBwejUqmYMWMGffv2leuFLmRIjPLy8ggODubSpUuMHTuWvn37snz5crle6CId+a5L\nT0+nb9+++Pr6tut6oUcM8MvLy2P58uVcunQJrVbLyy+/zPbt26moqECr1RIcHExYWBixsbEMGzaM\n9957j5qaGkpLSxk2bBiVlZVYWVk1zN4iOp+hMSopKSEoKIiqqip69erF5MmTjX0qPZahMSouLiYk\nJISqqioAuRDuQh2J0fDhw6msrARgzJgxRj6TnulG8QkNDWXYsGF8/PHHAHh4eDBjxgw2btzI2LFj\nOXbsGOPGjWPBggVGPpOey9AYRUVFMXbsWGJjY7GxsZEbM13I0Bht2rSJsWPHEhcXh6OjI5MmTTLy\nmfRcHf2uO3r0aEMdUnv0iJ6W7OxsoqOjWbNmDUOHDiUjI4OjR49y8eLFhrGmvXr1IiEhgQULFpCT\nk8P27ds5ePAgDz/8MC4uLkY+g55PYmT6JEamT2Jk2m4UH71ej5OTEwcOHCAoKIiysjIee+wx3Nzc\nePnll5kwYYIUC3exjsYoIiLC2KfQ40mMTF9nxMiQ4eOaLjiXbufk5MRDDz2ETqdDp9Ph7e3N2rVr\nWblyJcePHycwMBBbW1s0Gg3W1tYsW7aMy5cvN4yrE11PYmT6JEamT2Jk2toaH0tLS5ydnSkpKeGh\nhx5i1qxZxm76L4bEyPRJjEyfsWLUI3pabGxs8Pb2RqVSodPpeO+997j//vuxtbVl8+bNuLi4cPTo\nUdLS0oiIiECr1aLVao3d7F8UiZHpkxiZPomRaWtrfFJTU5k4cSK9evVi0KBBxm72L4rEyPRJjEyf\nsWLUI3parpWcnAwoQyQWLlyIlZUVBw8epKCggFWrVmFtbW3kFgqJkemTGJk+iZFpu1F8bGxsjNxC\nITEyfRIj09edMepxSUteXh4zZ85smH4tKCiI5cuXy9SrJkRiZPokRqZPYmTaJD6mT2Jk+iRGpq87\nY9Tjkpbi4mJeeeUVdu/ezZ133sns2bON3SRxHYmR6ZMYmT6JkWmT+Jg+iZHpkxiZvu6MkUqv1+u7\n7OhGcPjwYZKSkpg/fz4WFhbGbo5ohsTI9EmMTJ/EyLRJfEyfxMj0SYxMX3fGqMclLXq9XroNTZzE\nyPRJjEyfxMi0SXxMn8TI9EmMTF93xqjHJS1CCCGEEEKInkVWsRJCCCGEEEKYNElahBBCCCGEECZN\nkhYhhBBCCCGESZOkRQghhBBCCGHSJGkRQgghhBBCmDRJWoQQQgghhBAm7f8Bt33iRK3VoFEAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Y = pd.Series(unemployment)\n", + "X_train = pd.DataFrame([qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]], columns = Y[:e].index, index = X_str).T\n", + "X_test = pd.DataFrame([qqq[e:], inflation[e:], iwm[e:], fx[e:], gold[e:]], columns = Y[e:].index, index = X_str).T\n", + "\n", + "\n", + "thetas = regression.linear_model.OLS(Y.loc[:e], sm.add_constant(X_train)).fit().params\n", + "model_insample = (thetas[0] + thetas[1] * X_train['qqq'] + thetas[2] * X_train['inflation']\n", + " + thetas[3] * X_train['iwm'] + thetas[5] * X_train['gold'])\n", + "model_outsample = (thetas[0] + thetas[1] * X_test['qqq'] + thetas[2] * X_test['inflation']\n", + " + thetas[3] * X_test['iwm'] + thetas[5] * X_test['gold'])\n", + "\n", + "model_insample.plot(c = 'r');\n", + "model_outsample.plot(c = 'r', linestyle = '--');\n", + "Y.plot();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Out-of-sample our fitted model performs nowhere near as well as it does in-sample. Lets employ forward-chaining again, this time with 6 month partitions instead of yearly ones, on this 2012-2017 validation data to confirm the validity of our predictor selections." + ] + }, + { + "cell_type": "code", + "execution_count": 967, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE in 2012 : 0.23988877334\n", + "MSE in 2013 : 0.405434958749\n", + "MSE in 2013 : 0.0945991177613\n", + "MSE in 2014 : 0.779186505254\n", + "MSE in 2014 : 0.10545739628\n", + "MSE in 2015 : 0.0494698316077\n", + "MSE in 2015 : 0.509364605593\n", + "MSE in 2016 : 0.520218562335\n", + "MSE in 2016 : 0.226247940777\n", + "\n", + "\n", + "Average MSE across iterations: 0.325540854633\n" + ] + } + ], + "source": [ + "Y = unemployment[e:]\n", + "X = [qqq[e:], inflation[e:], iwm[e:], fx[e:], gold[e:]]\n", + "\n", + "# Our step AIC algorithm selected all predictors except for fx_rate\n", + "predictors = pd.DataFrame(data = [qqq[e:], inflation[e:], iwm[e:], gold[e:]], index = ['qqq', 'inflation', 'iwm', 'gold']).T\n", + "\n", + "# Setting partition dates to the first day of every year 2002-2012\n", + "cutoff_dates = pd.date_range(start = '2012-01-01', end = '2017-01-01', freq = '6MS')\n", + "n = len(cutoff_dates)\n", + "\n", + "MSEs = []\n", + "\n", + "for i in range(1,n-1):\n", + " \n", + " # Defining training and testing sets for each iteration, using yearly cutoff dates\n", + " training_data = predictors.loc[cutoff_dates[0]:cutoff_dates[i]]\n", + " testing_data = predictors.loc[cutoff_dates[i]:cutoff_dates[i+1]]\n", + " \n", + " # Fitting model within the training set\n", + " fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], sm.add_constant(training_data)).fit().params\n", + " \n", + " # Testing performance within the testing set\n", + " testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] + fitted_theta[2] * testing_data['inflation']\n", + " + fitted_theta[3] * testing_data['iwm'] + fitted_theta[4] * testing_data['gold'])\n", + " \n", + " # Caluclate Mean Squared Error for the model runnning on the testing set\n", + " errors = Y[cutoff_dates[i]:cutoff_dates[i+1]]-testing_model\n", + " df = len(testing_model) - len(predictors.columns) - 1\n", + " MSE = np.sum([error**2 for error in errors])/df\n", + " MSEs.append(MSE)\n", + " \n", + " print 'MSE in', cutoff_dates[i].year,':', MSE\n", + " \n", + "print '\\n\\nAverage MSE across iterations:', np.mean(MSEs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This MSE is still low, meaning that the regressor selections we made using the `forward_aic` algorithm were well-founded, but the beta coefficients for each have a lot of variability. Therefore, the parameters from a certain training period will not hold for very long and might need to be recalculated on a rolling basis. For more information on detecting and adjusting for this, refer to the Quantopian lecture on [Regression Model Instability](https://www.quantopian.com/lectures/regression-model-instability)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. (\"Quantopian\"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.*" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/notebooks/lectures/Model_Validation/preview.html b/notebooks/lectures/Model_Validation/preview.html new file mode 100644 index 00000000..fe4efcca --- /dev/null +++ b/notebooks/lectures/Model_Validation/preview.html @@ -0,0 +1,15854 @@ + + + Model Validation Lecture + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+

Model Selection and Validation¶

By Chris Fenaroli, Max Margenot, and Delaney Granizo-Mackenzie

+

Part of the Quantopian Lecture Series:

+ +

Notebook released under the Creative Commons Attribution 4.0 License.

+
+

Linear regression is a technique that models the relationship between a set of independent variables $X_1,\ldots, X_k$ and a dependent outcome variable $Y$. Simple linear regression with two variables allows us to determine which linear model of the form $Y = \beta_0 + \beta_1 X$ best explains the data, while a multiple linear regression allows for the dependent variable to be a linear function of multiple independent variables $X_1,\ldots, X_k$:

+$$ Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \epsilon_i $$

More background information on regressions can be found in the simple linear regression and multiple linear regression lectures.

+

In many cases, choosing which explanatory variables to include in a model is not trivial. If you include too many variables $X_1,\ldots, X_k$ you risk overfitting and multicollinearity (correaltion of explanatory variables) which would invalidate your regression results. With too few variables you risk excluding interactions. Model selection is the process of determining which combination of explanatory variables maximizes explanatory power and minimizes complexity.

+

Once we have chosen our model fitted the data using an estimation method like OLS, it would be useful to quantify just how "good" our end-result model is. But what exactly makes a model "good"? Is it how well it fits the data? It's simplicity/complexity? Or is it how well it performs when applied to out-of-sample data? Model validation is the process of determining how "good" a model is and whether it is a satisfactory explanation for the given data.

+ +
+
+
+
+
+
In [852]:
+
+
+
# Import libraries
+import numpy as np
+import pandas as pd
+from statsmodels import regression
+import statsmodels.api as sm
+import statsmodels.stats.diagnostic as smd
+import scipy.stats as stats
+import matplotlib.pyplot as plt
+import math
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
+
+
+
+ +
+
+ +
+
+
+
+
+

Model Selection¶

When presented with many possible explanatory variables, choosing which to include in a regression model can be a difficult task. Luckily, there exists a variety of strategies and criteria that simplify model selection.

+

As an example, let's attempt to model the US unemployment rate with US inflation rate, QQQ NASDAQ-100 index, IWM Russel 2000 index, gold prices, and USD vs. EUR exchange rate as potential explanatory variables. All of these macro indicators are available as free Quantopian Data Feeds.

+

Let's begin by pulling the above as Blaze expressions.

+ +
+
+
+
+
+
In [994]:
+
+
+
from quantopian.interactive.data.quandl import fred_unrate as unemployment_bz
+from quantopian.interactive.data.quandl import rateinf_inflation_usa as inflation_bz
+from quantopian.interactive.data.quandl import bundesbank_bbk01_wt5511 as gold_bz
+from quantopian.interactive.data.quandl import currfx_usdeur as fx_bz
+
+import blaze as bz
+from odo import odo
+
+ +
+
+
+ +
+
+
+
+
+

Now let's migrate the data into Pandas series using asof_date as our index keeping in mind that:

+
    +
  • Both inflation and unemployment data have one month intervals, so data index intervals cannot be anything smaller than monthly
  • +
  • Unemployment data is released at the start of the month after the relevant month and inflation rate data is released ~3 weeks after so we must shift both back a month from the asof_date to prevent look-ahead bias
  • +
  • Gold prices must be shifted back one day from asof_date to prevent look-ahead bias
  • +
  • QQQ and IWM pricing data only goes back to 2002, so we can only consider data from 2002 on
  • +
+ +
+
+
+
+
+
In [1026]:
+
+
+
# Start date dictated by QQQ and IWM
+start = '2002-01-01'
+end = '2017-01-01'
+
+# Sample period will be 2002-2012, saving 2012-2017 for model validation
+s = '2002-01-01'
+e = '2012-01-01'
+
+index = pd.date_range(start=start, end = end, freq= 'MS')
+
+# Adjusting data along points mentioned above and putting in Pandas series
+unemployment = odo(unemployment_bz, pd.DataFrame).set_index(['asof_date']).shift().loc[index].ffill()['value'][1:]
+inflation = odo(inflation_bz, pd.DataFrame).set_index(bz.compute(inflation_bz.asof_date) + pd.Timedelta('1 days')).shift().loc[index].ffill()['value'][1:]
+gold = odo(gold_bz[gold_bz.asof_date >= start], pd.DataFrame).set_index(['asof_date'])['value'].sort_index().asof(index).ffill()[1:]
+fx = odo(fx_bz, pd.DataFrame).set_index(['asof_date'])['rate'].sort_index().asof(index).ffill()[1:]
+qqq = get_pricing('QQQ', start_date=start, end_date=end, fields = 'price').asof(index).ffill()[1:]
+iwm = get_pricing('IWM', start_date=start, end_date=end, fields = 'price').asof(index).ffill()[1:]
+
+ +
+
+
+ +
+
+
+
+
+

Now we have data for on independent variable:

+$$ Y_u: unemployment $$

And 5 predictor variables:

+$$X_q: QQQ \:\:\:\:\: X_i: inflation \:\:\:\:\: X_r: IWM \:\:\:\:\: X_f: FX Euro rate \:\:\:\:\: X_g: gold$$

The next step is to figure out which predictors to include in our model. We could include every single predictor we have, but we would not be sure if every predictor was significant. Adding many insignificant predictors causes a few different issues. If there are more predictors there is a larger chance that the predictors themselves are correalted with each other which would lead to regression model instability and invalidate our results. Furthermore, including many regressors hurts the predictive power of a model. A solution might be to include as few variables as possible, but we would likely exclude some explanatory effects this way. Let's look at some ways to find this balance and determine which variables to include.

+ +
+
+
+
+
+
+
+

Model Selection Criteria¶

There exist a number of metrics we can use to asses the relative and absolute strength of a specfic model. The ones we will focus on are $R^2$, adjusted $R^2$, BIC, and AIC.

+ +
+
+
+
+
+
+
+

Coefficient of Determination ($R^2$)¶

The coefficient of determination, or $R^2$, is a metric that tells us the proportion of in-sample variance 'explained' by a certain model. For example, an $R^2$ of 0.9 tells us that the magnitude of the model residual variance is about 90% of that of the sample data. The formula for $R^2$ is:

+$$R^2 = \frac{SS_{reg}}{SS_{total}} = 1 - \frac{\sum_{i=1}^{n} (Y_i - \hat{Y_i})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

Where $Y_i$ are sample response values, $\hat{Y_i}$ are the response values predicted by the model and $\bar{Y}$ is the sample mean response.

+

One major drawback of $R^2$ in model selection is that as the number of explanatory variables increases, $R^2$ will always also increase or stay the same, even if the incremental variables are not adding much predictive insight. To illustrate this, let's find the $R^2$ of five unemployment models, each model having one more predictor than the next. We will do this by defining a function that takes predictor variables $X_1,\ldots, X_k$ and an independent variable $Y$, runs a regression, and calculates $R^2$ using the model.rsquared attribute.

+ +
+
+
+
+
+
In [1055]:
+
+
+
def rsquared(X,Y):
+    X = sm.add_constant(X)
+    model = regression.linear_model.OLS(Y, X).fit()
+    return model.rsquared
+
+# Defining variables, making sure to keep data within the sample period [:e]
+Y = unemployment[:e]
+X = [qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]]
+X_str = ['qqq', 'inflation', 'iwm', 'fx', 'gold']
+
+print '------ R Squared Values ------'
+print '1 predictor:', rsquared(np.column_stack(X[:1]), Y)
+print '2 predictors:', rsquared(np.column_stack(X[:2]), Y)
+print '3 predictors:', rsquared(np.column_stack(X[:3]), Y)
+print '4 predictors:', rsquared(np.column_stack(X[:4]), Y)
+print '5 predictors:', rsquared(np.column_stack(X[:5]), Y)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
 ------ R Squared Values ------
+1 predictor: 0.124499233139
+2 predictors: 0.459882090695
+3 predictors: 0.700574522302
+4 predictors: 0.734219660452
+5 predictors: 0.875758340212
+
+
+
+ +
+
+ +
+
+
+
+
+

As we can see, increasing the number of predictors inflates the $R^2$ output. If we only went by the $R^2$ prediction criteria, the best model would always be the one with the most predictor variables. This invalidates $R^2$ as a model selection criteria for models with different amounts of predictor variables.

+ +
+
+
+
+
+
+
+

$\bar{R}^2$ (Adjusted $R^2$)¶

+
+
+
+
+
+
+
+

Because regular $R^2$ becomes inflated as more variables are added we cannot use $R^2$ alone for model selection. To account for this effect, there exists an alternate version of $R^2$ which includes a penalty for adding more variables. The formula is below, where $p$ is the number of predictor variables, and $n$ is the sample size:

+$$ \bar{R}^2 = 1-(1-R^2)\frac{n-1}{n-p-1} $$

Let's repeat the expirement above, this time using $\bar{R}^2$, to see if it still inflates as more predictors are added.

+ +
+
+
+
+
+
In [1056]:
+
+
+
def rsquared_adj(X,Y):
+    X = sm.add_constant(X)
+    model = regression.linear_model.OLS(Y, X).fit()
+    return model.rsquared_adj
+
+print '------ Adj R Squared Values ------'
+print '1 predictor:', rsquared_adj(np.column_stack(X[:1]), Y)
+print '2 predictors:', rsquared_adj(np.column_stack(X[:2]), Y)
+print '3 predictors:', rsquared_adj(np.column_stack(X[:3]), Y)
+print '4 predictors:', rsquared_adj(np.column_stack(X[:4]), Y)
+print '5 predictors:', rsquared_adj(np.column_stack(X[:5]), Y)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
------ Adj R Squared Values ------
+1 predictor: 0.117079735115
+2 predictors: 0.45064930592
+3 predictors: 0.692830759948
+4 predictors: 0.724975126903
+5 predictors: 0.870309144607
+
+
+
+ +
+
+ +
+
+
+
+
+

The $\bar{R}^2$ are similar to the $R^2$ values, however we can see that the values are slightly smaller due to the predictor penalty. $\bar{R}^2$ should always be used when comparing models with different amounts of predictors to avoid the predictor inflation effect of $R^2$.

+ +
+
+
+
+
+
+
+

Akaike and Bayesian Information Criterion (AIC and BIC)¶

+
+
+
+
+
+
+
+

$R^2$ and $\bar{R}^2$ provide absolute measures on the quality on a model, meaning they can be calculated on any single regression model. They tell you how "good" a model is on its own on a scale of 0 to 1.

+

AIC and BIC provide relative measures of quality and are calculated with an underlying selection pool of models. Instead of yeidling a metric with an absolute scale like $R^2$ and $\bar{R}^2$, they return values for every model in the selection pool and determining model quality requires looking at all of the values and comparing them.

+

AIC is calculated along the following formula:

+$$ AIC = 2p + nLog(SS_{resid}/n) $$

BIC is calculated similarly:

+$$ AIC = ln(n) \cdot p + nLog(SS_{resid}/n) $$

Where $SS_{resid}$ is the sum of squared residuals $\sum_{i=1}^{n}(Y_i - \hat{Y_i})^2$

+

Let's use AIC and BIC to compare 5 simple linear regression models for unemployment. We will compute them using the model.aic and model.bic attributes.

+ +
+
+
+
+
+
In [1057]:
+
+
+
def AIC(X,Y):
+    X = sm.add_constant(X)
+    model = regression.linear_model.OLS(Y, X).fit()
+    return model.aic
+
+def BIC(X,Y):
+    X = sm.add_constant(X)
+    model = regression.linear_model.OLS(Y, X).fit()
+    return model.bic
+
+AICs = pd.Series([AIC(X[_],Y) for _ in range(5)])
+BICs = pd.Series([BIC(X[_],Y) for _ in range(5)])
+
+print "%-24s %-15s %-13s" % ('', 'AIC values:', 'BIC values:')
+print "%-24s %-15s %-13s" % ('Y = b0 + b1*qqq', AICs[0], BICs[0])
+print "%-24s %-15s %-13s" % ('Y = b0 + b1*inflation', AICs[1], BICs[1])
+print "%-24s %-15s %-13s" % ('Y = b0 + b1*iwm', AICs[2], BICs[2])
+print "%-24s %-15s %-13s" % ('Y = b0 + b1*fx', AICs[3], BICs[3])
+print "%-24s %-15s %-13s" % ('Y = b0 + b1*gold', AICs[4], BICs[4])
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
                         AIC values:     BIC values:  
+Y = b0 + b1*qqq          481.904294922   487.479278408
+Y = b0 + b1*inflation    464.408261441   469.983244926
+Y = b0 + b1*iwm          497.835819526   503.410803012
+Y = b0 + b1*fx           488.599333286   494.174316772
+Y = b0 + b1*gold         398.65240035    404.227383836
+
+
+
+ +
+
+ +
+
+
+
+
+

Now let's plot the AICs and BICs.

+ +
+
+
+
+
+
In [926]:
+
+
+
AICs.plot(title = 'Model AICs and BICs', label = 'AIC');
+BICs.plot(label = 'BIC');
+plt.xticks(range(5), X_str);
+plt.xlabel('Model Predictor');
+plt.legend();
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

The "best" model according to AIC and BIC is the one with the smallest value. In this case, both the Akaike and Bayesian information criterion point to the same conclusion; they are both at their minimum with the model $Y = b_0 + b_1 \cdot gold$ meaning gold is the best single predictor for the model on this sample

+

AIC vs BIC¶

In this test the two criteria pointed to the same model as the best, but this is not always the case as the two criteria have a few key differences.

+
    +
  • The BIC imposes a harsher penalty on additional regressors than the AIC does and will usually select "smaller" models with less parameters
  • +
  • AIC is more suitable for selecting models that serve as the best predictors
  • +
  • BIC is best used to select a model that best explains the behavior in-sample
  • +
+ +
+
+
+
+
+
+
+

Selection Methods¶

Now that we have a handful of criteria to quantify model quality we need to have a method to cycle through and search for the possible models.

+

The first idea that might come to mind is to simply pool all possible models together and test them all. While this might work for a situation in which there are a small number of potential regressors, when dealing with big data sets and many possible predictors it becomes a more difficult issue. The number of predictor combinations begins to rise quickly as more possible predictors are added making cycling through every combination not possible.

+

Step AIC/BIC¶

If the number of possible predictors large, the best for selecting the "best" is likely iterating through a stepwise linear regression. Broadly, the method builds a model by selecting regressors one at a time, at each step choosing the one that minimizes the model's AIC or BIC. The process ends when adding another variable can no longer decrease the AIC/BIC or when the algorithm exhausts the predictor set and there are no more potential predictors to add.

+

Let's use a step-forward AIC algorithm to select a set of unemployment predictors to use in our model. Some print statements have been added to show the iteration process but can and should be deleted if you would like to use the function elsewhere.

+ +
+
+
+
+
+
In [927]:
+
+
+
def forward_aic(response, data):
+    # This function will work with pandas dataframes and series
+    
+    # Initialize some variables
+    explanatory = list(data.columns)
+    selected = pd.Series(np.ones(data.shape[0]), name="Intercept")
+    current_score, best_new_score = np.inf, np.inf
+    step = 1
+    
+    # Loop while we haven't found a better model
+    while current_score == best_new_score and len(explanatory) != 0:
+        
+        
+        scores_with_elements = []
+        count = 0
+        
+        # For each explanatory variable
+        for element in explanatory:
+            # Make a set of explanatory variables including our current best and the new one
+            tmp = pd.concat([selected, data[element]], axis=1)
+            # Test the set
+            result = regression.linear_model.OLS(response, tmp).fit()
+            score = result.aic
+            scores_with_elements.append((score, element, count))
+            count += 1
+        
+        # Sort the scoring list
+        scores_with_elements.sort(reverse = True)
+        # Get the best new variable
+        best_new_score, best_element, index = scores_with_elements.pop()
+        print '--- Step', step, ' ---'
+        step += 1
+        print 'Current Best AIC:', current_score
+        print 'Best New AIC:', best_new_score
+        print 'Variable to Add:', best_element    
+        
+        if current_score > best_new_score:
+            # If it's better than the best add it to the set
+            explanatory.pop(index)
+            selected = pd.concat([selected, data[best_element]],axis=1)
+            current_score = best_new_score
+            print 'Chosen Model Predictors:', selected.columns.values[1:], '\n'
+        else:
+            print 'Best new AIC did not beat current best. The new variable to add is rejected and the algorithm is finished.\n\n'
+
+    # Return the final model
+    return selected
+
+ +
+
+
+ +
+
+
+
In [928]:
+
+
+
# Reformatting the data to work with the forward_aic function
+Y_series = pd.Series(Y).reset_index(drop=True)
+data_df = pd.DataFrame(np.column_stack((X[0],X[1],X[2],X[3],X[4])), columns = X_str)
+
+predictors = forward_aic(Y_series, data_df)
+print 'Selected Predictors:', predictors.columns.values[1:]
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
--- Step 1  ---
+Current Best AIC: inf
+Best New AIC: 398.65240035
+Variable to Add: gold
+Chosen Model Predictors: ['gold'] 
+
+--- Step 2  ---
+Current Best AIC: 398.65240035
+Best New AIC: 307.741249417
+Variable to Add: iwm
+Chosen Model Predictors: ['gold' 'iwm'] 
+
+--- Step 3  ---
+Current Best AIC: 307.741249417
+Best New AIC: 258.210706106
+Variable to Add: inflation
+Chosen Model Predictors: ['gold' 'iwm' 'inflation'] 
+
+--- Step 4  ---
+Current Best AIC: 258.210706106
+Best New AIC: 253.653929589
+Variable to Add: qqq
+Chosen Model Predictors: ['gold' 'iwm' 'inflation' 'qqq'] 
+
+--- Step 5  ---
+Current Best AIC: 253.653929589
+Best New AIC: 255.596196199
+Variable to Add: fx
+Best new AIC did not beat current best. The new variable to add is rejected and the algorithm is finished.
+
+
+Selected Predictors: ['gold' 'iwm' 'inflation' 'qqq']
+
+
+
+ +
+
+ +
+
+
+
+
+

The forward_aic algorithm selected gold prices, the IWM index, inflation rate, and the QQQ index as the most appropriate combination of predictors. The model is now:

+$$ Y_{unrate} = \beta_0 + \beta_1 X_{gold} + \beta_2 X_{iwm} + \beta_3 X_{inflation} + \beta_4 X_{qqq} + \epsilon_i $$

Let's fit this model using OLS to determine the beta coefficients and graph both the model's prediction for unemployment and its actual values.

+ +
+
+
+
+
+
In [929]:
+
+
+
model = regression.linear_model.OLS(Y.reset_index(drop=True), predictors).fit()
+theta = model.params
+print theta
+predictions = model.params[0] + model.params[1]*gold[s:e] + model.params[2]*iwm[s:e] + model.params[3]*inflation[s:e] + model.params[4]*qqq[s:e]
+
+predictions.plot(label = 'model', linestyle = '--', c = 'r');
+Y.plot(label = 'unemployment');
+plt.legend();
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Intercept    7.180962
+gold         0.003986
+iwm         -0.093050
+inflation   -0.386373
+qqq          0.067445
+dtype: float64
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

At first glance the regression model seems decent, but further evaluation is required to determine it's validity.

+ +
+
+
+
+
+
+
+

Model Validation¶

Now that we used model selection criteria and methods to find the most valuable combination of regressors, we now must determine whether this best model is acceptable. Because "best" is a relative term, it is possible that the best model does not explain the independent variable in a satisfactory way. As a result, more work needs to be done to ensure that our model is well-founded.

+

$R^2$ and $\bar{R}^2$¶

As well as being criteria model selection, $R^2$ and $\bar{R}^2$ can also be used as model validation criteria. The intuition, formulas, and weaknesses detailed in the selection section still hold. However, in terms of validation they are additionally limited as they cannot determine the accuracy of the form of the relationship, a vital part of a well-founded model.

+

To illustrate this weakness we can run a linear regression on two datasets with very different forms. Both regressions have a similar $R^2$ value but only the second accurately represents the form of the data it is modeling.

+ +
+
+
+
+
+
In [930]:
+
+
+
np.random.seed(13)
+X = range(100)
+Y1 = [x**5 for x in X]
+Y2 = [x + 20*np.random.normal(0,1) for x in X]
+
+model1 = regression.linear_model.OLS(Y1, sm.add_constant(X)).fit()
+model2 = regression.linear_model.OLS(Y2, sm.add_constant(X)).fit()
+
+print 'R^2 of First Model:', model1.rsquared
+print 'R^2 of Second Model:', model2.rsquared
+
+line1 = [model1.params[0] + model1.params[1]*x for x in X]
+line2 = [model2.params[0] + model2.params[1]*x for x in X]
+
+fig, axes = plt.subplots(nrows = 2, ncols = 1)
+
+axes[0].plot(X, line1, c = 'r');
+axes[0].scatter(X, Y1, alpha = 0.4);
+axes[1].plot(X, line2, c = 'r');
+axes[1].scatter(X, Y2, alpha = 0.4);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
R^2 of First Model: 0.671416768972
+R^2 of Second Model: 0.67216727851
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Clearly the second model best represents the data it was meant to model, but it has practically the same $R^2$ as the first. This illustrates the limitations of $R^2$ when it comes to determining model fit and predictive value.

+ +
+
+
+
+
+
+
+

Although it will not provide a complete picture, let's find the $R^2$ and $\bar{R}^2$ of our unemployment model:

+ +
+
+
+
+
+
In [931]:
+
+
+
print 'Unemployment Model R^2:', model.rsquared
+print 'Unemployment Model Adjusted R^2:', model.rsquared_adj
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Unemployment Model R^2: 0.875698551729
+Unemployment Model Adjusted R^2: 0.871375023094
+
+
+
+ +
+
+ +
+
+
+
+
+

Residual Analysis¶

A large portion of model validation has to do with studying the residuals of the regression in question. Residual analysis can help check that the basic assumptions of the linear model are satisfied. More information can be found in the [lecture on residauls analysis].

+ +
+
+
+
+
+
+
+

Cross-Validation¶

Cross-validation is a technique used to determine how well a model will predict values outside of the sample used to select or fit it. In the case of our unemployment model, we used data from 2002 through 2012 to select our parameters. Now to ensure the accuracy of our model parameters (stored in predictors) we will employ a cross-validation technique known as forward chaining on the 2002-2012 data. We will leave the 2012-2017 data untouched for further validation methods later on.

+

Forward chaining cross-validation works by splitting the data up into $k$ equal sized partitions, and conducting an "out-of-sample test" for each partition. During each of these out-of-sample tests we will choose a training set and a testing set and use the training set to fit the model and the testing set to asses its performance. For time series data the training set must come before the testing set, and in the case of forward chaining the training set consists of all the data before the testing set. Forward chaining iterates through all possible testing sets and asses model performance in each.

+

In the case of our unemployment model, we will partition our 2002-2012 data into 10 yearly blocks. The first 3 iterations of a forward chaining test would be constructed as follows:

+$$ +\ + \text{Iteration } 1: \overbrace{ + \underbrace{\textit{2002}}_\text{Training} + + \underbrace{\textit{2003}}_\text{Testing} + }^\text{First Trail-Test Pair} + \ +$$$$ + \ + \text{Iteration } 2: \overbrace{ + \underbrace{\textit{2002 & 2003}}_\text{Training} + + \underbrace{\textit{2004}}_\text{Testing} + }^\text{Second Trail-Test Pair} + \ +$$$$ + \ + \text{Iteration } 3: \overbrace{ + \underbrace{\textit{2002 & 2003 & 2004}}_\text{Training} + + \underbrace{\textit{2005}}_\text{Testing} + }^\text{Third Trail-Test Pair} + \ +$$
+. . . +

The end result is a single performance statistic, usually the mean squared error (MSE) or adjusted $R^2$ of the model in the testing set averaged from across all of the iterations. Let's implement a forward chaining model-validation test on our unemployment model using adjusted MSE as our model prediction quality metric.

+ +
+
+
+
+
+
In [1058]:
+
+
+
Y = unemployment[:e]
+X = [qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]]
+
+# Our step AIC algorithm selected all predictors except for fx_rate
+predictors = pd.DataFrame(data = [qqq[:e], inflation[:e], iwm[:e], gold[:e]], index = ['qqq', 'inflation', 'iwm', 'gold']).T
+
+# Setting partition dates to the first day of every year 2002-2012
+cutoff_dates = pd.date_range(start = '2002-01-01', end = '2012-01-01', freq = 'AS')
+n = len(cutoff_dates)
+
+MSEs = []
+
+for i in range(1,n-1):
+    
+    # Defining training and testing sets for each iteration, using yearly cutoff dates
+    training_data = predictors.loc[cutoff_dates[0]:cutoff_dates[i]]
+    testing_data = predictors.loc[cutoff_dates[i]:cutoff_dates[i+1]]
+    
+    # Fitting model within the training set
+    fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], sm.add_constant(training_data)).fit().params
+    
+    # Testing performance within the testing set
+    testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] + fitted_theta[2] * testing_data['inflation']
+                     + fitted_theta[3] * testing_data['iwm'] + fitted_theta[4] * testing_data['gold'])
+    
+    # Caluclate Mean Squared Error for the model runnning on the testing set
+    errors = Y[cutoff_dates[i]:cutoff_dates[i+1]]-testing_model
+    df = len(testing_model) - len(predictors.columns) - 1
+    MSE = np.sum([error**2 for error in errors])/df
+    MSEs.append(MSE)
+    
+    print 'MSE in', cutoff_dates[i].year,':', MSE
+    
+print '\n\nAverage MSE across Iterations:', np.mean(MSEs)
+print 'Average MSE Excluding 2009:', np.mean(MSEs[:6]+MSEs[7:])
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
MSE in 2003 : 0.0565831690527
+MSE in 2004 : 0.653180823804
+MSE in 2005 : 0.20938626572
+MSE in 2006 : 0.56114441747
+MSE in 2007 : 0.021279349198
+MSE in 2008 : 2.0220023476
+MSE in 2009 : 13.4768461212
+MSE in 2010 : 3.51297688997
+MSE in 2011 : 2.4009454556
+
+
+Average MSE across Iterations: 2.54603831551
+Average MSE Excluding 2009: 1.1796873398
+
+
+
+ +
+
+ +
+
+
+
+
+

Since unemployment usually is between 3 and 10 percent, a 2.5 MSE is large. However, we can also see that the a couple outliers around the 2009 recession led to this higher error. Excluding 2009, our average MSE would be 1.18, a more reasonable value.

+ +
+
+
+
+
+
+
+

Out-of-Sample Validation¶

After conducting the forward chaining test we can be confident in the performance of our model within the time period of 2002-2012. So far in this lecture, all of the testing and development of this model has been done within this 10-year period. Working extensively within a single timeperiod can lead to overfitting.

+ +
+
+
+
+
+
+
+

Overfitting¶

A model is overfit when it is trained so much that it models the random noise of the data instead of just the underlying relationship. Conducting out-of-sample tests and using cross-validation helps avoid overfitting. It is easy to have a model that looks perfect in-sample, but has little predictive value. To demonstrate the dangers of overfitting, look at the two models below. They both model the same data, but simple_model is just a simple linear regression while complicated_model includes high-order values of X. The result is that the second more complicated model looks better in-sample, but the first and more simple one explains the relationship better.

+ +
+
+
+
+
+
In [1080]:
+
+
+
np.random.seed(1)
+X = np.linspace(1,15,10)
+Y = [2*x + 2*np.random.normal(0,1) for x in X]
+
+X2 = X**2
+X3 = X**3
+X4 = X**4
+
+simple = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(X[:len(X)/2])).fit().params
+complicated = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(np.column_stack([X[:len(X)/2],X2[:len(X)/2],X3[:len(X)/2],X4[:len(X)/2]]))).fit().params
+
+simple_model = simple[0] + simple[1] * X
+complicated_model = complicated[0] + complicated[1] * X + complicated[2] * X2 + complicated[3] * X3 + complicated[4] * X4                                   
+                                            
+fig, axes = plt.subplots(nrows = 2, ncols = 1)
+
+axes[0].plot(X[:len(X)/2], simple_model[:len(X)/2], c = 'r');
+axes[0].plot(X, simple_model, c = 'r', linestyle='--');
+axes[0].scatter(X, Y, alpha = 0.8);
+axes[1].plot(X[:len(X)/2], complicated_model[:len(X)/2], c = 'r');
+axes[1].plot(X, complicated_model, c = 'r', linestyle='--');
+axes[1].scatter(X, Y, alpha = 0.8);
+plt.ylim(0,35);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

For more information on overfitting, refer to the Dangers of Overfitting Lecture.

+

To see if our unemployment model is overfit let's conduct an out-of-sample validation test. We will use the 2002-2012 data to fit the model and then the 2012-2017 data to test it.

+ +
+
+
+
+
+
In [1081]:
+
+
+
Y = pd.Series(unemployment)
+X_train = pd.DataFrame([qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]], columns = Y[:e].index, index = X_str).T
+X_test = pd.DataFrame([qqq[e:], inflation[e:], iwm[e:], fx[e:], gold[e:]], columns = Y[e:].index, index = X_str).T
+
+
+thetas = regression.linear_model.OLS(Y.loc[:e], sm.add_constant(X_train)).fit().params
+model_insample = (thetas[0] + thetas[1] * X_train['qqq'] + thetas[2] * X_train['inflation']
+                     + thetas[3] * X_train['iwm'] + thetas[5] * X_train['gold'])
+model_outsample = (thetas[0] + thetas[1] * X_test['qqq'] + thetas[2] * X_test['inflation']
+                     + thetas[3] * X_test['iwm'] + thetas[5] * X_test['gold'])
+
+model_insample.plot(c = 'r');
+model_outsample.plot(c = 'r', linestyle = '--');
+Y.plot();
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Out-of-sample our fitted model performs nowhere near as well as it does in-sample. Lets employ forward-chaining again, this time with 6 month partitions instead of yearly ones, on this 2012-2017 validation data to confirm the validity of our predictor selections.

+ +
+
+
+
+
+
In [967]:
+
+
+
Y = unemployment[e:]
+X = [qqq[e:], inflation[e:], iwm[e:], fx[e:], gold[e:]]
+
+# Our step AIC algorithm selected all predictors except for fx_rate
+predictors = pd.DataFrame(data = [qqq[e:], inflation[e:], iwm[e:], gold[e:]], index = ['qqq', 'inflation', 'iwm', 'gold']).T
+
+# Setting partition dates to the first day of every year 2002-2012
+cutoff_dates = pd.date_range(start = '2012-01-01', end = '2017-01-01', freq = '6MS')
+n = len(cutoff_dates)
+
+MSEs = []
+
+for i in range(1,n-1):
+    
+    # Defining training and testing sets for each iteration, using yearly cutoff dates
+    training_data = predictors.loc[cutoff_dates[0]:cutoff_dates[i]]
+    testing_data = predictors.loc[cutoff_dates[i]:cutoff_dates[i+1]]
+    
+    # Fitting model within the training set
+    fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], sm.add_constant(training_data)).fit().params
+    
+    # Testing performance within the testing set
+    testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] + fitted_theta[2] * testing_data['inflation']
+                     + fitted_theta[3] * testing_data['iwm'] + fitted_theta[4] * testing_data['gold'])
+    
+    # Caluclate Mean Squared Error for the model runnning on the testing set
+    errors = Y[cutoff_dates[i]:cutoff_dates[i+1]]-testing_model
+    df = len(testing_model) - len(predictors.columns) - 1
+    MSE = np.sum([error**2 for error in errors])/df
+    MSEs.append(MSE)
+    
+    print 'MSE in', cutoff_dates[i].year,':', MSE
+    
+print '\n\nAverage MSE across iterations:', np.mean(MSEs)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
MSE in 2012 : 0.23988877334
+MSE in 2013 : 0.405434958749
+MSE in 2013 : 0.0945991177613
+MSE in 2014 : 0.779186505254
+MSE in 2014 : 0.10545739628
+MSE in 2015 : 0.0494698316077
+MSE in 2015 : 0.509364605593
+MSE in 2016 : 0.520218562335
+MSE in 2016 : 0.226247940777
+
+
+Average MSE across iterations: 0.325540854633
+
+
+
+ +
+
+ +
+
+
+
+
+

This MSE is still low, meaning that the regressor selections we made using the forward_aic algorithm were well-founded, but the beta coefficients for each have a lot of variability. Therefore, the parameters from a certain training period will not hold for very long and might need to be recalculated on a rolling basis. For more information on detecting and adjusting for this, refer to the Quantopian lecture on Regression Model Instability.

+ +
+
+
+
+
+
+
+

This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. ("Quantopian"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.

+ +
+
+
+
+
+ From bca3e55863b56e6e42ab5acfc644f8f358005390 Mon Sep 17 00:00:00 2001 From: Christopher Fenaroli Date: Mon, 17 Jul 2017 18:21:15 -0400 Subject: [PATCH 2/4] Model Validation Lecture Draft 2. --- .../lectures/Model_Validation/notebook.ipynb | 269 ++++--- .../lectures/Model_Validation/preview.html | 689 +++++++++++++++--- 2 files changed, 790 insertions(+), 168 deletions(-) diff --git a/notebooks/lectures/Model_Validation/notebook.ipynb b/notebooks/lectures/Model_Validation/notebook.ipynb index f8b782a6..7cd1c0da 100644 --- a/notebooks/lectures/Model_Validation/notebook.ipynb +++ b/notebooks/lectures/Model_Validation/notebook.ipynb @@ -21,26 +21,18 @@ "\n", "More background information on regressions can be found in the [simple linear regression](https://www.quantopian.com/lectures#Linear-Regression) and [multiple linear regression](https://www.quantopian.com/lectures#Multiple-Linear-Regression) lectures.\n", "\n", - "In many cases, choosing which explanatory variables to include in a model is not trivial. If you include too many variables $X_1,\\ldots, X_k$ you risk overfitting and multicollinearity (correaltion of explanatory variables) which would invalidate your regression results. With too few variables you risk excluding interactions. **Model selection** is the process of determining which combination of explanatory variables maximizes explanatory power and minimizes complexity. \n", + "In many cases, choosing which explanatory variables to include in a model is not trivial. If you include too many variables $X_1,\\ldots, X_k$ you risk overfitting and multicollinearity (correaltion of explanatory variables) which would invalidate your regression results. With too few variables you risk excluding predictive interactions. **Model selection** is the process of determining which combination of explanatory variables maximizes explanatory power and minimizes complexity. \n", "\n", - "Once we have chosen our model fitted the data using an estimation method like OLS, it would be useful to quantify just how \"good\" our end-result model is. But what exactly makes a model \"good\"? Is it how well it fits the data? It's simplicity/complexity? Or is it how well it performs when applied to out-of-sample data? **Model validation** is the process of determining how \"good\" a model is and whether it is a satisfactory explanation for the given data." + "Once we have chosen our model fitted the data using an estimation method like OLS, it would be useful to quantify just how \"good\" our end-result model is. But what exactly makes a model \"good\"? Is it how well it fits the data? It's simplicity/complexity? Or is it how well it performs when applied to out-of-sample data? **Model validation** is the process of determining how well-founded a model is and whether it is a satisfactory explanation for the given data." ] }, { "cell_type": "code", - "execution_count": 852, + "execution_count": 208, "metadata": { "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "# Import libraries\n", "import numpy as np\n", @@ -61,14 +53,14 @@ "\n", "When presented with many possible explanatory variables, choosing which to include in a regression model can be a difficult task. Luckily, there exists a variety of strategies and criteria that simplify model selection. \n", "\n", - "As an example, let's attempt to model the US unemployment rate with US inflation rate, QQQ NASDAQ-100 index, IWM Russel 2000 index, gold prices, and USD vs. EUR exchange rate as potential explanatory variables. All of these macro indicators are available as free [Quantopian Data Feeds](https://www.quantopian.com/data).\n", + "As an example, let's attempt to model the US unemployment rate with US inflation rate, gold prices, USD vs. EUR exchange rate, and two ETFs that track the Russel-2000 and NASDAQ-100 indices as potential explanatory variables. All of these macro indicators are available as free [Quantopian Data Feeds](https://www.quantopian.com/data).\n", "\n", "Let's begin by pulling the above as Blaze expressions." ] }, { "cell_type": "code", - "execution_count": 994, + "execution_count": 209, "metadata": { "collapsed": false, "scrolled": false @@ -90,22 +82,22 @@ "source": [ "Now let's migrate the data into Pandas series using `asof_date` as our index keeping in mind that:\n", "\n", - "* Both inflation and unemployment data have one month intervals, so data index intervals cannot be anything smaller than monthly\n", - "* Unemployment data is released at the start of the month after the relevant month and inflation rate data is released ~3 weeks after so we must shift both back a month from the asof_date to prevent look-ahead bias\n", + "* The specific inflation and unemployment datasets we are using have one month intervals, so time index intervals cannot be anything smaller than monthly\n", + "* The unemployment data is released at the start of the month after the relevant month and inflation rate data is released ~3 weeks after so we must shift both back a month from the asof_date to prevent look-ahead bias\n", "* Gold prices must be shifted back one day from asof_date to prevent look-ahead bias\n", - "* QQQ and IWM pricing data only goes back to 2002, so we can only consider data from 2002 on\n" + "* Equity pricing data only goes back to 2002, so we can only consider data from 2002 on\n" ] }, { "cell_type": "code", - "execution_count": 1026, + "execution_count": 210, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [], "source": [ - "# Start date dictated by QQQ and IWM\n", + "# Start date dictated by QQQ and IWM (tickers of index-tracking ETFs)\n", "start = '2002-01-01'\n", "end = '2017-01-01'\n", "\n", @@ -115,26 +107,31 @@ "\n", "index = pd.date_range(start=start, end = end, freq= 'MS')\n", "\n", - "# Adjusting data along points mentioned above and putting in Pandas series\n", - "unemployment = odo(unemployment_bz, pd.DataFrame).set_index(['asof_date']).shift().loc[index].ffill()['value'][1:]\n", - "inflation = odo(inflation_bz, pd.DataFrame).set_index(bz.compute(inflation_bz.asof_date) + pd.Timedelta('1 days')).shift().loc[index].ffill()['value'][1:]\n", - "gold = odo(gold_bz[gold_bz.asof_date >= start], pd.DataFrame).set_index(['asof_date'])['value'].sort_index().asof(index).ffill()[1:]\n", - "fx = odo(fx_bz, pd.DataFrame).set_index(['asof_date'])['rate'].sort_index().asof(index).ffill()[1:]\n", - "qqq = get_pricing('QQQ', start_date=start, end_date=end, fields = 'price').asof(index).ffill()[1:]\n", - "iwm = get_pricing('IWM', start_date=start, end_date=end, fields = 'price').asof(index).ffill()[1:]" + "# Migrating Blaze expressions into Pandas DataFrames and setting index\n", + "unemployment = odo(unemployment_bz, pd.DataFrame).set_index(['asof_date'])\n", + "inflation = odo(inflation_bz, pd.DataFrame)\n", + "inflation = inflation.set_index(inflation['asof_date'] + pd.Timedelta('1 days'))\n", + "gold = odo(gold_bz[gold_bz.asof_date >= start], pd.DataFrame).set_index(['asof_date'])\n", + "fx = odo(fx_bz, pd.DataFrame).set_index(['asof_date'])\n", + "qqq = get_pricing('QQQ', start_date=start, end_date=end, fields = 'price')\n", + "iwm = get_pricing('IWM', start_date=start, end_date=end, fields = 'price')\n", + "\n", + "# Adjusting data along points mentioned above\n", + "unemployment = unemployment.shift().loc[index].ffill()['value'][1:];\n", + "inflation = inflation.shift().loc[index].ffill()['value'][1:];\n", + "gold = gold['value'].sort_index().asof(index).ffill()[1:];\n", + "fx = fx['rate'].sort_index().asof(index).ffill()[1:];\n", + "qqq = qqq.asof(index).ffill()[1:];\n", + "iwm = iwm.asof(index).ffill()[1:];" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we have data for on independent variable:\n", - "\n", - "$$ Y_u: unemployment $$\n", + "Now we have data for on independent variable and 5 predictor variables. If we were to include every one of these preditors, our model would look like:\n", "\n", - "And 5 predictor variables:\n", - "\n", - "$$X_q: QQQ \\:\\:\\:\\:\\: X_i: inflation \\:\\:\\:\\:\\: X_r: IWM \\:\\:\\:\\:\\: X_f: FX Euro rate \\:\\:\\:\\:\\: X_g: gold$$\n", + "$$ Y_{unrate} = \\beta_0 + \\beta_1 X_{inflation} + \\beta_2 X_{gold} + \\beta_3 X_{FX} + \\beta_4 X_{qqq} + \\beta_5 X_{iwm} + \\epsilon_i $$\n", "\n", "The next step is to figure out which predictors to include in our model. We could include every single predictor we have, but we would not be sure if every predictor was significant. Adding many insignificant predictors causes a few different issues. If there are more predictors there is a larger chance that the predictors themselves are correalted with each other which would lead to regression model instability and invalidate our results. Furthermore, including many regressors hurts the predictive power of a model. A solution might be to include as few variables as possible, but we would likely exclude some explanatory effects this way. Let's look at some ways to find this balance and determine which variables to include." ] @@ -145,21 +142,103 @@ "source": [ "## Model Selection Criteria\n", "\n", - "There exist a number of metrics we can use to asses the relative and absolute strength of a specfic model. The ones we will focus on are $R^2$, adjusted $R^2$, BIC, and AIC." + "There exist a number of metrics we can use to asses the relative and absolute strength of a specfic model. The ones we will focus on are $R^2$, adjusted $R^2$, AIC, and BIC." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Coefficient of Determination ($R^2$)\n", + "### Primer on Sum of Squares ($SS_{err}$, $SS_{reg}$, and $SS_{total}$)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The residual sum of squares ($RSS$ or $SS_{err}$) measures the variation in the difference between modelled values and observed values (residuals). The explained sum of squares ($SSR$ or $SS_{reg}$) measures the variation of model values. Finally, the total sum of squares ($SST$ or $SS_{tot}$) measures the variation in the observed data.\n", "\n", - "The coefficient of determination, or $R^2$, is a metric that tells us the proportion of in-sample variance 'explained' by a certain model. For example, an $R^2$ of 0.9 tells us that the magnitude of the model residual variance is about 90% of that of the sample data. The formula for $R^2$ is:\n", "\n", - "$$R^2 = \\frac{SS_{reg}}{SS_{total}} = 1 - \\frac{\\sum_{i=1}^{n} (Y_i - \\hat{Y_i})^2}{\\sum_{i=1}^{n} (Y_i - \\bar{Y})^2}$$\n", + "$$SS_{err} = \\sum_{i=1}^{n}{(Y_i - \\hat{Y_i})^2}\\:\\:\\:\\:\\:\\:\\:SS_{reg} = \\sum_{i=1}^{n}{(\\hat{Y_i} - \\bar{Y_i})^2}\\:\\:\\:\\:\\:\\:\\:SS_{tot} = \\sum_{i=1}^{n}{(Y_i - \\bar{Y_i})^2}$$\n", + "\n", + "Where $Y_i$ are observed sample values, $\\hat{Y_i}$ are the model values and $\\bar{Y}$ is the sample mean.\n", + "\n", + "In cases of simple linear regression, the following is generally true:\n", + "\n", + "$$ SS_{tot} = SS_{reg} + SS_{err} $$\n", + "\n", + "For more intuition on their relationship, look at the graph below. Change the value of $p$ to choose which point to see squared error, regression, and total values for." + ] + }, + { + "cell_type": "code", + "execution_count": 212, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAH8CAYAAAD8AR9YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8jef/x/HXyY4MBCGxKY29Y+9VSim1RXVofVEtStEo\nrVotTatGqqpVmw5Ka3Wgasco37YUQWLETiKyJOf3R37OVyQhISd3xvv5eHjIue/r3OdzzrnPeJ/r\nuq/bZDabzYiIiIiIiOQhNkYXICIiIiIiktUUhEREREREJM9REBIRERERkTxHQUhERERERPIcBSER\nEREREclzFIRERERERCTPURASEYvq1auzdu3aTNteq1at+OSTTzJtexl14MABatSoQWhoqGE1yP/s\n3r0bHx8fLly4YHQpqQoODqZz587UrFmTQ4cOZei6Fy5coHr16uzbt89K1T3+68nHx4dvvvkGgAkT\nJvDCCy9kVmlyn8x+LxUR67AzugARsb7ExEQWLlzITz/9RGhoKHFxcRQtWpR27doxfPhwHB0dAfjz\nzz8NrjRz1a1blyNHjmToOoGBgQwePDjN9a1atSIsLAw7u/+9fTo7O1OhQgVeffVVmjRpYll+/fp1\n5s2bx44dO7hy5QoAZcuWpWfPnvTu3TvdNaX3+fPz8yMoKAh7e3vLdR0cHChTpgzPP/88nTp1Svdt\nWovJZHrg+s2bN7Ns2TL+/fdfoqKicHNzo1GjRrz++uuUKFGCdevWMWHCBMt2YmNjsbW1xc7ODrPZ\njMlkYtOmTXh5eWW4tlWrVhEVFcXevXstj2l6eXt756jXz+TJk40uIVfLSfuCSF6mICSSB8yYMYPN\nmzcza9Ysqlevjq2tLUePHmXkyJFcunSJWbNmGV1itnD8+HE+/vhjBg0ahK2tbZrtXn31VYYPH265\nHBUVxfLlyxk8eDDLly+nevXqALz88svkz5+fBQsWULp0aeLj49m8eTP+/v6YTCZ69eqVrroy8vx1\n6tSJDz74wHI5Li6On376ibFjx+Lo6Ejbtm0z+rBkmZ9//plRo0bx/vvv065dO/Lly0dISAjvvfce\nAwYMYPPmzXTp0oUuXbpYrtOqVSu6du2a7Pl4VOHh4Xh5eWU4BEnGJSQkPPA1lt421rptEckbNDRO\nJA/4/fffadOmDXXq1MHe3h4bGxtq1KjBp59+yjPPPGNpd+/QmXHjxjFixAiWLFlCy5YtqV27Nq+8\n8grXr1+3tP/uu+9o1aoVtWrVYtCgQfzyyy8PHPq0ceNGunfvTu3atWncuDHvvPMOUVFRadbt4+PD\n0qVLefXVV6lVqxaNGjXiyy+/TNZm5cqVdO7cmVq1atG0aVOmTJlCXFwcAPv27cPHx4eQkBAg6Uvz\nV199xTvvvEP9+vVp0KCB5ZfxHTt20L17d0wmE7Vr105xO/cym83JLru4uDBo0CBKlizJ+vXrAbh2\n7Rp//fUXffv2pUyZMphMJhwcHOjcuTOzZ8+matWqaW7/ful9/lLj4OBA165dadCgAd9//326b/Pq\n1auMGDGCJk2aULt2bbp168bu3bst69Ozf2zatImOHTtSq1Yt/Pz8LM9DWnbu3Em5cuXo2rUr+fLl\nA6BkyZJMnz6dUaNGER8fn+r17n8+0rJ//3769OlDvXr18PX1ZdiwYVy8eBGAV155hXXr1nHw4EFq\n1KjBgQMHUlw/NDSUwYMHU79+fctj8vPPPwNw/vx5fHx8LI+Rn58fM2bMYOrUqdSrV48mTZrwzTff\ncODAAbp06WJ5TC5fvgz8b1/97bff6NKlC9WrV6ddu3bJHvP7ZfT1dK+xY8fSr18/APbu3YuPjw9H\njhyhV69e1KpVi6eeeort27db2sfGxvL+++/TunVratSowdNPP51i6NcXX3xB+/btqVWrFi1btiQg\nIMCy7u79+/HHH2ncuDHz5s1LUdPdx/Dbb7+lVatW+Pv7W5a/9tprNGnSxPK43dvjcv36dQYPHkzN\nmjVp2bIlq1at4tVXX2XcuHEAfP/99zRo0IDVq1fj6+trqXvPnj3069ePevXqUb9+fUaOHMnVq1ct\n2/3xxx955plnqFWrFvXr1+e1116zPF83b95k1KhRNG7cmFq1atGxY0fWrFljue6976WQvvepBz3+\nImIdCkIieUCFChXYvHkzO3bsIDEx0bK8cuXKNG/ePM3r7dmzhxs3brBp0yZ++ukn/vrrLxYuXAhA\nSEgI/v7+9O3bl7179/LKK68wY8aMNIc+7dq1i7FjxzJ06FAOHjzIypUrOXbsGFOnTn1g7YsWLeKV\nV17hwIED+Pv7M2PGDMuXw++++44PP/yQ8ePHExQUxBdffMEvv/zC9OnTLde/v55FixbRsmVLdu/e\nzaxZs1i2bBnbt2+nWbNmllB0+PDhRzp+Ii4uDicnJwAKFixI4cKFWbRoESdOnEjWrnnz5lSpUiXd\n233U5y+t2tLD39+fK1eusGnTJvbv30/Tpk0ZNmxYsi/aD9o/QkNDGTVqFD169GDfvn28/fbbfPXV\nVw+9n6dPn2bZsmVER0dblhcqVIinn37aEo4exdmzZ3nhhRdo3749f/zxB5s2bSI6OppXXnkFgAUL\nFtClSxdq167NkSNHqFu3boptTJo0iYIFC7Jjxw4OHDjAoEGDeOutt4iIiEj1NtevX0+dOnXYu3cv\n/fv3Z8qUKXz99dcsXryY33//nYiIiBSBe9GiRcyfP599+/bRsmVLhgwZkmq4edTX0133vi7u/j1n\nzhwCAgLYv38/tWrVYvz48ZY2EyZM4OjRo3z99dccOnSIESNG4O/vbwmMW7ZsISAggA8//JBDhw4x\nd+5cFi9enCJ8//LLL2zatInXXnstzdp++OEHVq5cybRp04iPj+eFF16gYMGCbN68mT179lC7dm1e\nfvlly+PywQcfEBwczIYNG9iwYQMHDhxIMTQtNjaWY8eOWX7wOHnyJIMHD6Zr167s3buXn376icjI\nSN58800AwsLCGDNmDKNHj+bQoUP8/PPPODg4WHpbP/roI27evMnmzZs5dOgQkyZNYsaMGZw6dSrF\n/UnP+9TDHn8RsQ4FIZE8YOLEiVSpUoVXX32VBg0a8Oqrr7JgwQLOnTv3wOvZ2dlZjkEpVqwYdevW\n5fjx40DSr/3u7u68+OKLODg4UK9ePTp06JDmtpYvX07btm1p1aoVkPRL/7Bhw1i3bp3ll9HUtG7d\nmjp16mBra0vHjh2pVKkSW7ZsAWDZsmU8++yzNGzYEBsbGypWrIifnx/r1q1Lc3t16tShZcuW2NjY\n0LhxYzw8PCz36a709jDcFR4ezscff8yVK1csw7ZsbGwIDAzk1q1bdOnShVatWjFq1ChWr16d5hfn\ntDzq8wdw69Ytli9fTlBQEN27d0/3bc6ePZuFCxfi6uqKra0tnTt35vbt28m+6KVn/xg4cCD29vb4\n+Pjw3HPPPfA2e/fubelJqV+/Pv369WPmzJkcPHgw3XWnZeXKlZQtW5aBAwfi4OCAh4cHI0eO5N9/\n/+Xo0aPp2kZkZCR2dnaWXrkOHToQFBSEu7t7qu1LlixJ+/btsbGxoW3btkRHR+Pn50eBAgVwdXWl\nSZMmKb44P//883h7e+Pk5MTQoUOJjY1lx44dKbb9qK+nBxkwYADe3t7Y2dnx1FNPcf36da5cuUJ4\neDgbNmzg9ddfp3jx4tjY2NCmTRtatWpl6QW523t1d1ho5cqVqVChQopj9Lp06YKbm9sD62jXrh2e\nnp4AbN++nQsXLjB+/HhcXFxwdHTkjTfewNbWlk2bNgFJx5X169ePEiVK4OLiwjvvvJMsSAPExMQw\nYMAAy48Ba9asoVKlSvTo0QMbGxsKFSrEm2++yZ49ewgJCSEqKorExEScnZ0BcHNzY9asWcycORNI\nel3Z2tri4OAAgK+vLwcOHKB8+fIp7k9636fSevxFxHp0jJBIHuDh4UFgYCBhYWHs37+fgwcP8s03\n3xAQEMDgwYN5/fXXU71eiRIlkl12dna2fDCHhYXh7e2Njc3/fk+pWbNmmjWcPn2ac+fOsXXrVsuy\nu4EjLCyMkiVLpnq9cuXKJbtcsmRJy3Cmc+fO0aNHj2Try5cvz+3bt5MNcblXqVKlkl12cnJK8aXp\nYT7//HMWLVoEJE1kEB8fT8OGDfnqq6944oknLO2qVq3K+vXrOXHiBAcPHiQoKIhZs2Yxbdo0AgIC\naNGiRbpuLyPP34YNG9i8eTOQ9PjGxcVRrVo15syZQ+PGjdN9H//55x8++eQTjh07RnR0tOW5io2N\ntbR50P5x6dIlvLy8kvU83PvYpMbW1pa33nqLoUOHcuDAAQ4dOsTu3btZuHAhjRs3JjAwMNlEEBlx\n7tw5KlSokGzZ3XpCQkKoVq3aQ7fxxhtv8Oabb/Lbb79Rv359mjdvzlNPPWX5Mny/4sWLW/52cnLC\nZDIlm8TB2dmZmJgYy2WTyUTZsmUtl93d3XFzc+PSpUsptv2or6e0mEymZK+NuwEgJiaGixcvkpiY\nyODBgy3Pp9lsxmw2W17zMTExBAQE8Ouvv3Ljxg3MZjN37txJ9pybTKYU+0xq7q09ODiYO3fuUL9+\n/WT3MzExkQsXLnDz5k2io6OTXcfNzS3F+8b92z19+jRHjhyhRo0aybZrZ2dHaGgoDRs2xM/Pj+ef\nf56KFSvSoEEDOnToYAl6r776KkOHDqVp06b4+vrSpEkTnn76aVxdXVPcbnrepx70+IuI9SgIieQh\nRYsWpVOnTpbZw+bMmcPcuXPp1q1bql+c7g0590tMTEzxBfBBM4I5OTnRt2/fDA/3uHcoGCR9Wblb\nV2xsbIrem7uX06rlQfcpvV555RXLwfkxMTF06dKF8uXLU7t27VTbV6xYkYoVK9K7d2/i4uIYOnQo\n7733XrqD0F3pef7unyyhb9++5M+fn5YtW6b7dm7dusXLL79MixYt2LhxIx4eHgQHB6fo8XvQYxkX\nF5difXp72lxdXWnRogUtWrRgxIgR7N+/Hz8/P9avX0+3bt3SfT/uFRsbm2J/vX/fepiGDRuybds2\n9u3bxx9//MGsWbP47LPPWL16dartU3t8Hrb/pVZTavvyo76eHiSt2u5OHrF69Wp8fHxSbfPuu++y\na9cu5s6dS5UqVTCZTKnOjJhWaLzXvWHXyckJNzc39u/fn2rbu8ek3R+QU3vM7t9uy5YtmTt3bpp1\njB8/nkGDBrFz50527NhBv379eOmll3jjjTd48skn2bp1K0FBQfzxxx8sWrSIuXPnsmrVqhQzFqb3\nfSoz3ptEJGP0qhPJ5S5cuMC7775LWFhYinV3vxzfuHEjw9stUqRIivPzPOjcK2XKlOHvv/9Otiwy\nMpLw8PAH3s6ZM2eSXT537hze3t6Wbd4/rO348eO4u7tTqFChh92FR3bvlxonJyemTJnC8uXL2blz\np2X5vn37Uj1ew8HBgUaNGiWbVOBBHvf5mzp1Krt3707zy3pqTp06RWRkJC+88AIeHh4AHDly5KFT\nX9+rWLFiKXoy7n+u7pWYmMhHH33EH3/8kWJdvXr1cHFxSfdjlpoyZcqkOFbrxIkTmEymVHsPUnP9\n+nXs7e1p3LgxY8aM4ccff+TChQsPnNAgI8xmM2fPnrVcvnnzJhEREcl6lu561NfToyhZsiS2trb8\n9ddfyZZfvHiRhIQEIOm4unbt2lG1alVMJhNRUVGcPHnysW+7TJky3Lp1K8VEG3cvFyxYEHt7+2Tr\nIyIiOH369EO3+88//yRbFhcXZ5kMwWw2Ex4eTpEiRXj22WcJCAhg4sSJLF26FEh6rBMSEqhbty6v\nv/46GzZswNHR0dIbe/9tGfE+JSIPpyAkkssVLlyYXbt2MXLkSP7880/i4+NJTEzk5MmTfPTRRzzx\nxBMZmsHsrjZt2nDt2jWWLFlCfHw8+/bts4zZT82AAQMICgpi+fLlxMbGcuXKFd58801Gjhz5wNv5\n5ZdfCAoK4s6dO/z444+cOHHC0jPRp08f1q1bx+7du0lMTOTYsWMsXbqUnj17Wq6fkeN97g5HuXsO\nm/SqW7cu/fr1Y9y4cZYvogULFmTNmjW88847hISEYDabiY+PZ+/evSxdupSuXbtarj9w4ECWLFmS\n6rYf9/krU6YMb7zxBtOmTUv2Jfutt96yHO9wP29vb2xtbTl48CB37txh9+7dli946T0ZaqtWrZLt\nH8eOHeOHH35Is72NjQ1hYWGMHTuWX3/9ldu3bwNw+fJlZsyYQWJiIu3bt0/XbaemR48enD17li++\n+IL4+HjCwsKYNWsWNWrUSLOX417R0dG0b9+er776ipiYGMxms+X5uHc424OkZ1/8+uuvOX/+PNHR\n0cydOxcXF5dk56a661FfTxmp7e6yfPny8dxzzzFnzhz+/vtvEhMT2b9/P127dmXjxo1A0pDTv//+\nm+joaM6fP4+/vz/e3t7JwnBGj70DaNy4MeXLl2fSpElcvnyZ+Ph4VqxYQadOnQgNDcVkMtGyZUuW\nL1/OxYsXuXXrFlOnTrW8ltPSu3dvrl69SkBAAFFRUYSHhzNp0iQGDhwIJA0x7dSpk2XShaioKI4d\nO2Y5Bui5555j1qxZ3Lp1C0gK1REREakeI/So71OP8niJSMZoaJxILufg4MCKFSsIDAxk9OjRXLly\nhYSEBIoWLUrz5s2ZNWuWZUiGyWRK96/+FSpUYOzYsXz22Wd8/PHHNGzYkOHDh/Pmm28m295dNWvW\nZObMmcyfP58ZM2bg5uZG06ZNeeuttx54O3369OHzzz9n79695MuXD39/f+rUqWNZFx0dzfvvv8/F\nixcpWrQofn5+vPTSS5brpzY71r3uXdaoUSMqVarEc889x/PPP2+ZQSqt9vcaNWoUO3bsYMKECcye\nPZsKFSqwfPlyFi5cyIABA7h58yaQFEz8/PwYMGCA5bohISGW9ffLyPOXlueff56ff/6ZMWPGsGLF\nCmxsbLhw4UKa96VIkSK8/fbbzJs3j48++oj69eszZcoUJk+ezMSJE9M1hMfHx4cPPviAOXPm8NFH\nH1G5cmWGDBnCqFGj0rzOtGnT+PLLL5kzZw5jx44lJiYGd3d36taty6pVq1Idvpne/fXJJ59k3rx5\nzJ07l8DAQMtkBak9x6lxdnYmMDCQmTNn8umnn1qO6fjggw8oX74858+ff+jr52G13h1O9tprr3Hy\n5Em8vLz47LPPLF/qH/f19KD6HvbaGDduHPb29rz88svcvn0bb29v3njjDcswzTFjxjB27FgaNWpE\n8eLFGT16NLGxsYwfP55XXnmFl19+OV3P1f1t7k46Mm3aNDp27IjJZOKJJ57g888/txxvNG7cON56\n6y3at29PsWLFGDZsGGfPnn3gflq8eHECAwP5+OOPWbx4Mfny5aNOnTosWLAAgM6dO3PhwgVGjBjB\ntWvXLOvv/ngwb948pkyZQsuWLUlISMDLy4vhw4fTtGnTFPcjo+9TD1omIpnLZLbiTw779u3j9ddf\np0KFCpjNZp588knLeQEg6RdDb29vy5vzzJkzLTPFiEj2Fx8fn2zc/Xfffcc777zDkSNHMuWEhT4+\nPrz//vsPnW0sp9u4cSNXrlxJFo6s7c8//+THH3+0nGtFjLVv3z6ef/55tmzZkuGJDiRpWNu9xx+1\natWKbt26MWzYMAOrEpHszuo9Qr6+vnzyySeprjOZTCxcuDBD57YQkezh8uXLtG7dmlGjRuHn50dY\nWBhLliyhRYsWOmt7Bm3atMky+UJW2bhxY4ZmkRPr01CoR/P+++9bJiwoXLgw33zzDWFhYZapxUVE\n0mL1IPSgN/a702+KSM7j6enJxx9/zOzZs/nkk08sQ41Gjx6dabeRV4aGpPVjkTU9bEiiZL28sr9n\nthEjRhAVFUW3bt2IjY2lVKlSluGYIiIPYvWhce+++y6lS5cmPDycoUOH0qhRI8v6Vq1aUbduXUJD\nQ6lbt+4jH+QpIiIiIiKSEVYNQmFhYRw8eJAOHToQEhLCgAED2Lp1K3Z2SR1R69ato2nTphQoUIAh\nQ4bQrVs32rVrl+b2goKCrFWqiIiIiIjkEncnVnoQqw6NK1q0qGWa25IlS1K4cGHCwsIs50To0qWL\npW2zZs04ceLEA4MQpO9OSe4WFBSk/UAA7QuSRPuBgPYDSaL9QCD9nSdWPY/Q+vXrmTNnDgDXrl3j\n+vXrFC1aFEg6c3n//v2JjY0F4MCBA1SoUMGa5YiIiIiIiABW7hFq1aoVo0aNok+fPpjNZiZOnMj6\n9etxc3OjTZs2tG/fnl69euHi4kKlSpUe62R5IiIiIiIi6WXVIOTi4kJgYGCa6/38/PDz87NmCSIi\nIiIiOY7ZbLaMnJK0OTo6PvKsm1YdGiciIiIiIhkXGxurIPQQj/sYWf08QiIiIiIiknGOjo44OTkZ\nXUaupR4hERERERHJcxSEREREREQkz1EQEhERERGRPEdBSEREREREUjV//nwCAgIsl81mM127duXE\niRMGVpU5FIRERERERCRVL774Ilu2bOHy5csAfPPNN9SoUYOKFSsaXNnj06xxIiIiIiKSKkdHR4YM\nGUJAQAATJ07kyy+/ZOnSpam2PX/+PGPGjKFUqVIcOnSI3r17c/z4cY4ePUrfvn3p27cvBw4cICAg\nAHt7e7y8vJg8eTImk4m33nqLsLAwYmJiGDZsGM2bN8fPz4/GjRuzZ88ebt68SWBgIMWKFcu0+6Yg\nJCIiIiKSzf31119cuHAhU7fp7e1N5cqVH9quc+fOLF26FH9/f7p164aHh0eabf/55x/mz5/PjRs3\nePrpp/ntt9+IiYlh+PDh9O3blylTprB48WLc3d358MMP2bRpE40aNaJJkyZ07dqV0NBQhg8fTvPm\nzQFwc3Pjq6++YtasWWzZsoUBAwZk2v1XEBIRERERkQcaMWIEY8aMYdq0aQ9sV6pUKdzd3bGzs6Nw\n4cIUKVKE27dvExkZybVr1zhz5gzDhg3DbDYTExODh4cH7u7uHD16lFWrVmFjY0N4eLhle3Xq1AGg\nWLFi3Lx5M1Pvk4KQiIiIiEg2V7ly5XT13lhLyZIl8fT0xN7e/oHtbG1tU/3bbDbj4OBA0aJF+frr\nr5NdZ+3atYSHh7NixQpu3LjBc889Z1lnZ2eXbBuZSZMliIiIiIjIQ6UniNzb5v72bm5umEwmTp06\nBcDSpUs5fvw4N27coESJEgBs3ryZ+Pj4TKw6beoREhERERGRhzKZTBlqk1r7999/n3HjxuHg4ICn\npye9evXC1dWV//znPxw8eJDu3btTrFgx5s6dm67bexwmc2b3MVlRUFCQZZyg5F3aD+Qu7QsC2g8k\nifYDgdy1H8TExADg5ORkcCXZV1qPUXr3A/UIiYiIiIhIuq1evZr169dbemzMZjMmk4lRo0ZRo0YN\ng6tLPwUhERERERFJt549e9KzZ0+jy3hsmixBRERERETyHAUhERERERHJcxSEREREREQkz1EQEhER\nERGRPEdBSERERERErGLbtm2MGzcuzfVz5sxh2bJlWVjR/ygIiYiIiIhInqPps0VEREREJFXff/89\n+/bt48aNG5w6dYo33niDDRs2cPr0aT788EMOHz7MTz/9BEDr1q0ZNGgQJ06c4K233qJAgQKULFnS\nsq1ly5axYcMGbG1tadOmDQMHDjToXiVREBIRERERyQnKlEl9+ZkzmdM+DefOnWPZsmWsWbOGBQsW\nsHbtWr799lsCAwO5dOkS3377LYmJifTo0YOnnnqKefPmMXz4cFq2bMmkSZMACA0NZfPmzaxYsQKA\n3r1789RTT2WojsymICQiIiIiImmqWrUqAEWKFOHJJ5/EZDJRuHBhjh8/TrNmzTCZTNja2lK7dm3+\n+ecfTp06Rc2aNQHw9fXl999/588//+Ts2bMMGDAAs9lMdHQ0oaGhRt4tBSERERERkRwhgz05GW6f\nBltb21T/Dg8Px2w2Wy7HxcVhMpkAsLFJmorg7noHBwdatGjBu+++m2zbe/bsyZQaH4UmSxARERER\nkQxr27Ythw8fJjExkTt37nD06FGqVKlC2bJlOXr0KAB79+4FoEqVKuzdu5eYmBjMZjNTpkwhLi7O\nyPLVIyQiIiIiIo+mZ8+e9OvXD7PZTI8ePfDy8mLw4MGMGzeOJUuWULx4ceLj4/Hy8mLAgAH069cP\nOzs72rRpg4ODg6G1m8z39mdlc0FBQdSpU8foMsRg2g/kLu0LAtoPJIn2A4HctR/ExMQA4OTkZHAl\n2Vdaj1F69wMNjRMRERERkTxHQUhERERERPIcBSEREREREclzFIRERERERCTPURASEREREZE8R0FI\nRERERETyHAUhERERERF5qNu3b9OqVas012/ZsiULq3l8CkIiIiIiIvJQZrMZk8mU6rrQ0FA2bNiQ\nxRU9HjujCxARERERkccXHR3Ne++9x/Xr13nqqad49tlnH3ubt27dYvjw4cTFxVG7dm0A1q9fz5Il\nS7C3t6d8+fK89957TJ48maNHjzJv3jy6d+/Om2++iY2NDXfu3GH69OmULFnysWvJbOoREhERERHJ\n4cxmMz169GD69OksWLCAgQMHsmrVqsfe7g8//EDFihVZunQpPj4+mM1mYmNjWbhwIcuWLSM4OJh/\n//2Xl156iXr16jFkyBCuXLnCsGHDWLx4Md27d2f58uWZcA8zn3qERERERERyuBs3brBz507L5YiI\nCH766Sd69er1WNs9deoUvr6+ANSvXx8ANzc3hg4dall/8+bNZNcpXLgwgYGBfPrpp0RERFClSpXH\nqsFaFIRERERERHI4FxcX8ufPT3h4uGWZq6vrY2/XbDZjY5M0iCwxMZH4+HgmT57MDz/8gIeHB4MH\nD05xnU8++YSmTZvSq1cvNm/ezLZt2x67DmvQ0DgRERERkRzO0dERf39/vLy8sLe3p2nTprz33nuP\nvd2yZcty9OhRAPbu3UtUVBS2trZ4eHhw8eJFjh49Snx8PDY2NiQkJABJvVOlSpUC4OeffyY+Pv6x\n67AGBSERERERkVxg0KBB/PPPP5w4cYLffvuNQoUKPfY2u3btyuHDh3nhhRcIDg6mYMGCNGrUiOee\ne47Zs2fVG+uaAAAgAElEQVQzaNAgpk2bRvny5fnrr7+YPn06ffr04b333uOll17i6aefZv/+/eza\ntSsT7mHm0tA4EREREZFcwt3dHXd390zbnpubG19//bXl8muvvZaizcCBAwH49ddfLcuaN29u+Xv7\n9u2ZVk9mUo+QiIiIiIjkOQpCIiIiIiKS5ygIiYiIiIhInmPVY4T27dvH66+/ToUKFTCbzTz55JP4\n+/tb1u/atYuAgABsbW1p1qwZQ4YMsWY5IiIiIiIiQBZMluDr68snn3yS6ropU6awaNEiPD096d+/\nP+3bt6d8+fLWLklERERERPI4qwchs9mc6vKQkBAKFChA0aJFgaSZJfbs2aMgJCIiIiJyH7PZTERE\nRKZu093dHZPJlKnbzEmsHoROnTrFkCFDCA8PZ+jQoTRq1AiAq1ev4uHhYWnn4eFBSEiItcsRERER\nEclxIiIiCAyMxMnJLVO2FxMTyeDBkD9//oe2XbZsGT/88AMODg7ExsYyYsQIGjZsmCl1GMmqQah0\n6dIMGzaMDh06EBISwoABA9i6dSt2dilvNq2eo/sFBQVldpmSA2k/kLu0LwhoP5Ak2g8Ectd+UKVK\nlWSXnZzccHZ+eHDJTOfPn2fNmjV899132NjYcObMGSZMmJBtgtB///vfR76uVYNQ0aJF6dChAwAl\nS5akcOHChIWFUbx4cTw9Pbly5YqlbVhYGJ6eng/dZp06daxWr+QMQUFB2g8E0L4gSbQfCGg/kCS5\naT+IiYkxugQAIiMjiYuLIzY2FmdnZ8qUKcOSJUvSbL9s2TI2bNiAra0tbdq0YeDAgcyZM4fQ0FBC\nQkIYNmwYixcv5vbt24wZM4aqVas+Vn1VqlTByckp2bL0hmGrTp+9fv165syZA8C1a9e4fv265Zig\n4sWLExUVxYULF7hz5w7btm2jSZMm1ixHREREREQywMfHh2rVqtG6dWvGjRvHxo0bSUhISLVtaGgo\nmzdvZsWKFSxdupRNmzZx6dIlAOLj41m2bBm2tracOHGCRYsWPXYIelxW7RFq1aoVo0aNok+fPpjN\nZiZOnMj69etxc3OjTZs2TJw4kZEjRwLQqVMnSpcubc1yREREREQkg2bMmMHp06fZuXMnCxcuZOXK\nlSxevDhFuz///JOzZ88yYMAAzGYz0dHRhIaGAlCtWjVLOx8fn1QPlclqVq3AxcWFwMDANNfXrVuX\nlStXWrMEERERycWuXbvGkCFDOHbsGFWrVmX+/PnJJmMSkccXFxdHuXLlKFeuHP3796dDhw5cvHgR\nLy+vZO0cHBxo0aIF7777brLle/bswd7e3nL53r+NZHwUExEREXlEQ4YMYfXq1QD89ddfAKxatcrI\nksQIZ85A8eJGV2F1MTGRmbyth89At2bNGvbs2cPMmTMxmUxERERgNpspVKhQirZVqlRh5syZxMTE\n4OjoyNSpUxk9enSm1ZzZFIREREQkxwoODn7gZcnlzpyBqVPhyy9hwQKoXt3oiqzG3d2dwYMzc4tu\nuLu7P7RV9+7dCQ4OpmfPnuTLl4+EhAT8/f1xcHBI0dbLy4vnn3+efv36YWdnR5s2bVJtl10oCImI\niEiOVbZsWfbv35/ssuQB587BlClJASg+HipWhMKFja7KqkwmU7rO+ZPZbGxsGDNmTLrb9+nThz59\n+iRbNmzYMMvfvr6++Pr6Zlp9j0NBSERERHKs+fPnAyQ7RkhyuYMHoUGDpABUoQK88w707g12dpCL\nziGUna1evZr169djMpmApPOBmkwmRo0aRY0aNQyuLv0UhERERCTH8vDwYNWqVbnq/DHyEDVrQseO\n0K0b9O2bFIAkS/Xs2ZOePXsaXcZj054jIiIiIjmHjQ2sXZtskWYPlEehICQiIiIi2cuFCzB9OpQr\nB2+88dDmmj1QHoWN0QWIiIiIiABw8SK8/npSAPr0U1i+HMzmh15NswfKo1CPkIiI5EgaCiOSi8TH\nw+jR8NlnEBMDpUuDvz8MGAD/f0D+g+SF2QPNZjMRERGZuk13d3fLhAd5kYKQiIjkSBoKI5KL2NvD\nkSPg6Qlvvw0DB0IGzj+TF2YPjIiIIDIyEDc3p0zZXmRkDDA4XVNyL1u2jB9++AEHBwdiY2MZMWIE\nDRs2zJQ6jKQgJCIiOZKGwojkMkuXQpEiGQpAd+WV2QPd3JzIn985S2/z/PnzrFmzhu+++w4bGxvO\nnDnDhAkTFIRERESMkheGwojkOpcvw/798PTTKdcVL5719chDRUZGEhcXR2xsLM7OzpQpU4YlS5ak\n2vb8+fOMHj0aV1dX+vbti6urKwEBAdjb2+Pl5cXkyZMBGD16NBcvXqRWrVps3LiRbdu2ZeE9+h8F\nIRERyZHywlAYkVzjyhWYORPmzEma/CA4GIoWNboqSQcfHx+qVatG69atad68Oc2aNaNdu3bY2tqm\n2v7vv/9m+/btuLu78+yzz7J48WLc3d358MMP2bhxI66ursTFxbFy5Uq2bdvG4sWLs/ge/Y+CkIiI\n5Eh5ZSiMSI529er/AlBUFHh7w7hxkI7jUiT7mDFjBqdPn2bnzp0sXLiQlStXphlgSpUqhbu7O9eu\nXePMmTMMGzYMs9lMTEwMHh4ehIWFUbt2bQCaN2+eZqDKCgpCIiIiImIdb7wBy5aBlxdMmwaDBoFT\n5hzsL1knLi6OcuXKUa5cOfr370+HDh24ePEiXl5eKdra29tb/i9WrBhff/11svWff/55svBj5Kx1\nCkIiIiIiYh3jxoGvb1IAcs7ag/xzo6SZ3jJvW25uD2+3Zs0a9uzZw8yZMzGZTERERGA2mylUqFCq\n7c3/f94nd3d3AE6dOkX58uVZunQpvr6+lCpVii1btgCwc+dOEhISMucOPQIFIRERERF5PDExqff0\nVKmS9E8eW1KwGJxp23Nz+19YeZDu3bsTHBxMz549yZcvHwkJCfj7++OQxux+9/bwTJkyhXHjxuHg\n4ICnpye9evWiTJkyfPvtt/Tr1w9fX18KFCiQafcpoxSEREREROTR3LgBAQFJxwDt3QsVKhhdUa5l\nMpnSdc6fzGZjY8OYMWPS1bZ48eJ88803lsu1a9e2nO/trvDwcJ577jnatWtHWFgYmzdvztR6M0JB\nSEREREQy5uZN+PjjpH/h4UknQj15UkEoj1i9ejXr16+39P6YzWZMJhOjRo2iRo0aD7yui4sLGzdu\n5IsvvsBsNjN+/PisKDlVCkIiIiIikn4bN0KfPkkBqEgR+PBD+M9/wMXF6Moki/Ts2ZOePXs+0nXt\n7OwICAjI5IoejYKQiIiIiKRftWrg6grjx8PQoQpAkmMpCImIiIhI+pUoAWfOgJ2+RkrOZmN0ASIi\nknHXrl2jV69e+Pr60qtXL65fv250SSKSm0RGwtSpsH9/6usVgiQX0F4skguYzWYiIiKMLiPL3bp1\ni/DwcKPLMMTLL7/M2rVrAdi/fz9xcXF89dVXxhZlkLy8H2Q37u7uhp4cUTJBZGTSDHAzZ8L163D4\nMNw365cYwxqf9Xn9NasgJJILREREEBkYiFseO1u3x7lzSR/SeVC1oCCcgRV0B1wJCipFHs1BnDvn\nkVd3g2wlJiaSwYMxZHpfyQS3b8Ps2UkB6No1KFAAJk+G4cONrkz+X2Z/1kfGxMDgwel6zS5btowf\nfvgBBwcHYmNjGTFiBA0bNky17ebNm2nfvn2a2zp+/DhOTk6ULl36kWvPLApCIrmEm5MT+fPYWbvd\n8+B9vquEpyfnQkIAB8ABT88SODvnzS+gTk7uefa+i2SauDiYPh1MJnjvvaQApFCb7RjxWX/+/HnW\nrFnDd999h42NDWfOnGHChAlpBqEFCxY8MAht3bqVqlWrKgiJiMij6devH5FxcRS/XoJixZ6gX79+\nRpckIjlZgQKwbh3UrKkAJMlERkYSFxdHbGwszs7OlClThiVLlqTa9osvvuD48eMMHz6c2bNn88EH\nH3Do0CESExPp27cvlSpVYuXKlXh4eFCoUCGqVauWxfcmOQUhEZEcyMXFhb59+xJPXzw8Shldjojk\nFLdvw4UL8MQTKdc1b5719Ui25+PjQ7Vq1WjdujXNmzenWbNmtGvXDltb2xRtX3rpJRYuXMjs2bM5\ncOAAp06dYsWKFURHR/PMM8+wbt06mjZtylNPPWV4CALNGiciIiKS+92+DR99BGXLQu/eYDYbXZHk\nIDNmzGDp0qVUqlSJhQsX8uKLLz70OseOHaNevXoAODs788QTT3DmzBkrV5oxCkIiIiIiuVV0NHz8\nMZQvD6NGJV3u0AHi442uTHKQuLg4ypUrx4ABA1izZg2XLl3i4sWLD72e+Z7AHRcXh41N9ooeGhon\nIiIiklu1aAH79oGrK7z9NowcCR4eRlcljygyJiZTt+WWjnZr1qxhz549zJw5E5PJREREBGazmUKF\nCqXaPjExEYBq1aoRGBjIoEGDiIqKIjQ0lDJlymAymYjPJkFcQUhEREQkt/rPf6B166TeoDS+uErO\n4O7uDoMHZ9r23O5u8yG6d+9OcHAwPXv2JF++fCQkJODv74+Dg0Oq7StVqkTPnj1ZvXo1lStXpn//\n/ty5c4c333wTJycn6taty9SpU3F1daVBgwaZdn8ehYKQiIiISG41cKDRFUgmMZlMhpyny8bGhjFj\nxqS7/b0n9x4xYkSK9d26daNbt26ZUdpjUxASERERyaliY2HhQli9Gn7+Geztja5I8oDVq1ezfv16\nTCYTkHQskMlkYtSoUdSoUcPg6tJPQUhEREQkp4mNhUWLYOpUCA2FfPng8GH4/1m6RKypZ8+e9OzZ\n0+gyHlv2mrpBRERERB7s22+hQgUYMgSuXUs6/ic4WCFIJIPUIyQiIiKSk5jNcOUKjBgBY8ZAsWJG\nVyRWEhsba3QJ2VpsbCyOjo6PfH0FIREREZGcpFs3aNoUihY1uhKxosf5gp9XODo6KgiJiIiI5Crx\n8bB0KfTokXQOoHvZ2CgE5QEmkwknJyejy8jVdIyQiIiISHYRH580CcKTT8KLL8KcOUZXJJJrqUdI\nRERExGh37iT1AE2eDKdPg4MDDB0Kfn5GVyaSaykIiYiIiBht71544YWkADRkCIwbByVKGF2VSK6m\nICQiIiJitMaNYdaspGOCSpY0uhqRPEFBSERERCSrJCRATAy4uKRcN3Jk1tcjkodpsgQRERERa0tI\ngOXLoUoVmDjR6GpEBPUIiYiIiFhPQgKsWQPvvQd//w12dhAXZ3RVIoKCkIiIiIh1REeDry8cOwa2\ntvDSS/D221C2rNGViQhZEIRiY2Pp1KkTQ4cOpWvXrpblrVq1wtvbG5PJhMlkYubMmXh6elq7HBER\nEZGs4ewM1asnhaG334Zy5YyuSETuYfUgNG/ePAoUKJBiuclkYuHChTpjroiIiOReS5aAjQ7JFsmO\nrPrKPH36NMHBwTRv3jzFOrPZjNlstubNi4iIiFhXYiJ89x28+27q6xWCRLItq746P/jgA8aOHZvm\n+okTJ9K3b18++ugja5YhIiIikrnMZvj+e6hdG7p3hylT4PJlo6sSkQyw2tC4tWvXUq9ePby9vQFS\n9P68/vrrNG3alAIFCjBkyBC2bNlCu3btHrrdoKAgq9QrOYv2g+Ru3bqFx7lzuOfBoaZnz541ugTD\nXI2IINQcSmSketfz8n6QXcTERHD48HVcXV0NqyGrPhvy//473vPnk+/ECcw2Nlzv0IGLL71EbEgI\nhIRkSQ2SNn1HkPSyWhDavn07oaGhbNmyhUuXLuHo6EixYsVo2LAhAF26dLG0bdasGSdOnEhXEKpT\np461SpYcIigoSPvBfcLDw+HwYfI7OxtdSpY6e/YspUuXNroMwzhcv04JSuDhUcroUgyV1/eD7CI6\nOpyaNUuRP39+Q24/Sz8bvvwS/v0X+vbFNGEChXx8KJQ1tywPoe8IAukPw1YLQgEBAZa/58yZQ4kS\nJSwh6NatWwwePJgvvvgCR0dHDhw4QPv27a1VioiIiEjm8feHoUOhUiWjKxGRx5Cl5xH6/vvvcXNz\no02bNrRv355evXrh4uJCpUqVFIREREQk+zCbYe9eaNAg5bpixZL+iUiOliVBaNiwYSmW+fn54efn\nlxU3LyIiIpI+ZjNs3AiTJsH+/bBrF/z/iBYRyV2ytEdIREREJFsym2Hz5qQAtHdv0rLnnoNCOvpH\nJLdSEBIRERFZsAAGD076u3t3mDgRqlUztiYRsSoFIREREZFeveD332H0aKhRw+hqRCQLKAiJiIhI\n3nH3vIYmU/LlBQrA0qVZX4+IGMbG6AJERERErM5shl9/hWbNYMMGo6sRkWxAQUhERERyt99+gxYt\noHVr2Lkz6Z+I5HkaGiciIiK5U2go9O8P27cnXe7UKWkShLp1ja1LRLIFBSERERHJnYoUgdOnoWPH\npGmx69UzuiIRyUYUhERERCR3cnSEI0egYEGjKxGRbEjHCImIiEjO9scfuO/enfo6hSARSYOCkIiI\niORMu3ZB27bQpAmlpk+HO3eMrsgQ165do1evXvj6+tKrVy+uX79udEkiOYKGxomIiEjOsnt30jE/\nW7YkXW7ThuDevfGxy5tfa4YMGcLq1asB2L9/PwCrVq0ysiSRHEE9QiIiIpJzmM3w6qtJIah1a/j9\nd9i6laiaNY2uzDDBwcEPvCwiqcubP52IiIhIzmQywaefJv3frJnR1WQLZcuWtfQE3b0sIg+nICQi\nIiLZ09WrULhwyuXNm2d9LdnY/PnzgaSeoLJly1oui8iDKQiJiIhI9hIUlHQM0J49EBwMrq5GV5St\neXh46JggkUegY4REREQkezh4EJ55BurWhQ0bwMcHLl82uioRyaUUhERERMR4774LderA+vXQqBFs\n3Qo7dkC5ckZXJiK5lIbGiYiIiPFatICGDZMCUZs2SZMhiIhYkYKQiIiIGK95c/jjDwUgEckyGhon\nIiIiWePYMejbFy5dSn29QpCIZCEFIREREbGu//4XevaEatVgxQpYtszoikREFIRERETESk6fht69\nkwLQmjX/mw1u5EijKxMR0TFCIiIiYiW3b8Pq1VC7dtJ5gZ5+WsPfRCTbUBASERER66haFfbtS5oW\nWwFIRLIZBSERERF5LPnDTmB3JxYolXJl3bpZXo+ISHroGCERERF5JO5h/9LiywH0mFiJhj9NMboc\nEZEMUY+QiIiIZIj75ZPU/nEyT+xdio05kWvFq3Gyeme8jS5MRCQDFIREREQk3eyjI+j+fk3sY6O4\n7l2VoM6TCK75LNGxkTQzujgRkQxQEBIREZF0i3d2J6jTJCILlSa4Vnew0Sh7EcmZFIREREQkdYmJ\nqQadP9u9aUAxIiKZSz/jiIiISDKuV8/QdMkg2s/rYnQpIiJWox4hERERAcD12llq/TSFJ3d9iU3i\nHW4WfRKH2zeJy1fA6NJERDKdgpCIiIjg++1bVPslANuEeG4WrcjBp9/hVL3emG1sjS5NRMQqFIRE\nRESEO44uRBYqkxSAfPsoAIlIrqcgJCIiIhxpP4ZDHcZjttVXAxHJGzRZgoiISB6R78Z5am6cBmZz\ninUJ9k4KQSKSp+gdT0REJJfLd/MCNTdNx+f3BdjdieVaiRqEVOtodFkiIoZSEBIREcmlnMMvUnPT\ndCrt+Ay7O7FEFC7LoY7+hFZua3RpIiKGUxASERHJpcocXke1X2cTUagMhzr6c6LhAMy29kaXJSKS\nLSgIiYiI5FLHG73AHQdnTtXrQ6Kdg9HliIhkK5osQUREJIdzjgjDlBCfYnmivSP/NnxeIUhEJBUK\nQiIiIjmUU8Rl6n8zmj7jy1Jx99dGlyMikqNoaJyIiEgO4xR5hRpbPqTytrnYx93mVsES3HF0Mbos\nEZEcRUFIREQkByl44b90nV4f+9googp4s7fbB/zT5GUS7R2NLk1EJEdREBIREclBbhSrxMUnmhJS\ntSP/NB1Egr2T0SWJiORICkIiIiI5iY0Nm4ZvNLoKEZEcz+qTJcTGxtK2bVvWrl2bbPmuXbvo0aMH\nvXv3Zt68edYuQ0REJMdwjLpO3bX+VPl1ttGliIjkWlbvEZo3bx4FChRIsXzKlCksWrQIT09P+vfv\nT/v27Slfvry1yxEREcm2HKJuUP3nj6j66yc4xERy3asy/235GphMRpcmIpLrWDUInT59muDgYJo3\nb55seUhICAUKFKBo0aIANG/enD179igIiYhInmRKTKD2hnep9ssnOMREcNvNk6BOE/mr+X8UgkRE\nrMSqQ+M++OADxo4dm2L51atX8fDwsFz28PDg8uXL1ixFREQk2zLb2FLs5E4S7B3Z0/1DVk45zdG2\no0hwyGd0aSIiuZbVeoTWrl1LvXr18Pb2BsBsNqfZ9kHr7hcUFPTYtUnOp/0guVu3buFx7hzuTnlv\n9qizZ88aXYJhrkZEEGoOJTIy/e+huVVu2A+Wt5lMlLMH8Q754NJV4KrRJWVITEwEhw9fx9XV1bAa\n9NkgoP1A0s9qQWj79u2EhoayZcsWLl26hKOjI8WKFaNhw4Z4enpy5coVS9uwsDA8PT3Ttd06depY\nq2TJIYKCgrQf3Cc8PBwOHya/s7PRpWSps2fPUrp0aaPLMIzD9euUoAQeHqWMLsVQOWk/sI+OwPPM\nPs5XapPK2tLkz/KKMk90dDg1a5Yif35j7oU+GwS0H0iS9IZhqwWhgIAAy99z5syhRIkSNGzYEIDi\nxYsTFRXFhQsX8PT0ZNu2bcyaNctapYiIiBjKPiaSqr/OptrWWdjFx7Biymmi8xczuiwRkTwtS88j\n9P333+Pm5kabNm2YOHEiI0eOBKBTp0455tc8ERGR9LKPiaTKb3OovnUmTlHXiclXkIMd/bnj6GJ0\naSIieV6WBKFhw4alWFa3bl1WrlyZFTcvIiJiiIar38Dnj0XE5ivA/mcmc6zVcOKd3Y0uS0REyOIe\nIRERkbzkzzajiCxU5v8DUE4+AkhEJPdREBIREXlMpoR4zLb2KZbf9K7MIe/KBlQkIiIPY9XzCImI\niORmtnG3qbZ1Fn3HlSb/peNGlyMiIhmgHiEREZEMso27TeXtgdTYPIN8kZeJc3Kn4IX/El7sSaNL\nExGRdFIQEhERyQCv47/RemEf8kWEEefkxsGO/hxtM4JYFw+jSxMRkQxQEBIREcmAcM+KmMyJHOzw\nNkfbjlQAEhHJoRSEREREMuB2weIsmxZCor2j0aWIiMhj0GQJIiIi97GNj6HKb3MocmZ/qusVgkRE\ncj71CImIiPw/m/hYfP74gpobp+J68zxnajzDliHrjC5LRESsQEFIRETyPJs7cTz5xxfU2jgV1xuh\nxDvk40i70RxpN9ro0kRExEoUhEREJM+zjY/Gd+14bONjOdL2TY60G02Mu6fRZYmIiBUpCImISJ4X\n75yfnwet5nqJ6kS7FzW6HBERyQKaLEFERPIMU0I8rtfOprrufOW2CkEiInmIgpCIiOR6poR4ntz5\nBb0mVKRtYDcwm40uSUREDKahcSIikmuZEuKpuGcJtX56H/erwdyxc+RsjWewjY8hwcHZ6PJERMRA\nCkIiIpJrPf1xO7xPbCPBzoFjLYZx+Kmx3C5Y3OiyREQkG1AQEhGRXOvfBn7c8K7C4afGElWwhNHl\niIhINqIgJCIiudbxxi9yvPGLRpchIiLZkCZLEBGRHMuUmECNY9/T4ZP2mBLijS5HRERyEPUISY7y\n119/sXfvXm7cuGF0KdlKVFQUt48eJZ+Dg9GlZKnLly/jmQX7gtlsJjY++33JjoiK4t98JXHPg1M+\nmxITqHViO+32LqXojRDu2NgR/dtcgotXNbq0PCs2Nopt28DFxcWQ2z9x4oQ+G4QbN25Qp04do8uQ\nHEJBSCQXyJcvH3TubHQZWS7i5Ek8n3jC6rdzOyqK6OhNODtnr6B5Jxw4YHQVWc/nzH66bp9P0Rsh\nJNjY8mv5luxs/hI38mAgFBGRR6cgJDlK5cqViY6O1q89AkBQUFCW7Avh4eHAFfLnz17TLV+8eJ3w\n8KZ4eJQyupQsVTY6nCLhF/in8Usc6vg2x6JsKF26NMWMLiyPi44Op0ULyJ8/vyG3X7BgQX02CEFB\nQUaXIDmIgpCIiOQowTWfZeXkk9wqXCZpQdRZQ+sREZGcSZMliIhI9pOYSNmgb7CPiUy5zsbmfyFI\nRETkESkIiYhI9pGYSNmD39L9/Zq0XdCDytvmGl2RiIjkUhoaJyIixktMpMzhtdT58V0Khf5JosmG\nEw38CK7V3ejKREQkl1IQEhERwxU5u592n3Un0WTDv/X7c7CjP+HFnjS6LBERycUUhERExHBXytZn\nX5cpBNfuRngxH6PLERGRPEBBSEREso7ZjO2dWBLsnVKsOtxxvAEFiYhIXqXJEkRExPrMZkoe/ZGu\n03ypt/Zto6sRERFRj5CIiFiR2UzJYxups2ESnmf2YzaZuOFdBcxmMJmMrk5ERPIwBSEREbEKm/hY\nOn3UkmKndwNwqk4PDj79DjeKVzW4MhEREQUhERGxkkR7R24VKs3pAt4EdZrIjeLVjC5JRETEQkFI\nRESs5rcXlmC21UeNiIhkP5osQUREHp3ZTPG/f6bmxmmpr1YIEhGRbEqfUCIiknFmM97//EqdDZPw\nOrmTRBtbTjQYwO2CxY2uTEREJF0UhEREJEO8Tmyn7roJeJ38HYCz1TtzoPMkhSAREclRFIRERCRD\nygZ9g9fJ3zlbrRNBnSZytUxdo0sSERHJMAUhERHJkEMdx/NvwwFcKVPP6FJEREQemSZLEBGRVBU8\nfzTV5dH5vRSCREQkx1MQEhGRZIqe/IOOAW3o8V51PE/tNrocERERq9DQOBERAaDoqV3UWT+JEn9v\nBSCkcjvuOLoYXJWIiIh1KAiJiAgV9iyh5ZcDAAit1JagzpMIK9/I4KpERESsR0FIREQ4U+MZgmt2\n5c+2owh7oonR5YiIiFidgpCIiBDvnJ+t//ne6DJERESyjCZLEBHJI4qc2U/7OZ0ofeQHo0sREREx\nnMtVzKEAAB0tSURBVFV7hGJiYhg7diz/1969R1tZF3gD/25QEbl61ENoRGQyYuqbA1oNCb4MyGgW\nagkYl4axTM9yTWhWSAZoWYqW04yKkeSYVgcd7y3XyluaK9Pg2EXGV01jSjgpwgkVOuJtv3/sN9ZL\nCuJln4fN8/ms5XI/+3nW3l/0p2d/z+/3/PaaNWvywgsv5OSTT85hhx228fyYMWOy5557plKppFKp\n5IILLkhzc3M9IwGUzu5/aMvwm+dl8IM/TpKsa3pX/vC/PlZwKgAoVl2L0J133pkDDjggJ5xwQtrb\n2zNjxoxNilClUslll12WnXfeuZ4xAEqp57NPZdSVn8ng396cJPnTew/N0o+dlT8NPazYYACwDahr\nETryyCM3Pm5vb8/AgQM3OV+tVlOtVusZAaC0NvTsn92e+HWe3Htkln70rLTvOyapVIqOBQDbhM0W\noU996lM5++yzM3jw4Lf8JpMnT86qVaty6aWXvurc3Llzs2LFiowYMSKnnXbaW34vAGpe2bFHrj/j\nl+nsO0ABAoC/sdnNEo455pjMmDEjF198cV588cW39Catra255JJLcvrpp2/y/Oc+97nMmjUrV111\nVR599NHceuutb+l9AMqoacVvs+f/ueM1z3X2e4cSBACvoVLdwtq05557Lt/+9rdz3333ZdasWZvM\nDg0aNOh1X3zZsmXZbbfdNi6J+8hHPpIrr7wyTU1Nr7r2hz/8YTo6OnLKKads9vXa2tpe9z0B3m7r\n1q1LU9NN6dt327qfcd19y/PCl/+Ugx6/Kx393pkLT/ppXum+Y9GxKKnnn382H/tYR3r37l10FIAM\nHz78da/Z4j1Cffr0yRlnnJE5c+bkc5/7XPr3759qtZpKpZI77njt3z7+/5YuXZr29vbMnj07q1ev\nTmdn58YStG7dupx00klZtGhRevTokaVLl2b8+PFvyx+K7VtbW5txQJKuGwvPPPNMnnvuvvTps20U\noW4P/Sk95v8kO93w6yTJk+/6+9z3T2dk93fsXsrZnz/+8Y9517veVXSM0nv++e55//vflX79+hXy\n/n42kBgH1Gzt5MkWi9DSpUtz9tln58ADD8wdd9yR/v37v6EQxx9/fGbPnp0pU6Zkw4YNmTNnTq6/\n/vr06dMnY8eOzfjx4zNp0qT06tUrw4YN26oiBNDV+vbtm+SkomPUVKvZ5bOj0v3BB/PSQQfl+S99\nKT3Hj8//LmEB+qtf/7oj73+/IlS8Pv/vvxWAxrDZInT66afnkUceybx58950s+7Ro0e++c1vbvb8\ntGnTMm3atDf12gBdpVKpFPZb7tf0b/+W/OUv2eEjH0nvEhegv+rdu/e29e8HgIaw2SI0dOjQnHvu\nudlhh7rusA3A5jz7bPJav2EfM6brswDAdmazu8adeOKJShBAER55JJkyJXnve5Pnnis6DQBslzZb\nhADoYo8+mkybluy3X/LDHyYDByYrVxadCgC2S4oQwLbggguSYcOSq65K3ve+5Nprk1/9Ktl336KT\nAcB2ydo3gG3BBz5QmwmaNy855pikm99TAUA9KUIA24JDD01+8xsFCAC6iJ+4AF1l+fLks59Nnnzy\ntc8rQQDQZfzUBai3//mf5DOfSYYOTRYuTBYtKjoRAJSepXEA9bJyZXLWWcnllycvvVTb+GDOnGTi\nxKKTAUDpKUIA9fLMM8lll9VmgubMSSZNSrp3LzoVABBFCKB+9tsvueuuZORIBQgAtjGKEMBbtWJF\nUq0mgwa9+tyoUV2fBwB4XTZLAHizVq5MTjkl2Xvv5Iwzik4DALwBZoQA3qj29uQb36jtAPfCC8l7\n3pOMG1d0KgDgDVCEAN6I9etr9/4880wyZEhy5pnJtGnJjjsWnQwAeAMUIYA3olev5EtfSvbYI/nU\npxQgAGhQihDA5lSrSaXy6ufdDwQADc9mCQB/66mnks9/Pjn22KKTAAB1YkYI4K9WrUrOPz+5+OKk\ns7O2HfaaNcluuxWdDAB4m5kRAkiSc86pbX5wwQW14nPJJcnvfqcEAcB2yowQQJK88kqy667J/PnJ\npz+d9OhRdCIAoI4UIYCkdk/QF76Q7Lxz0UkAgC5gaRxQHmvWJN/+dm03uL+1yy5KEACUiCIEbP86\nOmpffDpkSDJzZnLzzUUnAgAKZmkcsP3685+Tb32rNgv03HPJgAHJWWcl48YVnQwAKJgiBGy/rr46\n+drXkubmZN685KSTakvgAIDSU4SA7deMGcmLL9b+3qtX0WkAgG2IIgQ0vmeeqc307Ljjps/vtFNy\nyinFZAIAtmk2SwAaVrd165KvfjV597uTK64oOg4A0EDMCAGN59lnk//4jxwwf37t8W67FZ0IAGgw\nihDQWH73u+SDH6xtid2vX/L1r9eWv/XpU3QyAKCBKEJAY9l77+TAA5OxY/Pghz+cg0aPLjoRANCA\nFCGgsXTrltx5Z1Kp5JW2tqLTAAANymYJwLZn/frk/POTSy557fOVStfmAQC2O2aEgG3H+vXJggXJ\n/PnJ008n73lP8tnPJt27F50MANjOmBECivfKK8k3v1krPl/4QrJhQzJnTrJ0qRIEANSFGSGgeN26\nJbfcknR2JmeemZx6atLUVHQqAGA7pggB24aFC5Ndd1WAAIAuYWkc0HWefz65557XPrf33koQANBl\nFCGg/p5/PrnoolrZOfzw5Mkni04EAJScpXFA/WzYkCxalHz968nKlUmvXsnnPpf06FF0MgCg5BQh\noH5OPbW2HfYuu9R2g/vCF5I99ig6FQCAIgTU0Smn1ErQF7+YNDcXnQYAYCNFCHjrXnmltgX239pv\nv+SCC7o+DwDA67BZAvDmvfhi8t3vJvvskzz8cNFpAAC2miIEvHEvvljbBGHo0OTEE2sbISxdWnQq\nAICtZmkc8Mb84hfJlCnJ8uW13d/+9V+TL30p2XPPopMBAGy1uhah559/PrNmzcqaNWvywgsv5OST\nT85hhx228fy9996bCy+8MN27d8+oUaPS0tJSzzjA22Hw4KSjo7YRwqxZyV57FZ0IAOANq2sRuvPO\nO3PAAQfkhBNOSHt7e2bMmLFJETrnnHPyve99L83NzZk6dWrGjx+fvffeu56RgLdqzz2TFSuS3r2L\nTgIA8KbVtQgdeeSRGx+3t7dn4MCBG4+feOKJ9O/fPwMGDEiSjB49Ovfdd58iBNuCl15KfvSjZNiw\nZMSIV59XggCABtcl9whNnjw5q1atyqWXXrrxudWrV6epqWnjcVNTU5544omuiANszssv1wrQV7+a\nPPpocsQRyS23FJ0KAOBt1yVFqLW1NQ8//HBOP/303HTTTa95TbVa3arXamtrezuj0aCMg7fZyy+n\n6dZbM/C7383Of/xjXtlhh6w59tg8OWNGXtjG/1kbCyTGATXGAYlxwNaraxFatmxZdttttwwcODD7\n7rtvXn755XR0dKSpqSnNzc15+umnN1771FNPpXkrvnl++PDh9YxMA2hrazMO3m7PPpv80z8lzz2X\nfOYz6fblL2ePwYOzR9G5NmPNmjVpaWnJsmXLsv/++2fBggWbzDBTLv6fQGIcUGMckGx9Ga5rEVq6\ndGna29sze/bsrF69Op2dnRs/rOy1115Zv3592tvb09zcnLvuuivf/OY36xkH2Jy+fZMrr0z22y8Z\nMqToNK+rpaUlV199dZLkoYceSpIsXry4yEgAQIOpaxE6/vjjM3v27EyZMiUbNmzInDlzcv3116dP\nnz4ZO3Zs5s6dm9NOOy1JctRRR2Xw4MH1jAO88kry5JOv/Z0/H/lI1+d5k5YvX77FYwCA11PXItSj\nR48tzvKMGDEira2t9YwAJLUCdO21yVlnJTvumDzwQFKpFJ3qTRsyZEiWLFmyyTEAwBvRJZslAAV5\n5ZXkuutqBWjZsqRbt2TatGT9+obeAnvBggVJssk9QgAAb4QiBNuzCROSH/+4VoCmT0/OPDPZZ5+i\nU71lTU1NWbx4sZtiAYA3TRGC7dmECUn//slXvpIMHVp0GgCAbYYiBNuzT3+69hcAAJvoVnQA4C2o\nVpObbkqOPjp54YWi0wAANAxFCBpRtZrcfHMyYkRt+dtNNyX33FN0KgCAhqEIQaP52c+SQw5JPvax\n5Fe/SiZOTB58MPnHfyw6GQBAw3CPEDSaNWuSpUuTT3wimTs32X//ohMBADQcRQgazYQJyUMPJcOG\nFZ0EAKBhWRoH26JqNbn11uTZZ199rls3JQgA4C1ShGBbUq0mt92WfPjDyfjxyUUXFZ0IAGC7ZGkc\nbAuq1eSOO5J585Kf/7z23IQJyZFHFhoLAGB7pQjBtuDXv07Gjas9/uhHa4Xo7/++0EgAANszRQi2\nBQcdlHzlK7UtsUeMKDoNAMB2TxGCrvbii8mOO776+bPP7vosAAAlZbME6Cr33FP70tMvfrHoJAAA\npWdGCOrt5z+vffHpHXfUjvv1q22OUKkUmwsAoMQUIaiXl15Kjjoq+clPaseHH17bBOFDHyo0FgAA\nihDUzw47JLvuWtsNbt685B/+oehEAAD8P4oQ1NN//mfSo0fRKQAA+Bs2S6BhrFmzJpMmTcr06dMz\nadKkdHR0FB2p5pe/TL71rdc+pwQBAGyTzAjRMFpaWnL11VcnSR566KEkyeLFi4sLtGRJbcnbLbck\n3bolxx6bvPvdxeUBAGCrmRGiYSxfvnyLx12mrS356EeTQw6plaBRo2o7wilBAAANQxGiYQwZMmSL\nx13miiuSH/84OfTQ5M47k7vuSg47rJgsAAC8KZbG0TAWLFiQJFm2bFn233//jcdd7owzkgkTkjFj\nfBcQAECDUoRoGE1NTVm8eHHa2toyfPjw+r/hY48l733vq58fOLD2FwAADcvSOPhbv/1tbeODffZJ\n7r236DQAANSBGSH4qwcfTM46K7n22trxBz6QdO9ebCYAAOpCEYIk+a//So47rvb4kENqhWj8ePcA\nAQBspxQhSJLDD0/GjUtmzkyOOEIBAgDYzilCkCR9+ya33lp0CgAAuojNEiiPhx9OPvnJ5MYbi04C\nAEDBzAix/XvkkeTss5Mf/SipVmsbIEyYUHQqAAAKZEaI7deaNcm0acl++yU//GFy4IHJ9dcn3/9+\n0ckAACiYGSG2X336JD/7WbL//sm8ebVZoG66PwAAihDbs512qhWhQYMUIAAANuHTIY3v8ceTu+9+\n7XODBytBAAC8ik+INK7f/z75l39J/u7vkk99KnnhhaITAQDQICyNo+HstHJlsmBBcsUVyUsvJcOG\nJXPnJjsYzgAAbB2fHGk47znjjOShh5J9960VoOOOq22JDQAAW0kRouGsPOWUDO3XL5k0SQECAOBN\nUYRoOM8dckgyfHjRMQAAaGA2SwAAAEpHEQIAAEpHEQIAAEpHEQIAAEpHEQIAAEqn7rvGzZ8/Pw88\n8EBefvnlnHjiiRk3btzGc2PGjMmee+6ZSqWSSqWSCy64IM3NzfWOBADbhTVr1qSlpSXLly/PkCFD\nsmDBgjQ1NRUdC6Ah1LUI3X///XnsscfS2tqatWvX5phjjtmkCFUqlVx22WXZeeed6xkDALZLLS0t\nufrqq5MkS5YsSZIsXry4yEgADaOuRejggw/OgQcemCTp27dvOjs7U61WU6lUkiTVajXVarWeEQBg\nu7V8+fItHgOweXW9R6hbt27p2bNnkuSaa67J6NGjN5agv5o7d24++clP5lvf+lY9owDAdmfIkCFb\nPAZg8yrVLpiSuf322/Pd7343ixYtSu/evTc+f+ONN+bQQw9N//7909LSkmOPPTaHH374Zl+nra2t\n3lEBoGE888wzOffcc7Ny5crstddemTVrVvr161d0LIDCDR8+/HWvqftmCffcc08WLlz4qhKUJBMm\nTNj4eNSoUXn00Ue3WISSrftDsX1ra2szDkhiLFBT9nEwZsyYoiNsE8o+DqgxDki2fvKkrkvj1q1b\nl/PPPz+XXnpp+vTp86pzU6dOzYYNG5IkS5cuzT777FPPOAAAAEnqPCN0yy23ZO3atZk5c+bGTRI+\n+MEPZujQoRk7dmzGjx+fSZMmpVevXhk2bFjGjx9fzzgAAABJ6lyEJk6cmIkTJ272/LRp0zJt2rR6\nRgAAAHiVui6NAwAA2BYpQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOko\nQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAA\nQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOko\nQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAA\nQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOkoQgAAQOko\nQgAAQOnsUO83mD9/fh544IG8/PLLOfHEEzNu3LiN5+69995ceOGF6d69e0aNGpWWlpZ6xwEAAKhv\nEbr//vvz2GOPpbW1NWvXrs0xxxyzSRE655xz8r3vfS/Nzc2ZOnVqxo8fn7333ruekQAAAOpbhA4+\n+OAceOCBSZK+ffums7Mz1Wo1lUolTzzxRPr3758BAwYkSUaPHp377rtPEQIAAOqurvcIdevWLT17\n9kySXHPNNRk9enQqlUqSZPXq1Wlqatp4bVNTU1atWlXPOAAAAEm64B6hJLn99ttz3XXXZdGiRZu9\nplqtbtVrtbW1vV2xaGDGAX9lLJAYB9QYByTGAVuv7kXonnvuycKFC7No0aL07t174/PNzc15+umn\nNx4/9dRTaW5uft3XGz58eF1y0jja2tqMA5IYC9QYByTGATXGAcnWl+G6Lo1bt25dzj///Fx66aXp\n06fPJuf22muvrF+/Pu3t7XnppZdy11135cMf/nA94wAAACSp84zQLbfckrVr12bmzJkbN0n44Ac/\nmKFDh2bs2LGZO3duTjvttCTJUUcdlcGDB9czDgAAQJI6F6GJEydm4sSJmz0/YsSItLa21jMCAADA\nq9R1aRwAAMC2SBECAABKRxECAABKRxECAABKRxGCBrNmzZpMmjQphxxySCZNmpSOjo6iIwEANJy6\nf6Eq8PZqaWnJ1VdfnSRZsmRJkmTx4sVFRgIAaDhmhKDBLF++fIvHAAC8PkUIGsyQIUO2eAwAwOuz\nNA4azIIFC5LUZoKGDBmy8RgAgK2nCEGDaWpqck8QAMBbZGkcAABQOooQAABQOooQAABQOooQAABQ\nOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQ\nAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQ\nOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQAABQOooQ\nAABQOooQAABQOooQAABQOooQAABQOooQAABQOnUvQg8//HDGjRuXH/zgB686N2bMmEydOjXTpk3L\n9OnTs2rVqnrHAQAAyA71fPHOzs6cd955GTly5Guer1Qqueyyy7LzzjvXMwYAAMAm6joj1KNHj3zn\nO9/J7rvv/prnq9VqqtVqPSMAAAC8Sl1nhLp165addtppi9fMnTs3K1asyIgRI3LaaafVMw4AAECS\npFLtgimZiy66KLvuumumTJmyyfM33nhjDj300PTv3z8tLS059thjc/jhh2/2ddra2uodFQAAaHDD\nhw9/3WvqOiP0eiZMmLDx8ahRo/Loo49usQhtzR8IAADg9RS2ffa6desyderUbNiwIUmydOnS7LPP\nPkXFAQAASqSuS+N+85vf5Mwzz0xHR0e6d++efv365eMf/3je+c53ZuzYsbnyyitz7bXXplevXhk2\nbFjOPPPMekUBAADYqEvuEQIAANiWFLY0DgAAoCiKEAAAUDqKEAAAUDoNU4S+8Y1vZPLkyTn++OPz\n4IMPFh2Hgjz88MMZN25cfvCDHxQdhQLNnz8/kydPznHHHZfbbrut6DgU4Pnnn8/MmTMzbdq0TJo0\nKXfddVfRkSjQhg0bMm7cuNxwww1FR6Egv/zlL/OhD30o06dPz7Rp0/K1r32t6EgU5KabbsqECRPy\n8Y9/PHffffcWry30e4S21pIlS/KHP/whra2tefzxx/PlL385ra2tRceii3V2dua8887LyJEji45C\nge6///489thjaW1tzdq1a3PMMcdk3LhxRceii91555054IADcsIJJ6S9vT0zZszIYYcdVnQsCnLJ\nJZekf//+RcegYIcccki+/e1vFx2DAq1duzYXX3xxbrjhhqxfvz7//u//ntGjR2/2+oYoQr/4xS8y\nduzYJMnee++dZ599NuvXr0+vXr0KTkZX6tGjR77zne9k4cKFRUehQAcffHAOPPDAJEnfvn3T2dmZ\narWaSqVScDK60pFHHrnxcXt7ewYOHFhgGor0+9//PsuXL9/ihx3KwUbI3HvvvRk5cmR69uyZnj17\n5uyzz97i9Q2xNG716tVpamraeLzrrrtm9erVBSaiCN26dctOO+1UdAwK1q1bt/Ts2TNJcs0112T0\n6NFKUIlNnjw5X/ziFzN79uyio1CQ+fPnZ9asWUXHYBvw+OOPp6WlJVOmTMm9995bdBwKsHLlynR2\ndubkk0/O1KlT84tf/GKL1zfEjNDf0viB22+/Pdddd10WLVpUdBQK1Nramocffjinn356brrppqLj\n0MVuuOGGHHzwwdlzzz2T+HxQZoMHD84pp5ySI444Ik888USmT5+e2267LTvs0JAfdXmTqtVq1q5d\nm0suuSQrVqzI9OnT89Of/nSz1zfE6Ghubt5kBmjVqlXZY489CkwEFOmee+7JwoULs2jRovTu3bvo\nOBRg2bJl2W233TJw4MDsu+++efnll9PR0bHJ6gG2f3fffXdWrFiRW2+9NU8++WR69OiRd7zjHfnQ\nhz5UdDS62IABA3LEEUckSQYNGpTdd989Tz31VPbaa6+Ck9GVdt999xx00EGpVCoZNGhQevXqtcWf\nDQ2xNG7kyJH5yU9+kiT57//+7wwYMCC77LJLwamAIqxbty7nn39+Lr300vTp06foOBRk6dKlufzy\ny5PUlk93dnYqQSV04YUX5pprrsnixYtz3HHHpaWlRQkqqZtvvjkXXXRRkmTNmjXp6OjIgAEDCk5F\nVxs5cmTuv//+VKvV/PnPf85f/vKXLf5saIgZoYMOOijve9/7Mnny5HTv3j1z5swpOhIF+M1vfpMz\nzzwzHR0d6d69e1pbW3PVVVelX79+RUejC91yyy1Zu3ZtZs6cuXGThPnz5+cd73hH0dHoQscff3xm\nz56dKVOmZMOGDZk7d27RkYACjRkzJp///Odz/PHHp1qtZt68eZbFldCAAQMyfvz4TJw4MZVK5XU7\nQ6VqQS0AAFAyDbE0DgAA4O2kCAEAAKWjCAEAAKWjCAEAAKWjCAEAAKWjCAEAAKWjCAHQUJYtW5Zx\n48Zl/fr1G5/76le/mvnz5xeYCoBGowgB0FD233//HH300Tn33HOTJEuXLs2SJUsyc+bMgpMB0EgU\nIQAazkknnZRHH300d9xxR84666ycd9552WmnnYqOBUADqVSr1WrRIQDgjVq+fHmOPvro/PM//3NO\nPfXUouMA0GDMCAHQkB555JEMGjQoDzzwQNFRAGhAihAADefpp5/OhRdemMsvvzzNzc35/ve/X3Qk\nABqMpXEANJzPfvazOfLIIzNhwoR0dHTkE5/4RK644ooMGjSo6GgANAgzQgA0lMWLF6dSqWTChAlJ\nkqamppx66qk544wzCk4GQCMxIwQAAJSOGSEAAKB0FCEAAKB0FCEAAKB0FCEAAKB0FCEAAKB0FCEA\nAKB0FCEAAKB0/i+H6DB5Dyat/AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Change p to choose which point to see sum of squares visualization at\n", + "p = 3\n", + "\n", + "np.random.seed(0)\n", + "X = np.linspace(1,5,9)\n", + "Y = X + np.random.normal(0,1,9)\n", + "\n", + "params = regression.linear_model.OLS(Y, sm.add_constant(X)).fit().params\n", + "model = params[0] + X * params[1]\n", + "\n", + "err = Y-model\n", + "reg = model - np.mean(Y)\n", + "tot = Y-[np.mean(Y)]*9\n", + "\n", + "plt.scatter(X,Y, color = 'black', label = 'data');\n", + "plt.plot(X,[np.mean(Y)]*9, color = 'black', alpha = 0.3, label = 'Y_mean')\n", + "\n", + "x_p= X[p]\n", + "\n", + "plt.fill_between([x_p,x_p+err[p]], model[p], Y[p], \n", + " facecolor='blue', alpha = 0.4, label = 'S_err');\n", + "plt.fill_between([x_p+reg[p],x_p], np.mean(Y), model[p], \n", + " facecolor='yellow', alpha = 0.4, label = 'S_reg');\n", + "plt.fill_between([x_p-tot[p],x_p], np.mean(Y), Y[p], \n", + " facecolor='red', alpha = 0.4, label = 'S_tot');\n", + " \n", + "plt.plot(X,model, linestyle = '--', c = 'r', label = 'model');\n", + "plt.xlabel('X');\n", + "plt.ylabel('Y');\n", + "plt.title('Single point RS, SR, and ST of simple linear regression', \n", + " fontsize = 15);\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$SS_{err}$, $SS_{reg}$, and $SS_{total}$ are the sums of the areas of the above squares for every point in the sample." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Coefficient of Determination ($R^2$)\n", "\n", - "Where $Y_i$ are sample response values, $\\hat{Y_i}$ are the response values predicted by the model and $\\bar{Y}$ is the sample mean response.\n", + "The coefficient of determination, or $R^2$, is a metric that tells us the proportion of in-sample variance 'explained' by a certain model. For example, an $R^2$ of 0.9 tells us that the magnitude of the model residual variance is about 90% of that of the sample data. The formula for $R^2$ is:\n", "\n", + "$$R^2 = \\frac{SS_{reg}}{SS_{tot}} = \\frac{\\sum_{i=1}^{n} (\\hat{Y_i} - \\bar{Y_i})^2}{\\sum_{i=1}^{n} (Y_i - \\bar{Y})^2}$$\n", "\n", "\n", "One major drawback of $R^2$ in model selection is that as the number of explanatory variables increases, $R^2$ will always also increase or stay the same, even if the incremental variables are not adding much predictive insight. To illustrate this, let's find the $R^2$ of five unemployment models, each model having one more predictor than the next. We will do this by defining a function that takes predictor variables $X_1,\\ldots, X_k$ and an independent variable $Y$, runs a regression, and calculates $R^2$ using the `model.rsquared` attribute." @@ -167,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 1055, + "execution_count": 213, "metadata": { "collapsed": false, "scrolled": false @@ -177,7 +256,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " ------ R Squared Values ------\n", + "------ R Squared Values ------\n", "1 predictor: 0.124499233139\n", "2 predictors: 0.459882090695\n", "3 predictors: 0.700574522302\n", @@ -192,7 +271,8 @@ " model = regression.linear_model.OLS(Y, X).fit()\n", " return model.rsquared\n", "\n", - "# Defining variables, making sure to keep data within the sample period [:e]\n", + "# Defining variables, making sure to keep data\n", + "# within the sample period [:e]\n", "Y = unemployment[:e]\n", "X = [qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]]\n", "X_str = ['qqq', 'inflation', 'iwm', 'fx', 'gold']\n", @@ -227,15 +307,15 @@ "\n", "$$ \\bar{R}^2 = 1-(1-R^2)\\frac{n-1}{n-p-1} $$\n", "\n", - "Let's repeat the expirement above, this time using $\\bar{R}^2$, to see if it still inflates as more predictors are added." + "Let's repeat the experiment above, this time using $\\bar{R}^2$, to see if it still inflates as more predictors are added." ] }, { "cell_type": "code", - "execution_count": 1056, + "execution_count": 214, "metadata": { "collapsed": false, - "scrolled": false + "scrolled": true }, "outputs": [ { @@ -290,20 +370,21 @@ "\n", "AIC is calculated along the following formula: \n", "\n", - "$$ AIC = 2p + nLog(SS_{resid}/n) $$\n", + "$$ AIC = 2p + 2Log(\\hat{L}) $$\n", "\n", "BIC is calculated similarly:\n", "\n", - "$$ AIC = ln(n) \\cdot p + nLog(SS_{resid}/n) $$\n", + "$$ BIC = p \\cdot ln(n) -2Log(\\hat{L}) $$\n", + "\n", + "Where $\\hat{L}$ is defined as the maximumized value of the likelihood function. The likelihood function is the probability our model in question is in fact correct given the data we observed. For more information on likelihood functions refer to the [Wikipedia](https://en.wikipedia.org/wiki/Likelihood_function) page on the subject.\n", "\n", - "Where $SS_{resid}$ is the sum of squared residuals $\\sum_{i=1}^{n}(Y_i - \\hat{Y_i})^2$\n", "\n", "Let's use AIC and BIC to compare 5 simple linear regression models for unemployment. We will compute them using the `model.aic` and `model.bic` attributes." ] }, { "cell_type": "code", - "execution_count": 1057, + "execution_count": 215, "metadata": { "collapsed": false, "scrolled": false @@ -323,18 +404,18 @@ } ], "source": [ - "def AIC(X,Y):\n", + "def aic(X,Y):\n", " X = sm.add_constant(X)\n", " model = regression.linear_model.OLS(Y, X).fit()\n", " return model.aic\n", "\n", - "def BIC(X,Y):\n", + "def bic(X,Y):\n", " X = sm.add_constant(X)\n", " model = regression.linear_model.OLS(Y, X).fit()\n", " return model.bic\n", "\n", - "AICs = pd.Series([AIC(X[_],Y) for _ in range(5)])\n", - "BICs = pd.Series([BIC(X[_],Y) for _ in range(5)])\n", + "AICs = pd.Series([aic(X[_],Y) for _ in range(5)])\n", + "BICs = pd.Series([bic(X[_],Y) for _ in range(5)])\n", "\n", "print \"%-24s %-15s %-13s\" % ('', 'AIC values:', 'BIC values:')\n", "print \"%-24s %-15s %-13s\" % ('Y = b0 + b1*qqq', AICs[0], BICs[0])\n", @@ -353,7 +434,7 @@ }, { "cell_type": "code", - "execution_count": 926, + "execution_count": 216, "metadata": { "collapsed": false, "scrolled": false @@ -363,7 +444,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAH6CAYAAADC2EluAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYlFfePvB7GgwwDDDA0FUUBAFplqiJsRcssaGJNTHJ\nbnaTuG5ek9f4JjG/bPLm3SSbtuuaZEuKUdcYWxTsLdGYBKUXKQIWepPeZ+b3x8DIgIJReIDh/lyX\nV3SeMzNn3H2EL99z7iPS6XQ6EBERERERmSBxb0+AiIiIiIiop7DgISIiIiIik8WCh4iIiIiITBYL\nHiIiIiIiMlkseIiIiIiIyGSx4CEiIiIiIpPFgoeIqB/x9fXF+vXrOzz+yiuvwNfX91e/3quvvoot\nW7Z0Omb//v1Yu3btHa9rNBo89NBDeOqpp24738LCQsOfv//+ezz22GMICwvDjBkz8NxzzyEzM/NX\nz/t+ffLJJ9i0aVOHx6OiohAQEIA5c+YgLCwMs2bNwubNm9HU1AQAyM3Nhb+/v9FzDhw4gEWLFmHO\nnDmYMWMGXnrpJRQVFQnyOYiIqGsseIiI+pn09HTU1tYa/tzc3IykpCSIRKIee8/OXvvcuXMICQlB\nZmZmh2/02z7v7NmzeOWVV/Dyyy/jyJEjOHHiBCZNmoRVq1ahrKysx+b+a7m5ueHw4cM4cuQIDh06\nhKtXr2LHjh2G620/086dO/HJJ5/ggw8+wOHDh3H06FEMGjQIq1evRmNjY29Mn4iI2pH29gSIiOjX\nGTt2LI4fP46FCxcCAM6fP4+RI0ciPT3dMObIkSPYunUrNBoN1Go13nzzTXh4eKC8vBwbNmzAtWvX\n4O3tDXNzc8Nzrly5gjfeeANFRUUwNzfH22+/jYCAgC7ns3//fixYsACDBw/Gd999h9/85jeGa23P\ntt6yZQvWr1+P4OBgw2PLli2Dk5MT5HI5amtr8d///d/IyspCc3Mzxo0bh9dffx0SicTo/WJjY/Hm\nm2+irq4OEokEr7zyCsaPH4/c3Fw8+uijeOaZZ7B7925UVlbi5ZdfRlhYGBoaGrBx40YkJCTA3d0d\nnp6ed/V3bWZmhpCQENy4caPDNZ1Oh61bt+K9994zvJ5EIsG6devg5+cHkUiEwsJCbNy4ESUlJWhq\nakJYWBj++Mc/3tV7ExFR92CHh4ionwkLC0NkZKThz5GRkQgLCzP8OS8vD5s3b8bWrVtx+PBhTJo0\nCZs3bwYA/OMf/4BKpcLJkyfx6quv4ty5cwD037w/99xzWLRoEY4dO4Y33ngDzz77LLRabadzqaio\nQGJiIqZOnYrFixfj4MGDtx1XV1eH5ORkTJo0qcO1SZMmwdLSEvv374dSqcThw4dx7NgxmJubIyMj\no8P4zZs348knn8SRI0fw9NNP4/XXXzdcKy8vh0QiwaFDh7Bp0yZ89NFHAIA9e/agtLQUp06dwl//\n+lecP3++08/VqrS0FGfPnsXUqVM7XMvMzERlZSXGjx/f4dq0adMgk8nw1VdfYcyYMYiIiMChQ4eQ\nn5+PkpKSu3pvIiLqHix4iIj6EZFIhAceeAAZGRkoLy9HQ0MD4uLiMG7cOEM35cKFCxg3bhw8PDwA\nAEuXLkVUVBS0Wi2io6MNxZGbmxvGjBkDAMjKysLNmzexePFiAEBISAhUKhViYmI6nU9kZCRmz54N\nsViMoUOHQqFQICUlpcO4yspKAICDg8MdX8ve3h5xcXH48ccf0dTUdMd9Sfv378ecOXMAAKNGjUJO\nTo7hmkajMXwGf39/5OfnAwCio6Mxc+ZMiEQi2NraYsqUKXecR25uLubMmYPZs2dj6tSpGDRokFFX\nqlVFRQVUKtUdX6f1M50/fx7R0dGQSqV45513Ov07ICKi7sclbURE/YxIJMKMGTNw+PBh2NvbY8KE\nCZBIJIa9JWVlZVAqlYbxCoUCOp0ON2/eRHl5OaytrQ3XbGxsAOgLktraWkMhodPpUFNTg/Ly8k7n\nsn//fmRnZ2PPnj3Q6XRobm7G/v374efnZzTOxsYGYrEYhYWFcHFxue1rzZ49G5WVlfj444+RnZ2N\nRx55BC+//DJkMpnRuIiICHz99deora2FRqMxWjYnkUggl8sBAGKx2NChqqioMPrcSqUSNTU1t51H\n6x6e1r+Hbdu24fHHH8eePXuMxtnZ2aGkpARarRZi8e1/frh27VpotVq88cYbKC4uxooVK7Bu3brb\njiUiop7BDg8RUT80Z84cHD9+HMeOHcPcuXONrjk4OODmzZuGP1dUVEAsFsPOzg42NjaoqqoyXGsN\nC1Cr1bC2tsbhw4cNG/Z/+OEHTJ8+/Y5zyMzMRE1NDS5duoSoqChcvHgRp0+fxpEjR6DRaIzGyuVy\njBw5EseOHevwOl9++aVhj8yyZcuwe/duREZGIikpCQcOHDAaW1hYiNdeew1vv/02jhw5gn/+8593\n9felVCpv+7m7IhKJ8NhjjyEpKcno7xQAPD09YW9vj9OnT3d43t///nfcvHkTYrEYv/nNb3Dw4EHs\n2rULBw8exE8//XRX701ERN2DBQ8RUT/S2s0ICQlBYWEhMjIyMHbsWKNrDz74IKKjow1LvXbt2oUH\nH3wQYrEYwcHBOHHiBADg+vXrhiVrbm5ucHZ2NhQkZWVl2LBhA+rr6+84l3379nUoiOzs7ODp6Ykf\nfvihw/j169fj008/Ndo/s3PnTmzbtg1KpRJbt27F3r17AegLMHd39w7pcDdv3oSlpSU8PT3R3NyM\nb775BoB+j1Dbv4P2goODcfr0aWi1WpSVld12fq3av8aJEyfg5ORk6Ia1XheJRFi/fj3eeustJCYm\nAtAn5n344Yc4deoUFAoFNm/ejAsXLgAA3N3duZyNiKgXcEkbEVE/0rYAmDFjhlE8des1JycnvPXW\nW/j9738PjUYDd3d3vPnmmwCAZ555Bi+88AKmT5+OYcOGYebMmYbnv//++3j99dfx0UcfQSKRYO3a\ntYblYe1ptVpERETgb3/7W4dr06dPx4EDBzBlyhSj+Y4fPx4ffvghPv74Y7z55puQSCTw8/PDzp07\nYWNjgwULFmDTpk3417/+BZFIhKCgICxYsMDotX19fTFp0iTMmjULDg4O2LhxI2JiYrB69Wp8/PHH\nd4zPXrZsGS5duoTp06fDzc0NM2fOREVFxW3H5ufnG5b2abVaqNVqfPbZZ4Zla23fY/HixZDL5Xjt\ntddQX18PsViMsWPH4quvvoJMJsPy5cuxefNmvPXWW9DpdJg6deptQw6IiKjniHR3+nFYi6ioKKxf\nvx7e3t7Q6XTw8fHB008/jU2bNqG5uRkymQzvvfce7O3tcfDgQWzbtg0SiQRLly5FeHi4UJ+DiIiI\niIiog7sqeHbs2IGPP/7Y8NjLL7+MSZMmISwsDDt27EB+fr4hznTv3r2QSqUIDw/Hjh07jDbOEhER\nERERCemu9vC0r4lef/11zJo1CwCgUqlQXl6O+Ph4BAYGwsrKCubm5ggNDe0yzpSIiIiIiKgn3VXB\nk5mZiWeffRYrV67EhQsXYGFhYYj73LlzJ+bNm4eSkhKj8whUKhWKi4t7bOJERERERERd6TK0YPDg\nwXj++ecRFhaGGzduYM2aNThx4gTEYjFeeukljB8/HuPGjUNERITR87pYKQdAfxAcERERERFRZ0aN\nGnXPz+2y4HFycjKcyu3h4QFHR0cUFhbir3/9Kzw9PfHss88C0EeItu3oFBYWIiQkpMsJ3M/kiUxF\ndHQ07wWiFrwfiPR4LxDp3W+TpMslbYcOHcKWLVsAAKWlpSgtLcXFixdhZmaG559/3jAuKCgISUlJ\nqK6uRk1NDWJjY3mTEhERERFRr+qywzN16lRs2LABy5cvh06nw+uvv46tW7eisbERq1evhkgkgpeX\nFzZv3owNGzbgySefhFgsxrp166BQKIT4DERERERERLfVZcFjZWWFTz/91Oixhx9++LZjZ86caXSI\nHRERERER9QydToeGhobenka3Mjc3v+Mh0vfqrlLaiIiIiIiob2loaDCpgqenPk+XHR4iIiIiIuqb\nzM3NIZfLe3safRo7PEREREREZLJY8BARERERkcliwUNERERERCaLBQ8REREREd2XiIgIBAQEoLy8\nHACwZcsW7NixAwCg0Wjw/vvvY9GiRVi5ciWeeOIJpKenCzY3FjxERERERHRfIiIiMGvWLBw7dqzD\ntX/+85+oqqrC/v37sWPHDqxfvx7r1q2DVqsVZG4seIiIiIiI6J5VVFTg6tWr+O1vf4uIiIgO17/5\n5hu8+OKLhj+HhIRg7969EIuFKUUYS01EREREZAI+P5SMH+Nzu/U1Hwxyw5Pz/Tsdc/ToUUyePBk+\nPj4oKipCUVGR4Vp1dTXMzc2hUCiMntP+zz2JHR4iIiIiIrpnERERmD59OgBg6tSpOHz4sNF1jUbT\nG9MyYIeHiIiIiMgEPDnfv8tuTHcrLCxEfHw83nrrLQBAfX09rK2tMWnSJAD6To5Go0FZWRlUKpXh\neSkpKfDz8xNkjuzwEBERERHRPYmIiMDKlStx4MABHDhwAEePHkVFRQWuX79uGLNixQq8/fbbhk5P\ndHQ0Nm3ahMbGRkHmyIKHiIiIiIjuSWRkJJYsWWL02MKFC42WtT399NPw8vLCwoULsXr1anz++ef4\n5JNPYGZmJsgcuaSNiIiIiIjuyb59+zo89uyzz+LZZ581eux3v/sdfve73wk1LSPs8BARERERkcli\nwUNERERERCaLBQ8REREREZksFjxERERERGSyWPAQEREREZHJYsFDREREREQmi7HURERERER0T3Jz\nczF//nwEBAQAABobG/HSSy/h+vXrSE9Px8aNGwEA//73vxEZGQkLCwvodDr88Y9/xNixYwWZIwse\nIiIiIiK6Z0OHDsW2bdsAAJcuXcLWrVsxf/58iEQiAMChQ4cQHR2N3bt3QyqV4urVq1i7di0OHjwI\na2vrHp8fl7QREREREdE90+l0ht8XFxfD2dnZ6LHt27fjxRdfhFSq77UMGTIEhw4dEqTYAdjhISIi\nIiIyCV/H7cXPN2K69TXHeYRidfCSTsdkZ2djzZo1aGhoQFFREf71r38hISHBcD03NxdDhw41eo5C\noejWeXaGBQ8REREREd2ztkvasrOz8Yc//AGPP/644Xrbbk9vYMFDRERERGQCVgcv6bIb09M8PT0h\nl8shkUgMj3l4eCAlJQV+fn6Gx9LS0uDl5WU0rqdwDw8REREREd2zth2c8vJylJSUoLm52fDY448/\njnfeeQd1dXUAgKysLLzwwguoqKgQZH7s8BARERER0T27evUq1qxZA51Oh6amJrz22mtGxUxYWBhq\namrw6KOPwsbGBmZmZvjoo4+gUqkEmR8LHiIiIiIiuidubm6Ijo7uclx4eDjCw8MFmFFHXNJGRERE\nREQmiwUPERERERGZLBY8RERERERksriHh4iIiIion2poaOjtKXSbhoYGmJubd/vrsuAhIiIiIuqH\neqI46E3m5uYseIiIiIiISE8kEkEul/f2NPo87uEhIiIiIiKTxYKHiIiIiIhMFgseIiIiIiIyWSx4\niIiIiIjIZLHgISIiIiIik8WCh4iIiIiITBYLHiIiIiIiMlkseIiIiIiIyGSx4CEiIiIiIpPFgoeI\niIiIiEwWCx4iIiIiIjJZLHiIiIiIiMhkSXt7AkRERABQVluOk1nnUXyzCJocCVys1XBWOEImkfX2\n1IiIqB9jwUNERL2qtrEO36UeR2T6KTRqmgAA3/94EQAgEongaKmCq7UTXK2d4GLtBFel/vcqC1uI\nRKLenDoREfUDLHiIiKhXNGuacSLzHPakHEZVQzXsLGzwhP88lOYWwUJtjbyqQuRXFSGvqhBxBSmI\nK0gxer65xAwu1mp9EWQoiNRwVTrBUmbRS5+KiIj6GhY8REQkKJ1Oh59uxOA/id+hsLoYFlI5Hhv5\nCOYOnwZzqRmiy6MxyneU0XNqGmsNxU/rf1t/XS3P6fAeNnKlcRFk7QRXazXUCkdIxRKhPioREfUB\nLHiIiEgwKUXp2B6/H1fKrkIiEiPMewqW+IVBKbfu9HlWZpbwsh8CL/shRo9rdVqU1ZXri6DKwpaC\nSP/f1OIruFycYTReIhJDrXBo0xVSGwojG7mSS+SIiEwQCx4iIupxNyrysCPhAGLyEgEA4z1GYfnI\nR+Bsrb6v1xWLxHCwVMHBUoWRTr5G1xo1TSisLr7VFaq8VQzFVCUiBolG4y1kcrgqnOCivFUIubR0\niORS8/uaJxER9R4WPERE1GPKasuxO+kQzlz9CTqdDn6O3lgVtLhDp6YnmElk8LBxhYeNa4drVQ3V\nHZbG5VcW4npFLjJvXusw3t7CzrA0rnWfkKu1Exwt7SEW84QHIqK+jAUPERF1u9qmOhxMPY6INH3y\nmrvSBSuDFiHUJaBPLBuzNlfA2lyB4Q5DjR7XarUoqS0zLoRaCqOkojQkFaUZjZeKpXBWOLbZJ3Qr\nSU5prhDyIxER0R10WfBERUVh/fr18Pb2hk6ng4+PD55++mm89NJL0Ol0cHR0xLvvvguZTIaDBw9i\n27ZtkEgkWLp0KcLDw4X4DERE1EfcLnntyYD5mDRkHCT9ICxALNbv8VErHBDs4m90rb65AQVVxUb7\nhFp/5VTmd3gthZmVcVeopSBytlbDjGcLEREJ5q46PGPHjsXHH39s+POmTZuwevVqzJw5Ex9++CH2\n7t2LBQsWYOvWrdi7dy+kUinCw8Mxc+ZMKJXKHps8ERH1DTqdDj/nxGBnwu2T10yBXGqOIXbuGGLn\nbvS4TqdDRUOVvgiqNO4KZZVdQ0ZpttF4EURwsFLBtV2ktqu1E1SWthCLuESOiKg73VXBo9PpjP4c\nFRWFP/3pTwCAKVOm4PPPP8eQIUMQGBgIKysrAEBoaChiYmIwefLk7p0xERH1KSlFGdgev8+QvDbb\nezLC/eZ0mbxmKkQiEWzlStjKlRjh6G10TaPVoKim9FZXqE1BFF9wGfEFl43Gm0lkcFGo2wQnOBu6\nQ1ZmlkJ+LCIik3FXBU9mZiaeffZZVFRU4LnnnkN9fT1kMn073t7eHkVFRSgtLYVKpTI8R6VSobi4\nuGdmTUREvS6nIh87EvYjupuT10yJRCxpORxVDWCk0bXapjoUGAUnFCG/shB51UW4VpHb4bVszK3b\nLJFzMgQnOFk5QCrhllwiojvp8l/IwYMH4/nnn0dYWBhu3LiBNWvWoLm52XC9ffenq8fbi46Ovsup\nEpk23gvUX1Q11+B8WQwSK9Ohgw4ecmdMdhgLV3M1ctNvIBc37vs9BtL9YAEJhsEVw8xcAQdAZ69D\ntaYWZY0VKGuquPXfpgqklWQhtSTT6PkiiGArs4adzAYqmQ3szWz0vzezgUJi2SdCIujeDaR7gain\ndFnwODk5ISwsDADg4eEBBwcHJCUlobGxEWZmZigsLISTkxPUarVRR6ewsBAhISFdTmDUqFFdjiEy\nddHR0bwXqM/TJ6+dQET2STRqmuCmdMbKwEUY5TqyW7+p5v1wZ02aJhTWlLScKVTUJkmuEFm1N5DV\nrtiUS82Nu0KGJDk1LGTyXvoUdLd4LxDp3W/h32XBc+jQIVy7dg3PP/88SktLUVpaisWLF+Po0aN4\n5JFHcOzYMUycOBGBgYF49dVXUV1dDZFIhNjYWLzyyiv3NTkiIup9zZpmnMw6jz3JkahsqIad3AZr\nQ+Zhsuf4fpG8ZkpkEhnclS5wV7p0uFbdWGM4YLVtcEJOZQGyb3bsutlZ2LQrhPSFkaOVPf93JSKT\n0mXBM3XqVGzYsAHLly+HTqfDG2+8AV9fX2zcuBG7d++Gq6srFi1aBIlEgg0bNuDJJ5+EWCzGunXr\noFDwDAIiov5Kp9Phl5xY7Ew4gIKW5LVHA+Zjrs80yKXmvT09akdhZgVve09423saPa7VaVFae/NW\nEVR5qyuUUpSB5KJ0o/ESsQTOVo5tghNuxWorza25RI6I+p0uCx4rKyt8+umnHR7//PPPOzw2c+ZM\nzJw5s3tmRkREveZycQa2x+1DRmvymtdkLPEPg42cRw30N2KRGI5W9nC0skeQs5/RtcbmRhRUFxsf\ntNpSEOVWFXR4LSuZhaEj5GKtNgQnOCvUJhM/TkSmh7EuRERkkFOZj53xB3ApLwEAMM4jFMtHLmhJ\nGSNTYyY1wyBbNwyydTN6XKfToaqh2pAe1/aw1ezyG7hSdrXDazlYqowOWG1NknOwtOPZQkTUq1jw\nEBERyurK8W1SJE5n/widTocRjl5YGbgIwx2GCvL+Op0O0alFOPhDJmprqpCQlwxXRwXc1Qq4OlrB\nVmHOpVQCEolEUMqtoZRbw9fRy+iaRqtBcW1ZS3BCm85QVRESC1ORWJhqNF4mlsK53dK41l8Kcysh\nPxYRDVAseIiIBrDW5LXItFNo0DT2WPJaZzJu3MSXESlIuFJieCwt94rRGCu5FG5qhb4IclTATa2A\nm6MCLg5WkJvxS5mQJGIJnBWOcFY4AggwulbfVI/86mLkVRV0SJK7UZHX4bWszRVwNRy0euuXk8IB\nMolMoE9ERKaOXyWIiAagZq0GJzPPGSWvPR6yFFMETF4rKK3B14cv44c4/SGbo0c44fG5frielQoH\n12HILapGbvGtX1m5FUi/Xt7hdRxsLQxFkKujFdwdreHqaAVHO0tIxOwKCUkuk8PTzgOedh5Gj+t0\nOpTXV95aGtcmSS6j7CrSSrOMxotEIqgt7eGqdIKLQr9XqHXvkMrClt0+IvpVWPAQEQ0grclr/0n4\nDvnVRZBLzQVPXqusacQ3J9Nw+MdsNGt08HK3wdr5/gj0cgQAlOZJ4OdpDz9Pe6PnaTRaFN2su1UE\ntSmI4jKKEZdRbDReJhXD1cHq1tI4B/1/3dQKWFtyg72QRCIR7CxsYGdhA3/1cKNrzZpmFNWUtAlO\nKGpZKleE2PxkxCLZaLy5xOzW0jilE1wULf+1VsNSZiHkxyKifoIFDxHRAHG5OAPb4/cjozQbEpEY\ns7wmIdx/jmDJaw1NGhz8IRN7T2egpr4ZTipLrJkzAg8FuUF8F50YiUQMFwcruDhYYfQIJ6NrdQ3N\nyDN0g2r0xVCJvii6VlDV4bWsLc0M+4PcDHuFFHB1sIJMyjNohCSVSOGqdIar0rnDtZrG2nYHrN76\n/dXynA7jbeVKo7OFWpPk1FYOkPJsIaIBiwUPEZGJy6nMx86E73ApNx4AMM49FMsDhUte02h1OHPp\nBnYcvYySinpYW8rw9IIAzJkwpNuKCwtzKYa522KYu63R4zqdDjerGjp0hHKLqpF2/SYuXy0zGi8W\nAY52lnBT6/cKte4ZcnVUwMFWzqVUArMys4SX/RB42Q8xelyr06KsrrzDPqH8qkJcLr6ClOIMo/ES\nkRhqhUO7g1b15wzZyJX835XIxLHgISIyUTfrKvBtUgROtSSv+ToMw6qgxYInr30VmYKr+ZUwk4oR\nPtUbS6Z6Q2EhzIZ0kUgElVIOlVKOkcMcjK41a7QoKK1BXnENctrtF4pJLUJMapHReHMzCdwcWrpC\nLaEJrb+sBPo8pCcWieFgqYKDpQqBziOMrjVqmlBQVYT86qIOBVF0VSKARKPxFjI5XBVObYIT9Mvl\nnK3VPGCXyESw4CEiMjF1TfU4lHYCh1JP6pPXrJ2xMmghRrkGCvaT7Cs3yvFFRDISrpRAJAKmjxmE\nFbN84WjXd/ZYSCViuKut4a62xlh/42vVdU1tlsjd6g7lFFcjK6+iw2vZWpsbFUCty+Wc7a0glfAM\nGiGZSWS3PVsIgOFsIUMR1BKtfa0iF5k3r3UYb29hB1el2rBPqHWZnKOlPcRi/u9K1F+w4CEiMhHN\nWg1OZZ7HnuRIVDRUwVauxOMh4ZjiOUHQ5LXtR1Lxfax+f8UoXzUen+sHT1cbQd6/uygsZBg+yA7D\nB9kZPa7V6lBaUY+8luKnbUGUkl2K5KxSo/FisQjOKkvjjlDL7+2sebaQ0KzNFfAxV8DHYZjR41qt\nFiW1ZW2CEwoNwQmJhWlILEwzGi8VS+GscGwTnHArSU5prhDyIxHRXWDBQ0TUz90ueW1ZwHzMEzh5\nbffJdET+mI1mjRbD3G2wdp4/grwdBXl/oYjFIjjaWcDRzgJBw40/W2OTBvmlNUZ7hVqXy11MKcRF\nFBqNt5RL4eqogJtDaxFkZSiK5Ob88iwksVi/x0etcECwi3G7r765AQVVRchr6Qq1PWw1pzIfyDV+\nLYWZldEhqy5tlsiZ8Wwhol7Bf1GJiPqx1OIr2B6/H+mlWZCIxJjp9TDC/efCVsDktUPnsrDnVDpq\n6puhVlliTdgITAy+u+Q1U2Imk2CwsxKDnTv+3VfWNOq7Qu32Cl3Lr8SVGx3PFrK3kXfoCLk5KqBW\n8Wwhocml5hhi54EhtzlbqKKhqs2ZQreS5DLLriK9/dlCEMHBSmVUBLX+UlnaQiziEjminsKCh4io\nH8qtLMDOhAO42JK89oB7CJYHLoCrtVMXz+weGq0OZ6NvYPuRW8lrTz0SgLkPdl/ymilRWplBaaWC\n7xCV0eMarQ7FN2uNlsblFdcgp7gaCVdKkHClxGi8VCKGi4Ol0X6h1oJIaWXGJXICEolEsJUrYStX\nwk/tbXStWatBUU2Jfq9QpXFXKL4gBfEFKUbjzSQyuCjUbYIT9L+adRohPxKRyWLBQ0TUj5TXVWB3\nciROZ/0IrU4LH4dhWC1w8lpMWhG+jLiVvLZkihfCpw0XLHnNlEjEIjjb68MNRvkaF6v1Dc3IL9Uv\niTPsGWrpEN0orO7wWgoLWYf0ODe1Ai4OVjCXsQgVklQsMRQto1xHGl2rbapDvuFw1cJbSXLVRbhW\nYbw+Tm1mj5DgYJhJeVAu0f1gwUNE1A/ok9dO4lDaSTQ0N8DV2gkrgxZhtJDJaznl+DIiGfEZ+uS1\naWM8sHLWiD6VvGZK5OZSeLradAh80Ol0KK9uMIrTbl0ud+VGOdKu3TQaLxIBjrYWt10i52BrMeCW\nHvY2S5kFhqkGY5hqsNHjOp0ON+sqkFdVoI/QzktEbH4ydiUdwprgJb00WyLTwIKHiKgPa9ZqcDrr\nPL5NapOIFwmsAAAgAElEQVS8FryEyWsDmEgkgp21HHbWcvgPtTe6ptFoUVhWi5w2RVBrQRSbXozY\n9GKj8WYyCVwdrNoUQq2/t2bHTmAikQgqS1uoLG0R4OSLh4eMw/qDmxGZdgpj3AIxwtG76xchotti\nwUNE1AfpdDpE5cZhZ8IB5Fe1Jq/Nw7zh0yCXyQWZQ2VNI749lY6I822S1+b6d0gno75DIhHD1VEB\nV8eO0ci19U2G/UG5bZbJ5RVX42p+ZYfxNgqz2+4Vcra3gkzKDfY9TS41xxz1JOzMi8DWX7bhvVmv\nCHbvE5kaFjxERH1ManEmtsfvQ3ppFsS9lLwWcS4L37ZJXlsdNgIPD8DkNVNiKZfBy8MWXh62Ro/r\ndDqUVdYb7RXKK9bHa6deLUNKdpnReLEIcFJZwa3lcFX3NsWQSilncEI3crdwwiM+M/Bd6nF8Hb8P\nvxm9orenRNQvseAhIuoj2ievjXUPxoqRC+CqdBbk/Q3Ja0dTUVJeB4UFk9cGApFIBHsbC9jbWHQ4\nN6mpWYOC0lpDMZTbskwur6Qaly4XApeNX0tuJoGro8JQBLX+3tXRCpZyLpG7F8sC5iEmLxEnMs9h\njFswgl38entKRP0OCx4iol5WXleBb5MjcapN8tqqoEUdToPvKTqdDrFpxfgiIhlX8ysha01em+oN\nhSXToQYymVQCDydreDhZd7hWXdtoiNPOaYnTzi2uRk5hFbJyKzqMVynN4eZore8KtQlOcFJZQiLh\nErk7kUlkeH7cWvzPiT/j04tf4y+zX4XCzKq3p0XUr7DgISLqJfVN9TjYLnltReBCjHELEmxZUGZO\nOb6MSEFcRjFEImDqaA+snO0LtZ2lIO9P/ZfC0gw+g1XwGWx8tpBWq0NJeZ1hf1Bu0a29QklZJUjM\nND5bqDWau7UIcnVUwL1luZytwpxL5AB42nlgif9c7E46hC9jvsXz457o7SkR9SsseIiIBKZPXvsR\n3yZHoqK+EjZyJdYELcHUocIlrxWW1WL7kcs4G6NPXgv1UeOJeUxeo/snFougVllCrbJEqI/a6FpD\nkwb5JTUtRVCVYa9QTkunqD0rubTd0jh9MeTiYAW52cD6FmbhiFmIzk3AD9d+wVj3YIx1D+7tKRH1\nGwPrXwsiol6k0+lwMTceOxL2I7+qCOZScyz1n4v5PtMFS1+qqm3E7pO3kteGutlg7Tw/BA9Xd/1k\novtkLpNgiIsSQ1yMAzh0Oh0qaxqN9gq1/srKrUD69fIOr+Vga2HYH+SmVsC9Zbmco50lJCYYriEV\nS/DcA49j4/G38Y9LO+DrMAxKecelhkTUEQseIiIBpJVkYnvcPqS1Jq8Nexjh/nNgayFMR6WxSYOI\n81nYfSoDNXVNUNtZ6JPXQtyZvEa9TiQSwUZhDhuF+W3PFiq6WXerCCq6VQzFZRQjLsP4bCGZVAyX\nlrOF3NUKuDq0LpFTQGnVv/ekudu4YHngAmyL24t/RO/Ehgm/5ZI/orvAgoeIqAflVRZgZ8J3iMqN\nAwCMdQvGikDhkte0Wh3OxuRg+9HLKL7ZmrzmjzkTPGEmY/Ia9X0Sib6AcXGwwugRTkbX6hqab3WE\niqqRW1yD3OIq5BZX43pBVYfXsrY0M+wPanu+kKuDVb9JIpzjPRUXc+MRlROH89cuYuKQsb09JaI+\njwUPEVEPKK+vxJ6kSJzMOq9PXrMfipVBi+HrKEzyGgDEpBXhy4hkZOfpk9cWT/bC0mlMXiPTYWEu\nxTB3Wwxz73i20M2qBqNuUOtyubTrN3H5asezhRztLA3nCbm12TNkbyPvU11QsViMZ8euwYvH/hef\nx+yCv3o4VJa2XT+RaABjwUNE1I3qm+pxKO0kDrYkr7lYq7EycJHwyWuRKYhLZ/IaDUwikQgqpRwq\npRwjvRyMrjU1a1FYVtOmGKoxFEUxqUWISS0yGm9uJoGbw629QobOkKMCVha9c7aQk8IRa4KW4J/R\nO/Hpxa+x6eHnubSNqBMseIiIuoFGq8HprAvYnRxhSF5bHbQYU4c+CKlAyWtFZbX4+uhlnI1m8hrR\nncikYrirreGuvs3ZQnVN7ZbItXSHiquRldfxbCFba3OjAsitpShytreCtIfPFpo+7CFE5cYiriAF\np7LOY/qwiT36fkT9GQseIqL70Jq8tjPhAPKqCvtG8pqrDZ6Y54cQHyavEf0aCgsZhg+yw/BBdkaP\na7U6lFbUt+wPqjEqiFKyS5GcVWo0XiwWwVllvESu9fd21t1ztpBIJMLvxqzGhqNv4qu4vRjp5Asn\nheN9vy6RKWLBQ0R0j9onr80YNhFL/ecKnLyWjd2n0pm8RtSDxGIRHO0s4GhngeDhxtcaW88Wahun\n3VIMXUwpxEUUGo23MJfqO0GO1i1F0K0ABbn5r/u2zN7SDk+GPootv3yJrVFf4/Upf4RY1LOdJaL+\niAUPEdGvlFdViJ0JBxCV03eS156c74+5DzJ5jUhoZjIJBrsoMbjd2UIAUFnTaLQ0rvXX1fwqXMnp\nuETO3kZu1BGy1DV3+f4TB49FVE4conLjcDj9DOb5TOuWz0VkSljwEBHdpfbJa8Pth2KVwMlrsWlF\n+DIiBVl5FUxeI+rjlFZmUHqqMMJTZfS4RqtD8c3aDnuFcotrkHClBAlXSgAAFmZijA6ph53yzstj\nRSIRfjN6OVJLruA/CQcQ7OIHd6VLj34uov6GBQ8RURfqm+oRkX4KB1NPoL4leW1F4EKMdQsWLBkp\nK7cCX0QkG5LXpoxyx6rZI6BWMXmNqL+RiEVwtreCs70VRvkany1U39CMvJIanI/PxbenMvC3b+Pw\n2pMPdPpvjY1cid+MXoH3f/wH/v7LV3hr2kuQCBSWQtQfsOAhIrqD1uS1b5MjUF5fCRtza6wKWoSp\nQx8SNHlt+9HLOBuTA50OCBnuiCfm+WOoG5PXiEyR3FyKoW42GOKixKWk67iYUohTF69j+tjBnT7v\nAfcQTBw8FueuReHA5WNY4j9HoBkT9X29XvAcv/I9gl0CoLay7+2pEBEB0CevXcpLwM74A8itKoC5\nxAzhLclrFgIlr1XXNmL3qQxEnM9CU7MWnq5KPDHPH6FMXiMaEMRiERaMs8NnR0vwjwNJCPRy7LKj\nuzZ0GZKL0rEnORKjXEdiiJ2HQLMl6tt6veD5V/QuAICbtTOCXfwR4uKPEY5ekEl65zAvIhrY0kuy\nsD1+H1JLMiEWiTG9JXnNTsDktcgfs7H7ZDqq65rg2JK8NonJa0QDjq2VFL9dGICPv4nDx9/E4s1n\nJnT674DCzAq/G7Mab//wN/ztly/x5xkv8/spIvSBguep0McQW5CM5MI0RKafQmT6KZhLzBDg5IMQ\nF392f4hIEHlVhfhPwnf4JScWADDGLQgrAhfCTcDkte9jc/D1EX3ympWFDGvn+WPeQ0xeIxrIpo0Z\nhAuJ+biYUojDF7Ix76GhnY4PdvHD9GETcTLzHL5NjsSKwIUCzZSo7+r1gmeW9yTM8p6ERk0TUouv\nIDY/GXH5yYjOS0R0XiIAdn+IqOeU11diT3IkTmWeh0anhbe9J1YHLYavo5dgc4hLL8IXESnIyq2A\nVCLGopbkNWsmrxENeCKRCM8vDcbz753GFxEpCPVRw9VR0elzVgctRkJBCr5LPY7RroEY7tB5kURk\n6nq94GllJpEh0HkEAp1H4PGQcBRVlyA2P/m23R9/Jx+EsvtDRPehvrkBEWmncDD1uD55TaHG8sAF\neMA9RLDktey8CnxxKBmx6cUAgMktyWtOTF4jojZUSjl+vyQI7359CR/+JwZ/fn4iJJ0sbbOQyfHs\n2MfxxpkP8fdfvsI7s/4Hcqm5gDMm6lv6TMHTnlrhcMfuT0xeImLY/SGie6DRanAm+wJ2J+mT15Tm\nCqwMXIRpwwRMXrtZix1HU3Em+gZ0OiDY2xFPzPPDMHdbQd6fiPqficFu+CkxH+ficrH/7BWET/Xu\ndLyf2htzh09FRPop7Ew4gCdDHxVopkR9T58teNpi94eI7pdOp0N0XgJ2GCWvzcF8nxmCJq99eyoD\nh5i8RkT34HeLA5GUWYIdR1MxeoQThrgoOx3/2MhHEFuQjKMZZzHWLQgBTr4CzZSob+kXBU977P4Q\n0a+RUZqN7fH7cLn4Sp9IXnOw1SevTQ5l8hoR3T2llRmeXxaMN//9Cz7cGYO/rH8YMqn4juPNpGZ4\nbuzjePXUe9ga9TX+MutVWJpZCDhjor6hXxY8bd2u+xNXkIyY/Nt3f0Kc9QWQWuHQ21Mnoh6WX1WE\n/yR8h59zYgAAo92CsCJwAdyVLoK8v1arww8tyWtFTF4jom4w1s8ZM8YOwomo6/jmZBpWzR7R6Xgv\n+yFYNGI29qYcxldxe/D7sasFmilR39HvC5721AoHzPSahJle7P4QDVQV9ZXYk3wYJzPP9ZnktYWT\nhmHZ9OFMXiOi+/b0ggDEZRTj21MZGOvnjOGD7Dodv8QvDDF5iTiTfQFj3YMxynWkQDMl6htEOp1O\n11tvHh0djVGjRgn2fq3dn9j8ZCQVpqFB0wgA7P5QrxP6XjBV7ZPXnBWOWBG4UPDktS8jUhCTVgSA\nyWv3gvcDkV5n90J8RjFe/fQC3NUKfPRfk2HeRdf4enkuXj7xZyjMLPH+7Ndgbd55tDVRX3K/XxdM\nrsPTmbbdnyZNEy7fofvjau2EYBd/hLoEsPtD1A/ok9d+wrdJEbhZXwGluQIrAhdi+rCJvZa8FuTt\ngCfm+cOLyWtE1AOCvB0x7yFPRJzPxvYjl/HUIwGdjh9k64ZlAfOwM+EA/h29C3+c8LRAMyXqfQOq\n4GlL1n7vT00p4vKTDN2fw+mncTj9NLs/RH2YIXkt4QByK/XJa0v85mC+73RYyoTZmFtd14Q9p9Jx\n8Jw+eW2IixJr5/kjxMdRsK4SEQ1Mj8/1Q0xqEb77IRMP+DsjYFjn36M84jMDl3ITcOFGNMZeD8aE\nQaMFmilR7xqwBU97ait7dn+I+pG2yWsikQjThj6EpQFzobIQpqPS1Hwrea2qtjV5zReTQj06PRCQ\niKi7yM2keGF5KDZuOYePdsXirxsmw1J+5+9LxGIxnnvgcbx07C38K3oXRjh6C5ZWSdSbWPDcBrs/\nRH1XQVURdiZ+h59vtCSvuQZiReBCuNsImLwWl6tPXiurhZVciifm+mHexKFdrqEnIupuvkNUWDzF\nG3tOZ+CLiBQ8Fx7U6XgXazVWBS3G5zHf4LNLO7Dxod+zG00mjwXPXWD3h6j3VdRXYm/yEZzI/AEa\nnRZeqiFYFbQYfurOTxvvTvHpxfgiMhmZObeS15ZOGw6lFZPXiKj3rJjlg0uXC3H0p6sYH+CCUN/O\nDzOe6fUwonLiEJOXiLPZP2HK0AnCTJSol7Dg+ZXY/SESVn1zAw6nn8Z3l4+jrrm+95LXIlMQk9qS\nvBbqjlVhTF4jor5BJpXgheWh+K+PvsfH38Ti7y9NgaKTCHyxSIzfj12NF4++hS9jv0WAkw8crewF\nnDGRsFjw3KfbdX/i8vXR17fr/ujP/fGGGbs/RJ3SaDU4m/0TdrdJXlse+CimD30IUokw/3QV36zD\njmOXcfqSPnkt0MsBa+f5w8uDyWtE1LcMdbPB8pk+2H40FZ8dSMSGFZ1H+Dpa2eOJkKX45OLX+CTq\na7w6+Q8Qi8QCzZZIWL1e8HywMxqjfJ0Q4qPu98tC2nZ/1rD7Q3RP9MlridiZcAA5lfkwk8iw2C8M\nj/jOEDx57dC5LDS2JK89Mc8PoT5qrnUnoj4rfKo3fkkuwNnoHIwPcMGEQNdOx0/2HI9fcvVL245f\n+QGzvScLM1EigfV6wXMmOgdnonMgFgHeg+wwytcJo3zV8HK3hbifJx3dsftTwO4P0e1cKb2Kr+P3\n4XJxRi8mr13F7pNp+uQ1GzlWhY3A5FFMXiOivk8iEeOF5aFY/8FZbN0bDz9Pe9ham99xvEgkwjOj\nV2LD0TexPX4fAp1HwNXaScAZEwlDpNPpdL315tHR0bBz9kJ0aiGiU4tw+WoZtFr9dGwUZgj1UZtM\n96e99t2fBk0jALD7M0AN9JPlC6qL8Z+E7/DTjWgAwCjXkVgZuKhXk9eWThvO5LVeMtDvB6JW93ov\nHPg+E/8+mIRxAc74nyfGdtmZvnA9Gh/99C9423vizakvQizm0jbqW+7368JddXgaGhowb948PPfc\nc3B3d8cHH3wAqVQKS0tLvPfee7C2tsbBgwexbds2SCQSLF26FOHh4Xc1gaFuNhjqZoOl04ajuq4J\n8enFLQVQIbs/YPeHTFtlfRX2pBzGiSu9mLyWUYwvIm4lry14eBiWTWfyGhH1X49MHIqfk/Lxc1IB\nzsbkYMooj07HTxg0ClE5sbhwIxoH005g4YhZAs2USBh3VfBs3boVtra20Ol0+L//+z988MEHGDx4\nMD777DPs2rULq1atwtatW7F3715IpVKEh4dj5syZUCqVv2oyCgsZHgxyxYNBrtDpdMjOqzTq/qRd\nu4mdx1JhozBDiI8ao02k+2O09wdd7P1RDzcUQE4Kx96eOtE9aWhuRGT6KUPympPCESsCF2Cce6hg\ne2Su5lfiy4hkRLckr00KcceqMF8421sJ8v5ERD1FLBbhj4+FYN1fzuCzfQkYOcwBDrad74F8atRj\nSCnOwO6kCIS6BGCQrZtAsyXqeV0WPFlZWcjOzsakSZMAAA4ODigrK8PgwYNRUVGBoUOHIj4+HoGB\ngbCy0n+jEBoaipiYGEyePPmeJyYSiTrt/pyNzsHZgdj9yU9CTH4SAHZ/qP/RaDX4/urP+CbpEG7W\nVcDaXIEnmbxGRNTtnO2t8NQjAfj7nnj8bXcc/t9vxnX6AyVrcwWeGbMK75zbii2/fIm3p28U7N9l\nop7W5f+T3333XWzevBn79u2DSCTCxo0bsXr1aiiVStja2uKll15CZGQkVCqV4TkqlQrFxcXdOlF2\nf9p2f/SHniYWsftD/YNOp0NMfhJ2xO9vk7w2G4/4zhQ0eW3v6Qwc/CGTyWtENCDMGjcYPyXmIyat\nCEd/voaw8UM6HT/KdSSmeE7AmewL2JtyBI+OnC/MRIl6WKehBQcOHEBpaSmeeuopbNmyBW5ubjh4\n8CDWr1+P4OBgvPvuu3Bzc4ONjQ2SkpLw8ssvAwA++ugjuLm5YenSpZ2+eXR0dLd8iLpGLbIK6nEl\nrx4Z+fWortPqP5wIcFOZwctVDm9XOVxUMohN6BubZp0GOXUFyKq9gayaHJQ2lRuuqWQ2GGrpgaFW\n7vCQO0Mq5k9pqHfk1RfhbEkUbtQXQAQRRiqH4yFVKKylwiwda9bocDGjGj8kVaGuUQulpQRTApUI\nGmLZ77vBRERdqazVYGtkATQ64PdznKBSdP79QIO2EZ9f34eq5hqsdn8ELnL+AJX6hh4LLfj++++R\nk5OD48ePo7CwEDKZDJWVlQgODgYATJgwAREREViyZAnOnDljeF5hYSFCQkJ6fPJtPdTyX51Oh6v5\nlbh0+Vb3J6e0EWcTK02u+wMAD7T5ffvuz6WKJFyqSGL3px8wxVQqQ/Jajv4HG6GuI7EycCE8bDo/\nF6K7aLU6nIvLxdcnLqOwrBaWciken+uL+Uxe6/NM8X4guhfddS+ILG/g/Z0xOJXUhP/9/dguY/aV\ng+zwp7Mf41TFL3jngU0wk/b/75eof7vfJkmnBc+HH35o+P2WLVvg7u6OL774ApmZmRg2bBgSExMx\naNAgBAYG4tVXX0V1dTVEIhFiY2Pxyiuv3NfE7pVIJIKnqw08XQfq3p+HMdPr4U73/rhYqxHiEsC9\nP9QjKuursDflCI5n/gCNVoNhqsFYHbQYfurhgs0h4UoxvjiUjCs5FZBKRHjk4aFYNm04bBR3Po+C\niMhUTQp1x4XEfPyUmI9D5zKxcJJXp+MDnHwx23syjmacxa7Eg1gTcnfJu0R91a9e5/TGG2/g1Vdf\nhUwmg62tLd5++22Ym5tjw4YNePLJJyEWi7Fu3TooFIqemO+v1n7vT/vuT/u9P6N8nRBqAt0f7v0h\noXVIXrNywPLAhRjvIWzy2leRKbh0uRAA8HCIG1aHjWDyGhENaCKRCM+FByEluxTbDl/GKF8neDhZ\nd/qclYGLEJ+fgsj00xjtFiTocQFE3a3XDx7tzWUL7bs/ZZUNAPR7f4abWPenrSZNE1JLMhGbl4TY\ngmTkVhYYrrH70zt6+164H1qtFmev/oxvkg4aktfC/eZgxrCJgiX8lJTXYcfRVJy6dN2QvPbEPD94\ne9gJ8v7Uvfrz/UDUnbr7XvgpMR9vfxkFLw9bvLduIqSSzg8YTS/Jwmun/wJHSxXem/UqLGTybpsL\n0a8hyMGjpmogd39GOvlipJMv1iAcxTWliGX3h34lnU6H2JbktRstyWuLRszGAt+ZsDQTJnmtpq4J\ne89k4Lvv9clrg52t8cQ8f4zyZfIaEVF740e6YMood5yJzsGe0xl4bIZPp+OHOwzFAt+ZOHD5GL6O\n34ffjl4h0EyJuteALnjautu9PyIRMNzDDqN81Rg1wskkuj+O7fb+tO3+dNj74+yPYJcA+KnZ/RnI\nrpRexY6E/UguSodIJMJUzwlYFjAfKkthzrJpatbiyIVs7DqRjqraRtjbyLFqti+mjB7U5WZcIqKB\n7LeLApFwpQS7jqdhzAgnDHPv/N/tpf5zEZOXhJOZ5zDWLRjBLn4CzZSo+wzoJW1363bdH61W/9fW\ntvsTMtzR5DZFt+/+NDTrl/2ZSWQIUPuw+9NN+su9UFBdjF0J3+HCjZbkNZcArAhcKNiJ3FqtDj/G\n52HbkRQUlOqT18KnemP+xKGQm/HnN6aiv9wPRD2tp+6FmLQivP6PnzDY2RofvjAJMmnnyZVXb97A\nphN/hlJujfdnvwaFGfdFkrC4pE0A7P606/60FEDs/gwclQ3V2Jd8GMfaJK+tCloMfwGT1xKvlODz\niGRcuVHO5DUiovsQ6qNG2PghOPLTVew4moon5vl3On6InQfC/efim6RD+CJmN9aNWyvMRIm6CQue\ne9Dl3p/rN7HzeJrJdX+M9v4EL+m49yfjDA5nnGH3x4Q0NDficPppHEg9hrqm3kleu5ZfiS/bJq8F\nu2H1HCavERHdj7Xz/RGbXoT9Z6/gAX8XjPBUdTp+4YhZuJSXgHPXojDWPRgPuN/deYtEfQGXtHWz\nTpPfTKz701b77k9OZb7hGrs/Xetr90Jr8trupEMoqyuHtZkVlvjPwcxhDwuavLbzWCpOXbwOrQ4Y\nOcwBa+czeW0g6Gv3A1Fv6el7ITmrFJu2noezvRX++l+TITfv/N/33MoC/Pfxt2EhNcf7s1+DjVzZ\nY3Mjaut+7wUWPD2Ie39uv/fHX+2DEHZ/jPSVe0GfvJaMHQn7caMiDzKJDPOGT+vV5LVBztZYy+S1\nAaWv3A9EvU2Ie+HfB5Nw4PtMzHvQE88sDuxyfETaKWyL24MxbkF48cFn+O8yCYJ7ePow7v25/d6f\n2PwkxHLvT5+TWXYN2+P3GZLXpnhOwLKAebC3FKaj0tSsxZGfsrHrOJPXiIiEsjpsBKJTCxHxYzbG\nBbggaHjnP4icM3wKLubG42JuPM5di8LDQx4QaKZE944dnl7SWfdHaWWGUF/T7v7E5acgNj+J3Z8W\nvXkvFFYX4z+JB3Hh+iUAwiev6XQ6nI9j8hrdMpC/NhC1JdS9kHHjJl786zmolHJseXEKrCw6/+Fj\nUXUJNhx7CxKRGO/Pfk2wH4zRwMUlbSaipq4JcRnFiG4pgMoq6wFw789A6f70xr3QIXnNbjBWBi1C\ngFPnB9F1p8QrJfgiIhkZLclrcyZ4Ytl0Jq8NdPzaQKQn5L2w42gqdp1Iw/Qxg7D+sa4DCU5mnsM/\nLu1EkPMI/M/D67i0jXoUl7SZCCsLGR4MdMWDgZ0nv5la9+d2yW9tuz9tk99auz/BLv5wHkDdn+7W\n2NyIwxlnsP/yUdQ11UNtZY/lgQsw3mMUxCKxIHO4VlCJLyNuJa9NDHbD6rARcHFg8hoRUW9YNn04\nolIKcPLidYwf6YKx/s6djp829CFE5cQhriAFJzPPY4bXRIFmSvTrscPTD7D7Y/rdHyHuBa1Wi++v\n/ozdSREorbtpSF6bMWwiZAL9/ZVW1GHH0VvJawHD7LF2nj+GD+JyCLqFXxuI9IS+F67lV+KPH34P\nhaUMW16c0uUPVctqy7Hh6J/QrNPivVmv8IeR1GO4pG2A6XLvj48ao3zVCPFR9/vuT3uG7k9BMhIL\nU2+796e/dn968l7Q6XSIK0jG9vhbyWtzh0/FQt9Zwiev/ZCFxiYNBjlb44m5fhg9wonLIKgDfm0g\n0uuNe2Hv6Qx8GZmCh4JcsXHNmC7Hn7sahb/98gVGOHrh9ckvQCwWZqUADSxc0jbAtE9+a9/9ORuT\ng7Mxppv8NsNrImZ4TWTy213KKruG7fH7kVSUBhFEmOw5Ho8GzBc0ee3oT1ex60QaKmsaoVLKsWrR\nSEwdw+Q1IqK+aOFkL/ySXIDz8XmYEJuLiSGdB9g8NHgMfsmNRVROHA5nnMY8n+kCzZTo7rHDY0LY\n/em/3Z/uvheKqkvwn8Tv8GNL8lqISwBWCp28Fp+Hrw9fRn5pDSzM9clrjzzM5DXqGr82EOn11r2Q\nV1KNP7x/FmZSMba8NBUqpbzT8ZX1Vfivo39CXVM93pn5P3C3cRFopjRQcEkb3RH3/txm749CjWAX\nf4T0se5Pd90LVQ3V2JtyBMeufA+NVoOhdoOwKmgRApx8u2GWdycxswRfRiQj/bo+eS1sgiceZfIa\n/Qr82kCk15v3QuT5LHy6PxGjRzhh81MPdLn8OConDn/58TMMsxuMN6e/BKlYItBMaSDgkja6o1+V\n/GZC3Z87Jr8VJCOpMBVHMs7giIklv7Umrx24fAy1TXVQW9njsZELMGGQsMlrX0Wm4GIKk9eIiPq7\nsAme+CkpH5cuF+Jk1HXMeGBwp+PHugfj4cEP4Idrv+DA5WMI958j0EyJusaCZ4D4NXt/vD1sMdrX\nyeCJDpIAACAASURBVGS6P233/jRrmpFacgWx+cktv9rs/emj3Z/OaLVa/HDtF3yTeAildTehMLPC\n48HhmOn1sKDJazuPpeFk1DUmrxERmQixWIQ/PBqCdX85g39+l4RAb0c4qSw7fc7a0GVIKkrD3uRI\nhLoEYKhqkECzJeocl7TRgN77U1JTpi98Wro/9b209+fX3gs6nQ7xBSnYHr8f1ytyDclrC3xnwsqs\n8y9I3aW2vgl7z1zBge8z0dikgYeTNZ6Y54cxTF6j+8SvDUR6feFeOBl1HR9/E4tALwe8+cyELn8I\nGl+Qgv/9/m/wULrgzzM3CfbDNzJtXNJG920gd38crFS/svvjDz9Hb5hJzXptzrdLXlsWMA8OlipB\n3v92yWsrF43EtNEekEgYR0pEZEqmjfHAT4n5iEopQOSP2Zg/cWin44Oc/TBj2EScyDyH3UkRWBm0\nSKCZEt0ZCx7qoKu9P+nXy01y749UIkWAky8CnHyxOnhJh+5Pb+/9Kaouwa7Egzh//SIAIMTFHysC\nF2Kwrbsg76/T6fBjQh62Rd5KXlsdNoLJa0REJkwkEuH5pUF47r0yfBmZglBfNdwcFZ0+Z3XQYiQU\nXMbBtBMY7RYIH4dhAs2W6Pa4pI1+lc6S37w9bDHK1wmjfNXw8rAzqXNW2nZ/4vKTceO2yW/33v3p\n7F6oaqjGvpSjOHblezRrm+Fp54HVQYsFTV5LyizBFy3JaxKxCGEThuCxGT79vsilvolfG4j0+tK9\ncD4+F+9suwSfwXZ457mHuuzoXy7OwP87/SGcFA54d9YrkEv59YLuHZe0kaBu1/2JTi3CpcuFhu7P\nf9j96ZbuT/vkNUcreywXOHntekElvoq8jKiUAgDAQ0GuWD1nBFwdOv/pHhERmZaHgtzwU3A+fojL\nxb6zV7B02vBOx49w9MZcn2mISDuJnfEH8OSoRwWaKVFHLHjonrXd+xM+1bvLvT+m1P25096fuG7Y\n+3O75LU1weGY1YvJa/5D7bF2nh98BguzT4iIiPqe3y0JRGJmCXYeS8XoEU7wdLXpdPxjIx9BbH4S\njl45izHuQRgp4MoEora4pI16xO26P0x+k8FfPRzBzvoCyNlabXhOdHQ0QkNDEV+Qgh3x+3GtIhcy\nsRRzhk/FwhGzBE1e23fmCvYbktcUeGKuP8b4MXmNhMOvDUR6ffFeuJhSgD/9+xd4uirx/vpJkEk7\nX3GQWXYNr5x8F3YWNnh/1muwNLMQaKZkSu73XmDBQ4Lg3p/O9/5cz7qO+KY0JBbqk9ceHvIAHg2Y\nDwcr4ZLXjv2sT16rqG6ESmmOFbNGYPoYJq+R8Pi1gUivr94Lf/0mFieiruPR6cOxKmxEl+N3Jx3C\nnuTDmOw5Hs+OXSPADMnUsOChfqdt9yc6tRCXs8ugaen+WFvquz+jR5hu9yeuQB97nfj/2bvz+Kjq\nu/3/18xk30kghLCEnbBkBQKiyKKAAirKjgQErFYWN+yvtt8u9932bq1tRarEpW5hDYQlIqigCGiL\nEMgGYd8hQEISICEh+8zvDyrVKjMgySGZvJ5/kcn7zLnig4/MlXPmM9+6+vON6JBuejTqYUN3Xtu2\n+5wSP96ncwVXd14bPaijHrq7gzzcueMVtwf/NgBX1de1cKW8SnP+ulkFReX6y5z+Dj9ourqmWv/v\n85d1/NJp/X93PaVeLSMNSgpnQeFBg8fVn706mHNE43o9qMgQx78pqy17jxXq/Y/26uCpi1d3Xruj\nrcYP6aIAX+cqmWh4+LcBuKo+r4XdR/L1/97YppbNfDR/7kC5u1rszp+6dEYvfvaSvN289Lf7fi0/\ndza/wY1jlzY0eNfb+e2bqz/f7PzmbFd/vr3zW1pNmmFl53TeZSWu36cde6/uvHZnVKim3N9VoQ4+\nVwEAgG9EdmymB/q310dfHdOij/fr8Yd62J1vE9BS43s8oCW71+jdtCQ91+9xg5ICFB7UM452ftua\nkaOtGc6581tdu1BcrqUbDuizHey8BgC4dVOGd1X6gTyt/eqo+vQIUUSHpnbnH+hyr3adydLXp9MU\ndypKd7bpbVBSNHYUHtRrN3v1p2fXYMU6wdWf2nSlvEqrtxxRytajqqhk5zUAQO3wcHPRsxNj9fPX\nvtKrSRl6be5AeXlc/+MTzGazZvWZqp9t+D+9k5akbs06q4mn/a2tgdpA4UGDwdWfm1NdY9WGr09o\n2bd2XvvJQz10b+827LwGAKgV4WGBGj24k5I3HdZ7H+3V7LHRdudDfIP1aNTDei99ud7auVg/7z+T\nX76hzlF40GBx9eeHfbPz2sKP9+lsQak83S2afF84O68BAOrExKFdtHNfnjZsP6k7IlqoZ3hzu/ND\nO96tnWcylX4uW5uPf63B7fsZlBSNFa9+4BR+6OpP1uF87dqfp/SDjefqz95jhXp/3V4dPHl157UR\nd7bTBHZeAwDUIVcXi56fFKvnX92qvy/P1IKfDZKPl9t1580ms57qPUVzN/xeiRnJ6tG8i4K9gwxM\njMaGwgOn5O3pqn6RoerXSK7+fG/ntchQTRnOzmsAAGO0C/XXhKFdtPiTA3przR7NfdT+FsJNvQM1\nLWacElIX6o3Uhfr1wGdkNnG7NeoGhQdO73pXf74pQN+++tOx1dWrP726NoyrP/+981q3doGa9kB3\nhbPzGgDAYGMGdVLq3lxtSc9R34gWujMy1O78gLZ9tSMnQ2ln92jD4a26v/Mgg5KisaHwoNFxdPXn\n8OlLSvqsfl/9uVJepTVbjmrN1iOqqKxRq2AfPTaim+K6h/DmTwDAbWGxmPXshFg9+8oWJazMUrd2\ngWri63HdeZPJpCd7Paq5n/5eS3avUVSLbgr1tf/+H+DHoPCgUWtoV3+qa6zasP2kkjYe1KWSCjXx\nddfjD/bQkDh2XgMA3H6tm/tqyohueufDbCWszNIvH4uz+4u4AE9/Pd5rouZte0cLdiTqd4PnymK2\nGJgYjQGFB/iW+nr1x2azaduec1q4/j87rz16X7hGsfMaAKCeeeCu9tqefU7bs3O1OS1Hg3u1tjt/\nR+ue2tEmU9tO7dJHBz/XqK7DDEqKxoJXSsB1/JirPz27BqtTLV/92XusUB+s26sD/955bXi/tpow\ntIvd2wQAALhdzGaTnhkfo6f/tllvr9mtiA5N1ayJp91jHo+doH3nD2l59keKadFdYQGtDEqLxoDC\nA9yg/776czL3snbtz6uzqz+n8y5r4cf7tD376s5r/SJbaMrwbmrJzmsAgHouJMhbMx7sodeTs/T3\nFRn63RN32L21zcfdWz/tPVkvfZWg13ck6k/3/lwuFl6monbwNwn4EUwmk9q28FPbFn4aM7iTrpRX\nKfNQ7Vz9uVhcrqUbD2rjjpOyWm1Xd14b2V3hbdl5DQDQcAztE6av95xT2oHz+vTrE7q/Xzu787Gh\nERrcrp++OL5NK/d9rAkRDxoTFE6PwgPUAi+PW7/6c6W8Silbj2rNliMqr6xRy2Y+emxkN/Vh5zUA\nQANkMpk0Z1y0Zv9ls977aK+iOwerRVNvu8dMiRmjPXkHlLJ/g3qFRqpjUFtjwsKpmWw2m+12nTwt\nLU09e9r/YCqgofvvqz+FReWS9J2rPxcLc7XjUPm1ndcmDQtn5zU0WvzbAFzlLGthS3qO/rYkTd3a\nBeqPM+9yeKdDdt5B/W7Lqwr1ba6Xh/5Sbi5uBiVFfXWra4ErPEAdu5GrP5Lk6W7RpGHhGjWggzzZ\neQ0A4CQGxLTU13vOatvuc1r75VE9PLCj3fkezbvo/k6D9MnhzVq2Z62mxowxKCmcFa+qAANd970/\nuw9p8kN92XkNAOB0TCaTZo6O0r5jF7Tok/2KDQ9WWIif3WMmRY5SZu5efXzoC/VuGaluwZ0NSgtn\nxP0ywG107epPV1/KDgDAafn7uGvmmChVVVv16rJ0VddY7c67u7hpVtxUySQtSF2osqpyg5LCGVF4\nAAAAUOfuiGihwb1a60hOkZI3HXY437lpez0UPlT5pYValLnKgIRwVhQeAAAAGOInoyLU1N9Dyz87\nqCP/fg+rPWO7j1CYf0t9fuyfyjiXbUBCOCMKDwAAAAzh4+mqOeNjVGO1aV5SuiqrauzOu1pcNavP\nY7KYLXozdbFKKkoNSgpnQuEBAACAYWK7BOv+fm11Kveylm444HC+bZNWGtt9hC6WF+m9jBUGJISz\nofAAAADAUNNGdleLIG+t3nJE+44XOpx/KHyoOga21T9Ppmr76XQDEsKZUHgAAABgKE93Fz0zIUaS\n9OqyDJVXVNudt5gtmtVnqlwtrvpH2jJdKi82IiacBIUHAAAAhuvePkijBnTUucJSfbB+n8P5ln4h\nmhTxkC5XlOgfu5bKZrMZkBLOgMIDAACA22LyfeFq3dxX6/91XJmHzjucv7/zIHVr1kk7z2TpyxM7\nDEgIZ3BDhaeiokJDhgxRSkqKqqurNXfuXI0dO1bTpk3T5cuXJUlr167VmDFjNH78eK1cubJOQwMA\nAKDhc3O16PmJsTKbTZqflKHSsiq782aTWTPjpsjDxV3vZ6xQwZULBiVFQ3ZDhSchIUEBAQGSpBUr\nVigoKEjJyckaPny4du3apbKyMiUkJCgxMVELFy5UYmKiiou5txIAAAD2dWwdoPH3dlZBUbn+8eEe\nh/PBPk01JXqMrlSV6c3UxdzaBoccFp5jx47p+PHjGjBggGw2mzZv3qwHHnhAkjR27FgNGjRIWVlZ\nioyMlLe3t9zd3RUbG6v0dHbQAAAAgGPj7u2sDq38tWnnae3IPudw/p72dyqmRXftztuvz45+aUBC\nNGQOC8/LL7+sF1988drXZ86c0datWxUfH6+5c+eqqKhIBQUFCgwMvDYTGBio/Pz8ukkMAAAAp+Ji\nMeu5ibFysZj1enKWikoq7M6bTCY92XuyvN28tChztXJLeN2J63Ox982UlBT17t1boaGh1x6z2Wxq\n3769Zs+erTfeeENvvfWWunXr9p3jbubSYlpa2k1GBpwTawH4D9YDcFVjWwuDInz1WWaR/vjOVo29\nK1Amk8nu/OAmcfoob4te3rRAE1uOkNnEflz4PruFZ+vWrcrJydHGjRuVm5srd3d3NW3aVHFxcZKk\nu+66S6+//roGDRqkzZs3XzsuLy9PMTExNxSgZ8+etxAfcA5paWmsBeDfWA/AVY1xLUTH2JRz6Z/a\nd+KCSs0hGhDbyu58rC1W+duKtT0nXed8LunB8CEGJYWRbrX4263B8+bNU3JyspYvX66xY8dq5syZ\nGjRokL788uq9knv37lW7du0UGRmp7OxslZSUqLS0VBkZGY1ugQIAAODWWMwmPTsxRu5uFr25ercK\ni8rszptMJj3ec4L83X2VtGetThedNSgpGpKbvu43ZcoUbd26VZMmTdKmTZv0xBNPyN3dXXPnztX0\n6dM1Y8YMzZkzRz4+PnWRFwAAAE4stKmPpo3srpKyKr2enOXwrRJ+Hr56ovejqrZWa8GORFVbawxK\niobC7i1t3zZ79uxrf54/f/73vj906FANHTq0dlIBAACg0Rrer622Z5/Trv152rjjlIb1DbM737tl\nlAa07autJ7Zrzb5PNLbHSIOSoiHgnV0AAACoV0wmk54eFyMvDxe9u3aP8i5ccXjMYzFjFeTZRKv3\nfaJjF04akBINBYUHAAAA9U6zJp56YlSEyipqND8pQ1ar/VvbvN289NO4yaqxWbVgR6Iqa6oMSor6\njsIDAACAemlwr9bq0z1Ee44WaN2/jjmcjwrppqEd7tbp4nNakf2RAQnREFB4AAAAUC+ZTCbNGhsl\nXy83Ja7bp5zzlx0eMznqYTX3aaaPDnyuA/lHDUiJ+o7CAwAAgHqria+HZo2JUmW1Va8uy1BNjdXu\nvIerh2bFTZEkLUhNVHl1hRExUY9ReAAAAFCv3RkVqgExrXTw1EWt3nLE4Xx4s44a2eUe5ZXka0nW\nGgMSoj6j8AAAAKDee/KRCAX6uWvphgM6frbI4fz4iAfVyq+FNhzZqt25+w1IiPqKwgMAAIB6z9fL\nTXPGxai6xqZXlqarqtr+rW1uFlfN7jNVZpNZb6Qu0pXKMoOSor6h8AAAAKBB6NW1uYb1DdOJc8VK\n+uygw/n2gWF6pNv9Kiy7qA8ykg1IiPqIwgMAAIAGY/oD3RUc6KWVmw7p4MkLDucf6Xa/2jVprS0n\nvtauM1kGJER9Q+EBAABAg+Hl4apnx8fIapPmLUtXeWW13XkXs0Wz+zwmF7OL3tq5RMUVJQYlRX1B\n4QEAAECDEtGxqR68u73O5Jdq0SeONyRo7R+qCREPqKjist7ZtUw2m82AlKgvKDwAAABocKYM76aW\nzXy09stj2nOkwOH8yM73qkvTDtqek65/ndplQELUFxQeAAAANDjurhY9NzFGZpP0alK6rpRX2Z03\nm82aFTdF7hY3vZuepAtllwxKituNwgMAAIAGqUtYoMbc01nnL5bpvY/2OpwP8Q3W5KhHVFp5RW/t\nXMKtbY0EhQcAAAAN1oQhXdS2hZ82bD+pXfvzHM4P7Xi3Ipt3Vca5bH1x7F8GJMTtRuEBAABAg+Xq\nYtbzk2LlYjHptRUZunyl0u68yWTST+Mmy9PVQ4mZK3W+tNCgpLhdKDwAAABo0NqF+mvSsHBdKK7Q\nW6v3OJxv6hWoaTHjVF5doTdSF8pqsxqQErcLhQcAAAAN3iMDO6pLmybampGjf2WddTg/oG1f9WoZ\npb3nD+nTw1vqPiBuGwoPAAAAGjyLxaxnJ8bIzdWiBSuzdPFyud15k8mkJ3pNkq+bt5bsTtHZ4lyD\nksJoFB4AAAA4hVbBvpo6oqsuX6nUguQsh7uwBXj46Se9JqmqpkoLdiSqxlpjUFIYicIDAAAApzHy\nzvaK6NBUO/bm6otdpx3O920dq7va9NbhCyf04YGNBiSE0Sg8AAAAcBpms0nPTIiRp7uL3k7Zo/yL\nZQ6PmR47Xk08/JW8d71OXMwxICWMROEBAACAU2ke6KXHH+qhK+XV+vvyDIe3tvm4e+vJ3pNVY63R\ngh0fqLqm2qCkMAKFBwAAAE5nSFwb9eraXJmH8/XxthMO52NDe+ie9nfpZNEZJe9dX/cBYRgKDwAA\nAJyOyWTS7LFR8vF01fvr9upsQYnDY6ZEj1Yz7yClHNigw4XHDUgJI1B4AAAA4JSC/D311OhIVVTW\n6NVlGaqx2r+1zdPVQzPjpshms+n1HR+oorrSoKSoSxQeAAAAOK3+0S11Z1So9p+4oA+3HnE43z24\ns4Z3Hqxzl89r2e4UAxKirlF4AAAA4LRMJpOeeiRSAb7uWvTJAZ3MLXZ4zKSIhxTq21wfH96s7LyD\nBqREXaLwAAAAwKn5+7hr9pgoVddYNW9ZuqprrHbn3VzcNKvPVJlMJr2RulBlVeUGJUVdoPAAAADA\n6fXp0UL39G6tozlFWvH5IYfznYLa6eGuw5R/5YISM1cakBB1hcIDAACARuEnD0WoaYCnln9+SEdO\nX3I4P6bbCIX5t9QXx/6l9LPZBiREXaDwAAAAoFHw9nTVM+OjZbXa9MqydFVW1didd7G4aHbfx2Qx\nW/TWzsUqqSg1KClqE4UHAAAAjUZ052CNuLOdTudd1uJPDzicDwtopXHdR+pieZHeTU8yICFqG4UH\nAAAAjcpjI7qpRZC3UrYe0d5jhQ7nHwwfok6BbfWvU7v09ek0AxKiNlF4AAAA0Kh4uLvo2YkxkqRX\nk9JVVlFtd95itmhWn6lys7jqnV3LdKnc8dbWqD8oPAAAAGh0urUL0iMDOyq38IreX7fX4XyoX4gm\nRY7S5cpSvb1ziWw2mwEpURsoPAAAAGiUJg0LV5sQX32y7YTSD553OH9fp4HqHtxZu87u1tYT2w1I\niNpA4QEAAECj5OZq0XMTY2Uxm/Ta8gyVlFXZnTebzHoqboo8XNz1fsYKFVy5YFBS3AoKDwAAABqt\njq0CNH5IFxUUlesfKXsczgd7B2lq9BiVVZXrjdRFstqsBqTEraDwAAAAoFEbe08ndWzlry92ndb2\n7HMO5we3v1MxLXpoT94BfXbkKwMS4lZQeAAAANCouVjMem5irFxdzFqQnKWikgq78yaTSU/2flTe\nbl5anLVauZcdv/8Htw+FBwAAAI1emxA/xd/fVZdKKpSwKsvhLmyBngGaETtBFTWVWpC6UFYrt7bV\nVxQeAAAAQNKDd3dQt3aB2rb7nLZmnHE4f2ebXurbOlYHC45q3aHPDUiIH4PCAwAAAEiymE16dkKs\nPNwsenP1bhUWldmdN5lMerznRPm7+yppz0c6XXTWoKS4GRQeAAAA4N9aNPXW9Ae6q7SsSq+tyHR4\na5ufu4+e7P2oqq3Ven3HB6q21hiUFDeKwgMAAAB8y313tFV052ZKO3BeG3ecdDjfq2WUBra9Q8cv\nntbqfZ8YkBA3g8IDAAAAfIvJZNIz42Pk7eGid9dmK7ew1OExj8WMVZBXE63e94mOXXBckmAcCg8A\nAADwX5oGeOqJhyNVVlGj+cszZLXav7XNy81TT/WOl9Vm1es7ElVZU2VQUjhC4QEAAAB+wKCerdS3\nR4iyjxbqo38eczgfGdJVwzoOUE7xOS3fs9aAhLgRFB4AAADgB5hMJs0aEy0/bzctXL9Pp/MuOzzm\n0aiH1dynmdYd3KQD+UcMSAlHKDwAAADAdQT4umvWmChVVlv1alK6amrsf8Coh4u7ZsVNlSQt2JGo\n8qpyI2LCDgoPAAAAYEe/yFANjG2lQ6cuaeXmww7nw5t10APhQ5RXWqDFWWsMSAh7KDwAAACAA08+\nHKFAPw8lbTyoY2eKHM6P6zFSrf1aaOPRL5WVu8+AhLieGyo8FRUVGjJkiFJSUq499tVXXyk8PPza\n12vXrtWYMWM0fvx4rVy5svaTAgAAALeJj5ebnh4freoam+YtS1dVtf0PGHWzuGpWn8dkMZn1Zupi\nlVZeMSgp/tsNFZ6EhAQFBARc+7qyslJvv/22goODJUllZWVKSEhQYmKiFi5cqMTERBUXF9dNYgAA\nAOA26BneXMP6hunEuWIt23jQ4Xz7wDYa3X24Cssu6v2MFQYkxA9xWHiOHTum48ePa8CAAdcee/PN\nNxUfHy9XV1dJUlZWliIjI+Xt7S13d3fFxsYqPT297lIDAAAAt8H0B7qreaCXVn1xWAdOXnA4P6rr\nfWrfpI2+PLFDqTmZBiTEf3NYeF5++WW9+OKL174+ceKEjhw5oqFDh157rKCgQIGBgde+DgwMVH5+\nfi1HBQAAAG4vLw9XPTMhRjZJry5LV3lltd15F7NFs/s8Jlezi/6xa6mKyx1vbY3a5WLvmykpKerd\nu7dCQ0MlSTabTS+99JJ+85vfXPv6h1zv8R+SlpZ2w7OAM2MtAP/BegCuYi3UX306+2j7wRL99f2t\nur9XgMP5u5rEanNhql7+PEGjQu6RyWQyICUkB4Vn69atysnJ0caNG5WbmytXV1dZLBY9//zzstls\nys/PV3x8vJ5++mlt3rz52nF5eXmKiYm5oQA9e/a8tZ8AcAJpaWmsBeDfWA/AVayF+q1HZI2efWWL\ndhwq0YP3RCqyYzO78zHWGJ3bXKgDBUdV3syqu8LiDEra8N1q8bd7S9u8efOUnJys5cuXa+zYsZo9\ne7Y2bNigpKQkLV++XM2aNdOiRYsUGRmp7OxslZSUqLS0VBkZGSxQAAAAOC13V4uemxgrs9mk+UkZ\nulJeZXfebDZrZp+pcndx17tpSbpQdsmgpLilz+H55lKcu7u75s6dq+nTp2vGjBmaM2eOfHx8aiUg\nAAAAUB91btNEYwd30vmLZXrnw2yH8yE+zRQf9YhKq8r0Zuqim3obCH48u7e0fdvs2bO/99imTZuu\n/Xno0KHf2cgAAAAAcHbjh3TRzn15+iz1lO6IaKHe3ULszg/p0F+pOZnKzN2nTcf+pXs73GVQ0sbr\nlq7wAAAAAI2Zq4tZz02KlYvFpNdWZKq4tNLuvMlk0lNx8fJy9dTCzJU6X1JgUNLGi8IDAAAA3IK2\nLfw0aVi4Ll6u0FurdzucD/Jqoumx41VeXaGE1IWy2qwGpGy8KDwAAADALXpkYEd1CWuiLzPP6KvM\nMw7n+4fFqXfLKO3LP6xPDm12OI8fj8IDAAAA3CKLxaznJsbKzdWiN1bt1sXicrvzJpNJT/SaJF93\nHy3d86HOFOcalLTxofAAAAAAtaBlMx89NqKbLl+p1OvJWQ53YfP38NMTvSapqqZKC3YkqsZaY1DS\nxoXCAwAAANSSEXe2U2THpkrdl6tNO087nO/TKkZ3hcXpyIUT+vDARgMSNj4UHgAAAKCWmM0mPTM+\nRp7uLvrHh3t0/uIVh8dMjx2nJp7+St67XicuOi5JuDkUHgAAAKAWBQd66ScP9dCV8mr9fXmGrFb7\nt7b5uHnrqd7xqrHW6PUdiaqqqTIoaeNA4QEAAABq2b1xbdSra3NlHS7QJ9uOO5yPbtFd97a/S6eK\nzih573oDEjYeFB4AAACglplMJs0ZFy1fL1e9v36fzuaXODwmPnq0gr2D9OGBjTpUcMyAlI0DhQcA\nAACoA4F+HnrqkShVVNbo1aQM1Ti4tc3T1UMz46ZINmlBaqIqqisNSurcKDwAAABAHekf01J3RYVq\n/4kLStlyxOF8t+DOGt55sM5dPq+lu1MMSOj8KDwAAABAHXpqdJQCfN21+NMDOnmu2OH8xIgH1dI3\nRJ8c3qzsvIMGJHRuFB4AAACgDvl5u2nO2GhV11j1yrJ0VddY7c67ubhpVp+pMpvMeiN1oa5UlRmU\n1DlReAAAAIA6Ftc9RPf2bqNjZ4q0/LNDDuc7BrXVqK7DlH/lghZmrDQgofOi8AAAAAAG+MmoHmrW\nxFMrNh3S4dMXHc6P6TZcYQGt9MXxbUo/u8eAhM6JwgMAAAAYwMvDVc+Mi5HVatO8ZemqrKqxO+9i\ncdHsPlNlMVv05s7FulzheGtrfB+FBwAAADBIVOdmGnlnO53OK9GiT/Y7nA8LaKXxPR7QpfJiwf+Y\nuwAAIABJREFUvZu+3ICEzofCAwAAABho6shuCm3qrQ+/PKq9xwodzj/Q5V51Cmqnbad2adupNAMS\nOhcKDwAAAGAgDzcXPTshViZJryalq6yi2u68xWzRrD5T5WZx1btpy3SprMiYoE6CwgMAAAAYrGu7\nQD08sKNyC6/o/Y/2OpwP9W2uRyMf1uXKUr21a4lsNpsBKZ0DhQcAAAC4DR69L1xhIb765OsTSj9w\n3uH8sE4D1D24s9LO7tHWE9vrPqCToPAAAAAAt4Gri0XPTYyVxWzS31dkqKSsyu682WTWzLgp8nTx\n0PsZK1RQesGgpA0bhQcAAAC4TTq0CtCEoV1UWFSut9fsdjjfzDtIU2PGqqyqXG/sXCirzWpAyoaN\nwgMAAADcRmMGd1LH1gHanJajr/ecdTg/qN0dim3RQ3vyDmrjkS8NSNiwUXgAAACA28jFYtbzE2Pl\n6mLWgpVZKiqpsDtvMpn0ZO/J8nHz1pKsNTp32fH7fxozCg8AAABwm7Vu7qspw7uqqKRSC1ZmOdyF\nrYmnvx7vOUEVNZVK2JEoq5Vb266HwgMAAADUAw/076Du7YP09Z5z2pqe43C+X5teuqN1Tx0sPKaP\nDn5uQMKGicIDAAAA1AMWs0nPToiRh5tFb67Zo8KiMofHzOg5Qf4eflqe/ZFOXTpjQMqGh8IDAAAA\n1BMhQd6a/mAPlZZV6e8rMh3e2ubn7qMnez2qamu1FuxIVHVNtUFJGw4KDwAAAFCP3Nc3TLFdgpV+\n4Lw2bD/pcL5Xy0gNbHeHjl86rdX7PzEgYcNC4QEAAADqEZPJpKfHR8vb01Xvrs1WbmGpw2Meix6r\npl6BWr3vUx294LgkNSYUHgAAAKCeCfL31JMPR6i8skavJmXIarV/a5uXm6eeiouX1WbV6zs+UGV1\npUFJ6z8KDwAAAFAPDYxtpTsiWmjvsUKt/eqYw/mI5uG6r+NAnSnOVVL2RwYkbBgoPAAAAEA9ZDKZ\nNHN0lPx93LTw4306nXfZ4TGTokYpxKeZ1h/cpP35hw1IWf9ReAAAAIB6KsDXXTNHR6mq2qp5y9JV\nU2P/A0Y9XNw1q89UySQl7Fio8qpyg5LWXxQeAAAAoB7rFxmqgT1b6fDpS1r5heOrNl2adtCDXYYo\nr7RAi7JWG5CwfqPwAAAAAPXck6MiFOTvoWUbD+rYmSKH8+N6jFRr/1B9dvQrZZ7bZ0DC+ovCAwAA\nANRzPl5uenpcjGqsNr2yNE1V1TV2510trprd5zFZTGa9uXORSiodb23trCg8AAAAQAMQGx6s++5o\nq5O5l7V0w0GH8+2atNbo7iN0oeySPkhPNiBh/UThAQAAABqI6Q90V/NAL63efFgHTlxwOD+q6zB1\naBKmL0/uUGpOpgEJ6x8KDwAAANBAeLq76NkJMbJJmrcsXeUV1XbnXcwWzeo7Va5mF729a4mKyouN\nCVqPUHgAAACABqRHh6Z66O4OOltQqsSPHW9I0MqvhSZGPqTiihL9I22ZbDabASnrDwoPAAAA0MDE\n399VrZv7aN0/jyvrcL7D+eGdBqtrs45KzcnUP0/uNCBh/UHhAQAAABoYN1eLnp0QK7PZpPnLM1Ra\nVmV33mw2a2bcFLm7uOu99CRduHLJoKS3H4UHAAAAaIA6t2misfd0Uv7FMr27NtvhfHOfZpoSNVql\nVWV6Y+eiRnNrG4UHAAAAaKDG39tF7Vv667PUU0rdl+tw/t4OdykqpJuycvdp07F/GpDw9qPwAAAA\nAA2Uq4tZz02MlYvFrNdXZKq4tNLuvMlk0lO94+Xt6qnEzFXKK3H8/p+GjsIDAAAANGBtW/jp0fvC\ndfFyhd5cvdvhfKBXgKbFjldFdYUSUhfKarMakPL2ofAAAAAADdzDAzsqPKyJvso8o68yzjic7x8W\np7iW0dqff0QfH9psQMLbh8IDAAAANHAWs0nPTYyVm6tFb6zO0sXicrvzJpNJP+k1UX7uPlq2O0U5\nxecMSmo8Cg8AAADgBEKb+WjayG66fKVKryVnOtyFzd/DTz/pNUlV1mot2J6oGmuNQUmNReEBAAAA\nnMTwfu0U1ampdu7L06adpxzO92kVo/5hcTp68aRS9m8wIKHxKDwAAACAkzCbTXp6fIw83V30dkq2\nzl+44vCYabHjFOgZoJV71+vExdMGpDQWhQcAAABwIsFNvPTEqB4qq6jW/OUZslrt39rm4+atn/aO\nV43Nqtd2fKCqmiqDkhrjhgpPRUWFhgwZopSUFOXm5mratGmKj4/X9OnTVVhYKElau3atxowZo/Hj\nx2vlypV1GhoAAADA9d3Tu43iuoVo95ECfbztuMP56BbddG+H/jpddFbJe9cbkNA4N1R4EhISFBAQ\nIEl69dVXNW7cOC1atEj33HOP3n//fZWVlSkhIUGJiYlauHChEhMTVVxcXKfBAQAAAPwwk8mk2WOj\n5OvlqvfX7dPZ/BKHx8RHPaJg7yB9eGCjDhUcMyClMRwWnmPHjun48eMaMGCAJOm3v/2thg0bJkkK\nDAzUpUuXlJWVpcjISHl7e8vd3V2xsbFKT0+v2+QAAAAArquJn4eeGh2lyqoazVuWrhoHt7Z5unpo\nZtxUySYt2JGo8uoKg5LWLYeF5+WXX9aLL7547WtPT0+ZzWZZrVYtXbpUI0eOVEFBgQIDA6/NBAYG\nKj8/v24SAwAAALgh/aNb6u7oljpw8qLWbDnicL5bcCeN6DxY50rOa+nuFAMS1j0Xe99MSUlR7969\nFRoaKknX9vK2Wq362c9+pjvuuEN9+/bVunXrvnOcoz2/vy0tLe1mMwNOibUA/AfrAbiKtYDa0LeD\nVekHzFr8yT552QrVPMDV7nxna2sFuQbo08NbFFDqpTCvUIOS1g27hWfr1q3KycnRxo0blZubK3d3\nd4WEhCglJUXt2rXTzJkzJUnBwcHfuaKTl5enmJiYGwrQs2fPW4gPOIe0tDTWAvBvrAfgKtYCapNH\nQK5+9+4Obcgs11+fiZOri/0bvZq2b65fbfqLPr+0XX/t8yt5uXkalPT7brX42/1J582bp+TkZC1f\nvlxjx47VzJkzVVBQIDc3N82ePfvaXFRUlLKzs1VSUqLS0lJlZGSwQAEAAIB6one3EA2Ja6NjZ4u0\n/PODDuc7BrXVw13vU8GVC0rMbNg7MNu9wvNDlixZosrKSsXHx8tkMqljx476zW9+o7lz52r69Oky\nm82aM2eOfHx86iIvAAAAgB/h8Yd6KPNwvpI3HVZctxB1btPE7vzobvcr/ewebT6+TXGtotUzNMKg\npLXLZLuZN9zUMi7VAlexFoD/YD0AV7EWUBd2H8nX/3tjm1oF++jV5wfK3dVid/7UpTN68bOX5OPm\npb/d92v5uht/UeNW18INfQ4PAAAAgIYvsmMzPdC/vXLOl2jxJ/sdzrcJaKlxPUbqUnmx3k1LMiBh\n7aPwAAAAAI3IlOFdFdrUWx9+eVTZRwsczj/YZYg6B7XXttNp2nZqlwEJaxeFBwAAAGhEPNxc9Nyk\nWJkkvZqUoSvlVXbnzWazZvWZKjeLq95JS9LFsiJjgtYSCg8AAADQyISHBWr04E7Ku3BF76/b53C+\nhW+wJkc9opLKUr21a8lNfe7m7UbhAQAAABqhiUO7qG0LP3369QmlHzjvcH5ox7vVI7iL0s/u0Zbj\nX9d9wFpC4QEAAAAaIVcXi56bGCsXi0nzl2eo5Eql3XmzyayZcVPk6eKhDzKSlV9aaFDSW0PhAQAA\nABqp9i39NWFoF10oLtdbKXsczjf1DtRjMWNVVl2uN1IXyWqzGpDy1lB4AAAAgEZszKBO6tQ6QFvS\ncrRt91mH8wPb3aHY0Ahlnz+ojUe+NCDhraHwAAAAAI2YxWLWcxNj5eZiVsKqLF26XGF33mQy6ae9\nHpWPm7cWZ63W2ct5BiX9cSg8AAAAQCPXurmvpozopqKSSi1YmelwF7YAT3893nOiKmuqtGBHoqzW\n+ntrG4UHAAAAgB64q716dAjS9uxcbUnPcTjfr01P9WvdU4cLj2vtwc8MSPjjUHgAAAAAyGw26Znx\nMfJws+it1btVcKnM4TEzek5QgIefVmSv06lLZwxIefMoPAAAAAAkSSFB3prxYA+Vllfr78szHN7a\n5uvuoyd7T1a1tVqv7/hA1TXVBiW9cRQeAAAAANcM6xum2PBgZRzK16fbTzqc7xkaoUHt+unEpRyt\n2veJAQlvDoUHAAAAwDUmk0lPj4uWt6er3lubrXMFpQ6PmRozRk29ArVm/6c6Unii7kPeBAoPAAAA\ngO8I8vfUTx+OUHlljeYvz1CN1f6tbV6unpoZFy+rzaoFOxJVWV1pUFLHKDwAAAAAvmdAbCv1i2yh\nvccK9dFXRx3O92gervs6DdSZy7lK2rPWgIQ3hsIDAAAA4HtMJpNmjo6Sv4+bFn68X6dyix0e82jk\nw2rhE6z1h77QvvOHDEjpGIUHAAAAwA/y93HXrDHRqqq2al5Shqpr7H/AqLuLm2b1mSqZpITUhSqr\nKjco6fVReAAAAABc1x0RLTS4V2sdOX1JK7847HC+c9P2eih8qM6XFmpR1moDEtpH4QEAAABg109G\nRSjI30NJGw/qSM4lh/Nju49QG/+W+vzoV8o8t9eAhNdH4QEAAABgl4+nq54eH6Maq03zlqWrqrrG\n7ryrxVWz+0yVxWTWGzsXqaTS8dbWdYXCAwAAAMCh2C7Bur9fW53Kvawlnx5wON+2SWuN6T5CF8uK\n9H76CgMS/jAKDwAAAIAbMm1kd4UEeWnNliPaf/yCw/lRXYepQ2CYvjqZqh05GQYk/D4KDwAAAIAb\n4unuomcnxMomaV5Susorqu3OW8wWze7zmFwtrnp711IVlTve2rq2UXgAAAAA3LDu7YM0akBHnSso\nVeL6fQ7nW/qFaGLEQ7pcUaK3dy2VzWYzIOV/UHgAAAAA3JTJ94WrdXMfrfvXcWUdync4P7zzIHVr\n1kk7z2Tpq5OpBiT8DwoPAAAAgJvi5mrRcxNjZTab9OryDJWWVdmdN5vMmhk3Re4u7novfbkKr1w0\nKCmFBwAAAMCP0Kl1E42/t7MKLpXpnQ+zHc4H+zTV1OjRulJVpjd3LjLs1jYKDwAAAIAfZdy9ndW+\npb8+33lKqXtzHc7f0/4uRYd0U1bufn1+9J8GJKTwAAAAAPiRXCxmPT8xVi4Ws15LzlRRSYXdeZPJ\npJ/2jpe3q6cWZq1Sbonj9//cKgoPAAAAgB8trIWf4u8P16XLFXpz9W6H84FeAZoeO0EV1RV6I3Wh\nrFZrneaj8AAAAAC4JQ8N6KiubQP1z6yz+irjjMP5u8J6K65VtPbnH9HHh7+o02wUHgAAAAC3xGI2\n6dmJMXJ3s+iN1Vm6UFxud95kMumJnpPk5+6jZbs/VE7RuTrLRuEBAAAAcMtCm/po2sjuunylSq+t\nyHS4C5ufh6+e6PWoqqzVWrAjUdXWmjrJReEBAAAAUCvuv6Otojs10679efo89ZTD+bhW0bo7rI+O\nXjyplP0b6iQThQcAAABArTCbTXp6fIy8PFz0jw+zlXfhisNjpsWOU6BngFbtXa9jFxyXpJvOVOvP\nCAAAAKDRatbEU0+MilBZRbX+vjxDVqv9W9u83bz0VFy8amxWLdjxgapqqmo1D4UHAAAAQK0a3Ku1\n+nQP0e4jBVr/r+MO56NCumlIh/46XXxOK7LX1WoWCg8AAACAWmUymTRrTJR8vdz0wfp9OpNf4vCY\n+KhH1Ny7qdYe/EwHC47WWhYKDwAAAIBa18TPQ7PGRKmyqkbzlqWrpsb+B4x6uHpoZp8pkk1asCNR\n5dUVtZKDwgMAAACgTtwZFaq7Y1rq4MmLWr3liMP5rs06aUSXe5Rbkq+lWSm1koHCAwAAAKDO/PSR\nSAX6uWvphgM6frbI4fyEiAfV0i9Enx7Zoj15B275/BQeAAAAAHXG18tNc8bFqLrGpnnL0lVVbf/W\nNjeLq2b3eUxmk1kJqQtv+fwUHgAAAAB1qlfX5hraJ0zHzxZr+WcHHc53CAzTI93uU+GVi7d8bgoP\nAAAAgDo348HuCm7iqeQvDuvQKcdF5pFuw9UuoPUtn5fCAwAAAKDOeXm46tkJsbJabXplaboqqmrs\nzruYLfrlgNm3fF4KDwAAAABDRHRsqgf7t9eZ/BIt+ni/w3l/D79bPieFBwAAAIBh4od3Vctm3lr7\n1VHtOVpQ5+ej8AAAAAAwjIebi56bGCuTpFeTMnSlvKpOz0fhAQAAAGCoLmGBGj24k85fuKL3Ptpb\np+ei8AAAAAAw3MShXdS2hZ82bD+pXfvz6uw8FB4AAAAAhnN1sej5SbFysZj02ooMXb5SWSfnofAA\nAAAAuC3ahfpr4tBwXSiu0Ntr9tTJOSg8AAAAAG6b0YM6qkubJtqSnqN/7T5b689/Q4WnoqJCQ4YM\nUUpKinJzcxUfH6/JkyfrueeeU1XV1V0V1q5dqzFjxmj8+PFauXJlrQcFAAAA4HwsFrOenRgjNxez\nElZm6eLl8lp9/hsqPAkJCQoICJAkzZ8/X/Hx8Vq8eLHatGmjVatWqaysTAkJCUpMTNTChQuVmJio\n4uLiWg0KAAAAwDm1CvbV1BHdVFxaqYSVWbLZbLX23A4Lz7Fjx3T8+HENGDBANptNO3fu1KBBgyRJ\ngwYN0rZt25SVlaXIyEh5e3vL3d1dsbGxSk9Pr7WQAAAAAJzbyLvaK6JDU23PztXmtNO19rwOC8/L\nL7+sF1988drXZWVlcnV1lSQFBQXp/PnzKiwsVGBg4LWZwMBA5efn11pIAAAAAM7NbDbpmQkx8nS3\n6O01e5R/saxWntfF3jdTUlLUu3dvhYaG/uD3r3ep6WYuQaWlpd3wLODMWAvAf7AegKtYC2iM7o3y\n00epF/WHd7YqflBTmUymW3o+u4Vn69atysnJ0caNG5WXlydXV1d5eXmpsrJSbm5uysvLU/PmzRUc\nHPydKzp5eXmKiYm5oQA9e/a8pR8AcAZpaWmsBeDfWA/AVawFNFaxsTadLd6utAPnlV8ZpGD3C7f0\nfHZvaZs3b56Sk5O1fPlyjRkzRrNmzdIdd9yhTz/9VJK0YcMG9e/fX5GRkcrOzlZJSYlKS0uVkZHB\nAgUAAABw00wmk+aMi5aPp6ve/WjvLT/fTX8Oz9NPP62UlBRNnjxZxcXFevjhh+Xu7q65c+dq+vTp\nmjFjhubMmSMfH59bDgcAAACg8Qny99RPH4lURWXNLT+X3Vvavm327NnX/vzee+997/tDhw7V0KFD\nbzkQAAAAANwd01Kpe3Nv+Xlu+goPAAAAANQ1k8mk5x+99bfJUHgAAAAA1EsW863t0CZReAAAAAA4\nMQoPAAAAAKdF4QEAAADgtCg8AAAAAJwWhQcAAACA06LwAAAAAHBaFB4AAAAATovCAwAAAMBpUXgA\nAAAAOC0KDwAAAACnReEBAAAA4LQoPAAAAACcFoUHAAAAgNOi8AAAAABwWhQeAAAAAE6LwgMAAADA\naVF4AAAAADgtCg8AAAAAp0XhAQAAAOC0KDwAAAAAnBaFBwAAAIDTovAAAAAAcFoUHgAAAABOi8ID\nAAAAwGlReAAAAAA4LQoPAAAAAKdF4QEAAADgtCg8AAAAAJwWhQcAAACA06LwAAAAAHBaFB4AAAAA\nTovCAwAAAMBpUXgAAAAAOC0KDwAAAACnReEBAAAA4LQoPAAAAACcFoUHAAAAgNOi8AAAAABwWhQe\nAAAAAE6LwgMAAADAaVF4AAAAADgtCg8AAAAAp0XhAQAAAOC0KDwAAAAAnBaFBwAAAIDTovAAAAAA\ncFoUHgAAAABOi8IDAAAAwGlReAAAAAA4LQoPAAAAAKdF4QEAAADgtCg8AAAAAJwWhQcAAACA03Jx\nNFBeXq4XX3xRhYWFqqys1FNPPSUfHx+98sorcnFxkZeXl/7yl7/I19dXa9eu1cKFC2WxWDR27FiN\nGTPGiJ8BAAAAAH6Qw8LzxRdfKCIiQjNmzNDZs2c1bdo0+fr66m9/+5vCwsL01ltvKSkpSZMnT1ZC\nQoJWrVolFxcXjRkzRkOHDpWfn58RPwcAAAAAfI/DwjN8+PBrfz579qxatGghd3d3XbhwQWFhYSoq\nKlL79u2VlZWlyMhIeXt7S5JiY2OVnp6ugQMH1ll4AAAAALDHYeH5xoQJE3T+/Hm9+eabcnFxUXx8\nvPz8/BQQEKCf/exnWr9+vQIDA6/NBwYGKj8/v05CAwAAAMCNuOHCk5SUpAMHDuiFF15QYGCgFixY\noOjoaL388staunSp/P39vzNvs9lu6HnT0tJuLjHgpFgLwH+wHoCrWAvArXNYeLKzsxUUFKQWLVoo\nPDxcNTU1Sk1NVXR0tCSpX79+WrdunUaPHq3NmzdfOy4vL08xMTF2n7tnz563GB8AAAAArs/httS7\ndu3S+++/L0kqKCjQlStX1KlTJx09elSStGfPHrVp00aRkZHKzs5WSUmJSktLlZGRQaEBAAAAcFuZ\nbA7uPauoqNAvf/lL5ebmqqKiQnPmzJG/v7/+/Oc/y9XVVQEBAfrjH/8oHx8fbdy4Ue+8847MZrPi\n4+M1YsQIo34OAAAAAPgeh4UHAAAAABoqh7e0AQAAAEBDReEBAAAA4LQoPAAAAACcFoUHqAVfffWV\nkpKSfvB7x44d07Bhw7RkyRLFx8fryJEj132eL774QtXV1SooKNBvf/vbuooL3Db21grQ2FVXV2vc\nuHH6xS9+cbujAPXOmjVr9Oc///l7j48ePVpnz561e+wNf/AogOvr37//db+3e/duDRw4UI8++qg+\n/fRTu8/z/vvvq2/fvmratKn+93//t7ZjAredvbUCNHbnz59XVVWV/vSnP93uKEC9ZDKZbuix/1an\nhaekpERz5sxRZWWl+vTpo5SUFD3zzDN65513FBoaKi8vL919990aMmTI9+a++OKLuowG1Ko1a9Zo\n8+bNunjxolq3bq0DBw6oe/fueu655/TWW2+pvLxcLVu2vLYo8/Ly9MILL8hsNqu6ulovvfSS0tPT\nlZWVpSeeeEJ/+MMfNHfuXK1atUo7duzQvHnz5OrqqpCQEP3f//2f1q9fr7S0NF24cEEnTpzQjBkz\nNHr06Nv8XwFw7Ju18vjjjysyMlKPP/647rzzTk2bNk1vv/22goODtWDBAo0dO1YbNmxQWFiYunfv\nrk8//VRhYWH661//ert/BKDOvPTSSzp16pR++ctfasCAARo2bJh+9atfqV+/fho+fPjtjgfUiZKS\nEj399NOqqKjQ3XffrRUrVuhPf/qTXnnlle+89vm2P/zhD8rKylLbtm1VVVXl8Bx1ekvbhx9+qK5d\nu2rJkiXq2LGjJGn+/PlavHixEhISdOTIEZlMpu/N3UhTA+qjvXv36oUXXtCqVau0ZcsWubm56Ykn\nntD999+vKVOm6Jtd4PPz8zV79mwlJiZq9OjRWrp0qR566CE1a9ZM77zzjlxdXa+tg//5n//R/Pnz\ntWjRIvn7+2vdunWSpMOHDyshIUGvv/66Fi1adNt+ZuBm7dixQ1lZWbJarbJYLNqzZ48kKT09XX37\n9lVNTY0iIiK0atUqpaenq3Xr1kpOTlZaWppKSkpuc3qg7vz85z9Xu3bt9POf/1zvvvuudu/erfPn\nz1N24NRSUlLUsWNHLVmyRL6+vrLZbNd97SNJR48eVWZmppKTkzV37lwdP37c4TnqtPAcO3ZM0dHR\nkqS4uDhdvHhR3t7e8vf3l8ViUc+ePX9wDmiowsLCFBgYKJPJpObNm+vy5cs/ONe0aVMtWrRIkydP\n1gcffKBLly5Jkmw2m7790VhFRUUym81q3ry5pKvrY9++fZJ0bc2EhITwIhANSp8+fZSZmalDhw6p\na9euKi8vlyQVFBQoJCREkhQRESFJCgoKUteuXSVJgYGB111TgDPx9/fXuHHj9NRTT+nXv/717Y4D\n1KmjR48qNjZWknTPPfeoqKjo2uso6buvfSTpyJEjioqKknT1NVDr1q0dnqNOC4/NZrv2W2qLxSLp\nu/fZffPYtx//9mNAQ/Ptv7//XV6+bf78+erfv78WL16sWbNmXff5TCaTrFbrta+rqqquneO/zwU0\nFC1bttS5c+eUnp6u2NhYhYaGauvWrQoPD7828+2/3/xdR2OUn58vb29vFRYW3u4oQJ2y2Wwym/9T\nSUwm03f+X//t1z7fzH+7T9TU1Dg8R50Wnvbt2yszM1OS9PXXX6tJkya6fPmyiouLVV1drdTU1O/N\nbdu2rS4jAfXCpUuX1KZNG0nS559/fu3+U7PZ/J2F6+fnJ7PZrNzcXElSamqqevTo8b3n40UgGpoW\nLVpo06ZNio6OVmRkpBYuXKg+ffrc7lhAvZCTk6Nt27bpgw8+0B//+Mfv/OILcDZt2rRRdna2JOnL\nL7+Un5+fTCbTdV/7tGvX7tr8mTNnlJOT4/AcdVp4HnroIe3Zs0fx8fHav3+/TCaT5syZo8mTJ+up\np55S27ZtJUkPPvjgd+aAhui/33tmbyeR8ePH63e/+51mzJihESNGaOfOndq2bZvi4uI0ceJEXbx4\n8doxv/vd7/T8889rypQpqqmp0YgRIxyeG6jPTCaT4uLilJubKz8/P0VHR+vrr7++Vni+/ff5en8G\nnNkf/vAHvfDCCwoNDVX//v31wQcf3O5IQJ15+OGHtXPnTk2ZMkUXLlyQi4uLfv/731/3tU+XLl3U\nuXNnTZgwQX//+9+v3fZsj8lm0K+Gr1y5opEjR35n97U///nP6tKli0aNGmV3DgAAAIDzOXv2rI4f\nP64777xTmZmZeu211/Tuu+/W6jkM/RyeG/kNuL3HAQAAADgPX19fvffee3r99dclSb/61a9q/RyG\nXeEBAAAAAKPV6Xt4AAAAAOB2ovAAAAAAcFoUHgAAAABOi8IDAAAAwGlReACgETpz5ozCw8OVnJz8\nncfT09MVHh6unTt33vBzJScn6xe/+IXdmfj4eH399dffyxAREaEpU6YoPj5eEydO1AviXPwTAAAE\n3UlEQVQvvKCSkpIb/0HsZJk7d67Onz9/3dmMjIwb+sA6AEDDRuEBgEYqLCxMH3744XceW7t2rdq3\nb29YhqCgIC1cuFCLFi3SsmXLFBwcrISEhFp57r/97W8KDg6+7vdXr16t06dP18q5AAD1l6GfwwMA\nqD+Cg4NVVVWlnJwctWrVStXV1dq1a5ciIyOvzaxcuVLLly+Xp6enmjZtqt///vfy9vbWkiVLlJSU\npBYtWqhZs2bX5g8cOKCXX35Z1dXVqq6u1m9+8xuFh4ffcKbevXtr+fLlkqTBgwdr+PDhOnXq/2/v\n/kGbWsM4jn9T8q9F0uLQMxhLJikY/6SlduikDqJgRlEKGupQB8GhKCalCaUBCXYxKFS7xMRA3KKD\nBAehDbgKrS1uwatgoUYLrVFomjhIDkm57S33wqVNf58l8Lw5eZ/3bE+e95z3L+LxOK9evSKdTgNw\n8OBBotEo7e3tW+Zy5swZnj59itvtJhqN8v79eywWC4FAAKvVSi6XY35+nmAwiGEYRCIRKpUKlUqF\nkZERenp6CAaD2Gw2CoUCk5OTGIbxX2+7iIj8z9ThERHZx/x+P9lsFoCZmRkGBgbMw5+/fPnCw4cP\nSSaTJJNJDMMgkUiwtrZGPB4nnU7z5MkTvn//bv7e7du3GR8fJ5lMEg6HCYVCO85lY2OD169f09fX\nZ8Y8Hg/xeJylpSUeP35MIpEgnU7T19fH1NTUtrnUvHz5kmKxyPPnz5meniabzXL27Fm6u7u5e/cu\n/f39TExMMDg4SCqVIhKJcOfOHfP6X79+kUqlVOyIiOxR6vCIiOxTFouFCxcuMDg4yM2bN3nx4gXD\nw8M8e/YMgIWFBbxeL62trQD09/eTyWT4+PEjbrcbl8tlxj98+MC3b98oFAqMjo5SO9O6VCqx3fnW\nxWKRq1evmt/p7e3l2rVr5rjP5wP+PG+zvLzM9evXqVarrK+v43a7t8yl3tzcHKdOnQL+nOg9NTVl\njtXmnZub48GDBwAcOXKEHz9+sLKy0pCDiIjsTSp4RET2sY6ODjweD/l8nk+fPnH06FFzzGKxNBQr\n1WrVjNW6QACVSgUAu92Ow+EgmUzueP7aMzxbsdvt5ufx48cbihXA3Ka2OZd6m9fxd1paGjc81K/R\nZrNtvwgREdnVtKVNRGSf8/v93Lt3j3PnzjXEvV4vi4uLlEolAN6+fcvJkyfp6uri8+fPrK2tUa1W\nzbevHThwgEOHDjEzMwNAoVDg0aNH2879T4VIzbFjx5ifn+fr168A5HI53rx5s2Uu9Xw+H/l8HoDV\n1VUuXbpEuVympaWFcrkMwIkTJ5idnQVgcXGRjo4O2tvbd5SbiIjsburwiIjsc6dPnyYcDnPx4sWG\nuGEY3Lp1i0AggMPhwDAMRkZGcDqd3LhxgytXrnD48GHcbjc/f/4EIBaLEY1GmZ6eplwum6+Iru/C\n1Nsqvnmss7OT0dFRhoeHaWtrw+l0EovFcLlcW+ZSu/78+fO8e/eOy5cvU6lUGBoawmq1MjAwQCQS\nIRQKMTY2RjgcJpPJsLGxwf379//9DRURkV3FUt3p32siIiIiIiJ7jLa0iYiIiIhI01LBIyIiIiIi\nTUsFj4iIiIiINC0VPCIiIiIi0rRU8IiIiIiISNNSwSMiIiIiIk1LBY+IiIiIiDSt3wUhm1Mr8AWD\nAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -382,7 +463,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The \"best\" model according to AIC and BIC is the one with the smallest value. In this case, both the Akaike and Bayesian information criterion point to the same conclusion; they are both at their minimum with the model $Y = b_0 + b_1 \\cdot gold$ meaning gold is the best single predictor for the model on this sample\n", + "The \"best\" model according to AIC and BIC is the one with the smallest value. In this case, both the Akaike and Bayesian information criterion point to the same conclusion; they are both at their minimum with the model $Y = b_0 + b_1 \\cdot gold$ meaning gold is the best single predictor for the model on this sample.\n", "\n", "### AIC vs BIC\n", "\n", @@ -401,18 +482,18 @@ "\n", "Now that we have a handful of criteria to quantify model quality we need to have a method to cycle through and search for the possible models.\n", "\n", - "The first idea that might come to mind is to simply pool all possible models together and test them all. While this might work for a situation in which there are a small number of potential regressors, when dealing with big data sets and many possible predictors it becomes a more difficult issue. The number of predictor combinations begins to rise quickly as more possible predictors are added making cycling through every combination not possible.\n", + "The first idea that might come to mind is to simply pool all possible models together and test them all. While this might work for a situation in which there are a small number of potential regressors, when dealing with big data sets and many possible predictors it becomes a more difficult issue. The number of predictor combinations begins to rise quickly as more possible predictors are added making cycling through every combination not efficient.\n", "\n", "### Step AIC/BIC\n", "\n", - "If the number of possible predictors large, the best for selecting the \"best\" is likely iterating through a stepwise linear regression. Broadly, the method builds a model by selecting regressors one at a time, at each step choosing the one that minimizes the model's AIC or BIC. The process ends when adding another variable can no longer decrease the AIC/BIC or when the algorithm exhausts the predictor set and there are no more potential predictors to add.\n", + "If the number of possible predictors large, the best for selecting the \"best\" is likely iterating through a stepwise linear regression. Broadly, the method builds a model by selecting regressors one at a time, at each step choosing the one that minimizes the model's AIC or BIC. The process ends when adding another variable can no longer decrease the AIC/BIC or when the algorithm exhausts the predictor set and there are no more potential predictors to add. Note that stepwise regressions need not only step forward; the process can be conducted in reverse, starting with all variables included and subtracting off those yielding the *highest* AIC/BIC, or in tandem with steps alterating forward and backwards.\n", "\n", "Let's use a step-forward AIC algorithm to select a set of unemployment predictors to use in our model. Some print statements have been added to show the iteration process but can and should be deleted if you would like to use the function elsewhere." ] }, { "cell_type": "code", - "execution_count": 927, + "execution_count": 217, "metadata": { "collapsed": false }, @@ -460,6 +541,7 @@ " selected = pd.concat([selected, data[best_element]],axis=1)\n", " current_score = best_new_score\n", " print 'Chosen Model Predictors:', selected.columns.values[1:], '\\n'\n", + " \n", " else:\n", " print 'Best new AIC did not beat current best. The new variable to add is rejected and the algorithm is finished.\\n\\n'\n", "\n", @@ -469,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 928, + "execution_count": 218, "metadata": { "collapsed": false, "scrolled": false @@ -536,7 +618,7 @@ }, { "cell_type": "code", - "execution_count": 929, + "execution_count": 219, "metadata": { "collapsed": false, "scrolled": false @@ -558,7 +640,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAHBCAYAAABkCVTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4lfX9//HnOSebEUJCwgwbQlhKwhJEEHCAs1oHCFpH\nnXV8rVKttVhrHa0/axUH7oGziAIqKghCZYdNEiADElYSkhCy1zm/P26CYNbJyclZeT2uK9cd7/nm\nJrTnlc8y2Ww2GyIiIiIiIh7K7O4CREREREREGqLQIiIiIiIiHk2hRUREREREPJpCi4iIiIiIeDSF\nFhERERER8WgKLSIiIiIi4tHsCi3JyclMnTqVBQsWnNr33nvvMWTIEEpLS1usOBERERERkUZDS2lp\nKc8++yzjxo07te/LL7/kxIkTREZGtmhxIiIiIiIijYaWwMBAXn/9dSIiIk7tu/DCC/nDH/7QooWJ\niIiIiIiAHaHFbDYTEBBwxr7g4OAWK0hEREREROR0GogvIiIiIiIeza85F5tMJrvOS0hIaM5jRERE\nRESklYiLi6u1r1mhxWazYbPZHH64/CIhIUHvyAF6b47Tu3Oc3p3j9O4co/fmOL07x+ndOU7vznH1\nNXY0Glq2b9/OY489Rl5eHhaLhU8++YT4+Hg2b95MTk4O11xzDfHx8cydO9fZNYuIiIiIiDQeWoYP\nH86SJUtcUYuIiIiIiEgtzeoeJiIiIiLiyWw2G+Xl5S5/bllZmcuf6W0CAwPtHiOv2cNERERExGeV\nl5e7PLQMHjzYpc/zRk39e1FLi4iIiIj4tMDAQIKCgtxdhjSDWlpERERERMSjKbSIiIiIiIhHU2gR\nEREREfFwq1at4pFHHqn3+Msvv8yCBQtcWJFrKbSIiIiIiIhH00B8EREREZEWtmjRIjZu3Eh+fj6p\nqancf//9LF26lLS0NP75z3+ybds2vvnmGwAmT57Mbbfdxt69e5kzZw4dOnSgR48ep+61YMECli5d\nisViYcqUKdx0001u+lO5jkKLiIiIiLQuvXrVvX//fuecX4+MjAwWLFjA559/zvz58/nyyy9ZuHAh\nr732GkePHmXhwoVYrVZ++9vfctFFF/HKK69w7733MmnSJObOnQvAwYMH+e677/j4448BuO6667jo\noouaVIc3UmgREREREXGBIUOGANCpUycGDhyIyWQiIiKCPXv2MGHCBEwmExaLhREjRpCcnExqaipn\nnXUWAKNGjWLNmjXs2LGDAwcOMHv2bGw2G6WlpRw8eNCdfyyXUGgRERERkdaliS0kTT6/HhaLpc7v\nCwoKsNlsp/67oqLi1ErxZrMxBL3meEBAABMnTuSJJ544497r1693So2eSgPxRURERETcaOrUqWzb\ntg2r1UpVVRU7d+5k8ODB9O7dm507dwKwYcMGAAYPHsyGDRsoKyvDZrPx1FNPUVFR4c7yXUItLSIi\nIiIibnbNNdcwc+ZMbDYbv/3tb+nSpQt33HEHjzzyCB988AHdunWjsrKSLl26MHv2bGbOnImfnx9T\npkwhICDA3eW3OIUWEREREZEWduWVV576fuLEiUycOLHW9zNmzDjjmtjYWL766qta95oxY0atc++5\n5x7nFuxh1D1MREREREQ8mkKLiIiIiIh4NIUWERERERHxaAotIiIiIiLi0RRaRERERETEoym0iIiI\niIiIR1NoERERERHxUWPGjHHr8zdv3kxeXl6z76PQIiIiIiLio0wmk1ufv3DhQnJzc5t9Hy0uKSIi\nIiLSwhYtWsTevXuZM2cOJSUlXHLJJfj5+XHttdeycuVKKisreeeddwgKCuIvf/kLBw8epKqqinvv\nvZfRo0cza9YsRo8ezdq1azGbzVxxxRUsWrQIi8XCe++9x7x58zh69ChHjhwhJyeHhx9+mPHjx596\n/p49e3jyyScxm820adOGZ555hrlz53LNNdcwduxYKioqmDZtGk8++SQLFizAYrGQlJTE7bffzpo1\na0hKSuLhhx9m8uTJ/PDDD7z99tv4+fkxZMgQ5syZw6JFi0hISCAvL4/9+/dz880307VrV5YvX05K\nSgovvfQSnTt3dvj9KbSIiIiISKvx9pLd/Lz9kFPvOW54N26+dHCj5/261aO6upq+fftyyy238OCD\nD7Ju3TqKioqIjIzkqaeeIj8/nxtvvJHFixcDEBUVxUcffcT111/PiRMnWLBgATfccAN79uwBIDs7\nm7feeutUODo9tPzjH/9gzpw5DB06lHfeeYf333+fK664giVLljB27Fh+/vlnJk6ciMViITk5mWXL\nlrFx40YeeughfvzxR7Zs2cKCBQsYO3Ysr776Kp9++in+/v7cf//9bN26FYB9+/bx6aefkpaWxoMP\nPsiiRYuIiYlh7ty5zQosoNAiIiIiIuI28fHxAERGRlJYWMi2bdtISEggISEBm81GRUUFlZWVAAwd\nOhSATp06MWjQIAA6duxIUVERAGPHjgVgwIABZGdnn/Gc1NTUU9ePGjWKefPmcdddd/HMM89QWVnJ\nDz/8wLXXXkt5eTkxMTH4+fnRqVMnevXqRWBgIBERERQWFpKSksLhw4e55ZZbsNlsFBcXc/jwYQDO\nOussADp37kxhYeGpZ9tstma/J4UWEREREWk1br50sF2tIs52eitLVVXVqe8tFssZ5wUEBHDnnXcy\nbdq0Wvfw8/Or8/uaUGC1Wu2qpbKyErPZjMViYcKECaxcuZKUlBSGDx/Oxo0bz6jp9O9tNhsBAQEM\nGTKEN99884x71nRV+3VNzqKB+CIiIiIiLaxt27anWj8SEhLqPW/48OEsX74cgNzcXF544QW7n1Fz\n3+TkZLp27Qr8Eh4GDBjA9u3bAdi4cSNDhgwB4PLLL+f5558/oytZQ3r16kVaWtqpGcFeeumlWq06\npzObzWeENEeppUVEREREpIWNGTOGV199ldmzZ58aO3J6a0RNS8zFF1/MunXruO6667DZbPzhD384\n43hD37dt25Y777yTQ4cO8ec///mM43/+85954oknMJvNtG/fnqeffhqA2NhYbDYb06dPt+vPERQU\nxCOPPMJtt91GYGAgsbGxREZG1nv+yJEjue+++3jllVfo27evXc+oi8nm7LabOiQkJBAXF9fSj/Fq\nekeO0XtznN6d4/TuHKd35xi9N8fp3TnOV95dWVkZYHzY9mUvv/wyYWFhzJw5s0nXpaam8ve//513\n3nmnhSqrW31/L/X93KmlRURERESkFfroo4/4/PPPee6559xdSqMUWkREREREvNw999zT5GtmzJjB\njBkzWqAa59NAfBERERER8WgKLSIiIiIi4tHUPUxEREREfFp5ebm7S5BfKS8vJzAw0O7z1dIiIiIi\nIj4rMDCwSR+OnWH37t0ufZ43aurfi1paRERERMRnmUwmt0x37FNTLGdmwsqVMHu220pQS4uIiIiI\niNTv7rvhxhth3z63laDQIiIiIiIidXvoIcjIML7/8ku3laHQIiIiIiIitVmt8MILUFICZrNbQ4vG\ntIiIiIiISG15eVBdDUOGQNeusHo1HD0KnTu7vBS1tIiIiIiISG1HjxrbqCi44gqw2WDxYreUopYW\nERERERGpLSvL2EZFwZVXGmNbxoxxSykKLSIiIiIiUtvpoaVnT/h//89tpah7mIiIiIiI1BYXB//5\nD0yY4O5K1NIiIiIiIiJ1GDjQ+PIAamkRERERERGPptAiIiIiIiJNU13t0scptIiIiIiIiH0OH4ZR\no+Cuu1z6WIUWERERERGxT1QU7N8PX37p0tYWu0JLcnIyU6dOZcGCBQAcPXqUWbNmccMNN/DAAw9Q\nWVnZokWKiIiIiIgLWa0weza89NKZ+y0WuOwyyM6G9eubds/KSvjkE+PeTdRoaCktLeXZZ59l3Lhx\np/a9+OKLzJo1iw8//JDo6GgWLlzY5AeLiIiIiIiHys+HDz6AFStqH7vySmO7aFHT7vnKK3D99fDM\nM00up9HQEhgYyOuvv05ERMSpfRs3bmTSpEkATJo0ibVr1zb5wSIiIiIi4qFOX1jy1yZPhrZtjS5i\nNpt998vNhblzITQUfv/7JpfTaGgxm80EBAScsa+0tBR/f38AwsPDycnJafKDRURERKTlrd91hDXb\nDrm7DPE2DYWWoCC4+GKoqgJ7c8DcuXD8OPz1r3BaY4i9mr24pM3OdJWQkNDcR/k8vSPH6L05Tu/O\ncXp3jtO7c4zem+Na87vLKajk1W+ysNpgzaZkpp4ditlksvv61vzumsvb313YunX0ATLKy8mp489i\nvucerCEhkJlpfDUgKDWV2FdfpTw6msSxY7E58G4cCi1t2rShoqKCgIAAsrKyiIyMbPSauLg4Rx7V\naiQkJOgdOUDvzXF6d47Tu3Oc3p1j9N4c15rfnc1mY+4b67HaIKxdIOuSi/APCuX+68/C38/S6PWt\n+d01l0+8uzVrAIgeOZLo5v5Z3n0XqqsJmjePEWPGNHhqfWHPoSmPx44dy3fffQfAd999x7nnnuvI\nbURERESkhWxKzGLLnmzOGtCJeQ+fz6BeHVm97RBz31hPcalmfpVGXHghvPmmsSZLc/3737B4MUyf\nboyBWb0ali9v0i0abWnZvn07jz32GHl5eVgsFj755BPeeust/vSnP/Hpp5/StWtXrqyZQUBERERE\n3K6yqpo3F+/CbDZx2+VDaBcSwJN3nMPzCxJYt/MIf5r3P+beNobw0GB3lyqeatAg46spbDaoq/uh\nxQKXXvrLOZdeCj16wK5ddt+60dAyfPhwlixZUmv/22+/bfdDRERERMR1Fq9O48ixYi49tw/RndsD\nEOhvYc7skbzx5U6+/jmdP/5nDU/cNubUcZFmOXQIrrgCXnwRzjmn/vNMJhgwAHbuNBantDTeVRGc\nMBBfRERERDxH/okyPl2+h3YhAcy4YOAZxyxmE7dfOZSIDsG893Uif/zPaiLDQuq8T7BfJX0HlNOh\nXWCz6kk+kMfbi3dTUlZ3l7ShfSO4/TfDmvUM8QDbt8PWrcasYitWQHx8/ecOGACbNxsD+Hv1suv2\nDo1pERERERHP9N43iZSWVzPr4hjahgTUOm4ymbj6/P7834wRtAkOIO9EWa2vY8dLST5Yxh//s5rM\nrEKHa/nf9kP8+ZWfST6QV+dzDh8rZunP6c16hniIadNgwQIoKoILLoBNm+o/d8AAY7t3r923V0uL\niIiIiI/Ym5HPik2Z9O7angvG9Grw3ElxPZgU16POYzabjeffXclPuwp56KU1PHrTSIb162R3HTab\njS9WpvDu14kEB1p49HdjiIupvd7H/7Yf4tn3N/P9hgPcctkQu+8vHuraa6G8HG680RjAv2ABzJhR\n+7zTQ8sFF9h1a7W0iIiIiPgAq9XG/EU7AbjtiqFYzPavx/JrJpOJScNCeeD6symvqOKv89exYlOG\nXddWVVuZ99/tvPt1IuGhQTx7z7l1BhaA0YM70y4kgJUJmVRWWR2uV5ysoACuvBJefbXp186eDW+8\nAZ07Q33LogwbZtw/Otru2yq0iIiIiPiAVVsOsicjn3HDuzK0b9NXHK/L+fHR/O335xAY4Me/P9nK\nh8uSGlxYvLi0kr+9uZ7v1h+gT7dQnr9vAr27htZ7vr+fhUnx3SkoqmBT4lGn1CxOcOQIfPmlMUbF\nEbfeCocPw5QpdR8fPBi++AIuu8zuWyq0iIiIiHi5krJK3vt6NwF+Zm6+ZLBT7z20XwT//MO5dA4P\n4dMf9vL8gi0UFJVTVFJxxtfB7ELmvLyGrXtziB8UxTN3j7drSuULRvUE4IeN9rXkiAtkZRnbqLpb\nyOxS19THzaAxLSIiIiJe7r8/7iPvRDnXXzCQyI51zwbWHD2i2vGveyfw97c38NPWg/y09WC9514y\nrje3NqF7Ws8u7RkQ3YEtyVnkFpR6xdoxHy5LYsWmTOY9NImQIH93l+N8zggtTqbQIiIiIuLFsvNK\n+PKnVMJDg/jNpH72X/j11/DII/DZZxAT0+jpoW0D+fud4/j4u2QO5RTVec6o2M5MHd3T/hpOmjqq\nJ3szjrN8UwbXThnY+AVuZLPZWLExg2MFZSQfyGfEwHrGbXizoye76im0iIiIiIgzvP9NEpVVVmZP\niyUowM6Pdps3wyWXGN//9JNdoQWMBSpvcnL3M4AJZ3fjzcW7WL4xg9+ePwBzMyYRaGkZWYUcKygD\nIDE91zdDiwe2tGhMi4iIiIiX2nMgj5+2HqRf91Amjuhu30UHDsCllxrff/QR3H57yxVop5Agf8YN\n68rR3BJ2pR1zdzkN2pKcfer7pPQ8N1bSgmbNgo8/NgbMt5ScHHjtNVi50q7TFVpEREREvJDNZuOt\nxbsBuOWyIfa1ThQUwPTpRvefF1+E669v4Srtd8HJbmU/bPDsAfk1oSU8NIg9GflUVfvgVM0xMXDd\ndRAe3nLPyM6GO+80wpEdFFpEREREvNDPOw6TtD+PsUO7MMTeKY6LioxZnf7wB7j33pYtsIlie3ek\nW6c2rN1xmKLSSneXU6ey8ip2peXSp2soI2M7U15RTfrhAneX5Z369jV+Fvfutet0hRYRERERL1NZ\nVc27SxPxs5i46ZJY+y/s1g3WroUXXmi54hxkMpmYMqonFVVWftpS/+xk7rQz9RhV1VZGxEQyqFdH\nABJ9tYtYSwsKgp49FVpEREREfNWSNelk5ZUwfVwfuka0bdrF7dqBxdIyhTXT5PgemM0mfth4wN2l\n1Kmma9iImEhiexuhxWfHtbhC//7GQpaFhY2eqtAiIiIi4kUKisr5dPke2oX4c93UAc2/YUVF8+/h\nJGHtgxg5KIrUgwWkHjzu7nJqSdiTTXCgHzE9OxLVMYSO7QNJTM/FZrO5uzTvNODkz+++fY2eqtAi\nIiIi4kU+/n4PJWVVXHfBQNqGBDR8cmMfpi+5xOimU1XlvAKb6dSA/I2eNSD/8LEijhwrZnj/CPz9\nzJhMJgb1Cie/sJysvBJ3l+c8Bw7ABRfAW2+1/LOmT4fHHoOOHRs9VaFFRERExEtkZhXy7br9dOvU\nhmnn9G78ghdegKuvhszMuo+3aWMEm5wcp9bZHHExkXRsH8iqLQcpr6x2dzmnbD3VNeyXtUtquoj5\n1LiWjAz44QdIS2v5Z118MTz5JPTq1eipCi0iIiIiXsBqtfHW4l1YrTZ+d8lg/CyNfIwrL4d//Qu+\n+w7a1jPuJfLkwojZ2XUfdwOLxcz58dEUl1aybucRd5dzypY9RrA7fTHJQadCS65bamoRR48aWw9a\nWBIUWkREREQ8XnllNc9+sImE5GyG9Ytg1ODOjV/04YfGIOc77oCwsLrPqflg6kGhBWDq6GhMJvjv\nir1UW90/XqSyqpodKTl0j2xLVMeQU/v7dA0lKMBC0n4famnJyjK2Ci0iIiIiYq/jheX8+ZWfWbvj\nCEP6hvOnG0diMjWykGR1NTz3HAQEwAMP1H9eTUtLzQdVD9E1oi1TRkZz4Gghyz1gJrHE9DzKKqoZ\nERN5xn6LxcyA6DAyjhZSWOI5Exo0i0KLiIiIiDRFZlYhD/5nNXsy8pkU152//X4s7RobfA/w5ZfG\n+hezZkHXrvWfFxVlLPBX4HkLJM68KIagAAsfLkumpMy9i03WTHUcN7D2B/maLmLJvtLaotAiIiIi\nIvbakZLDQy+tITuvhBkXDOSB60fgv3cPHDvW+MVHjkD79vDQQw2fN326MeXx3Xc7p2gnCg8N5qrz\n+3O8sJyFK1PcWsuWPdkE+JkZ3De81rHY3sY+nxmM/+CD8NVXdg2Od4qff4Z774Xduxs8TaFFRERE\nxMMs35jB46+vo7yiigeuH8H1F8ZgysiA4cONKWIbc889RnAZOLDh8/z8jC8PdcV5fQkPDeLLVSlk\n57tnWuHcglL2HznBkH4RBPrXXpQzpmcYZhO+M65l4EC47DIIDnbN8xIT4aWXYNOmBk/z3J9SERER\nER+1M+UYH3+/h/LK2uujVFttpB4soE2wP3++aRRD+0UYB157zVhPZfRo+x4SEtL4OR4uKMCP2dNi\neeHjLXzwTRIPzoxz6D5phwp4d+luiuvpZta3WwduvmwwQQG1Pxr/0jUsstYxgJAgf3p1CWVfRj6V\nVdX4+9UONtKAmgUm9+5t8DSFFhEREREXWr31IC98vIVqqw3/eqYt7t21PQ/dEE+PqHbGjrIyePNN\nYxG+665zYbXuN3FEd5asSWXVloNcem4fBkTXMxNaPTYnZfHs+5soq6gmwK/2+7babOzNOE7qoeM8\ndvNowtoFnXE8YU/N+ix1hxYwxrWkHS4g9WABMb0aXyhRTtO/v7Hdt6/B0xRaRERERFxk0aoU3l6y\nm5AgP/78u1EM69fJvgs/+8wYy/Lww67rtuMhzGYTN182hEdf+Zk3v9rFs/eMb3z2tJO+/jmd+Yt2\n4Gcx86cbRzJuWO1JCSqrrLz8+TZ+3JzJH19czV9vHUN05/YAVFdb2bY3h8iOIXTrVM9aNxiLTH79\nczqJ6XkKLU3VpYuxyGkjLS0a0yIiIiLSwqxWG298tZO3l+ymY/sgnrl7vP2BBWDePGOWrzvuqH2s\npMRY1b7CwSl3bTY4ftzYeqihfSMYO7QLSfvzWGvHgpPVJxfifO2LHbRvE8g/7hpXZ2AB8Pczc/91\nZzPzohiy80t5+KU1bN9rLCS5N+M4xaWVxLWtaDAoDepVMxjfhxaZdBWTyegitm8fWK31nqbQIiIi\nItKCKiqr+eeHm1m8Oo0eUe34573n0rtrqP03qK6Gyy+H3/8eevc+81hmJsTHw/PPGzMwnXuuMQC/\nKX7zG2PxSQ+c9vh0N02Pxc9i4t2lu6msqq73vLKKKp59fxNf/pRKj6i2/PPecxnYs+HWD5PJxHVT\nB/LgjBGUV1r56+v/44c3l5KQbEz/e/ZLT8LGjfVe3yksmIgOwSTtz8PmweGvUVu2wPjxxsKkrvTo\no/DWWw2GFnUPExEREWkhRaWVPPXOBnal5jK4TziP/W4Ube1ZZ+V0Fovxoa4+J04YUxv7+UHPntCp\nCS04AOEnp/HNyoIOHZp2rQt17dSW6eP68NXqVJasSePSc/vWOudEcTlPvbORfZnHGdYvgkduHNmk\n9z0xrgcRR/bzj2/285+k9gSnpWExwfDMHfDXv8K339Z7bWzvjqzeeohDOUWO/PE8Q3q6MQXx1Ve7\n9rl2PE+hRURERKSF1ASWccO68n8zRhBQx5S5zdKjh/FBevz4M8NLU0SeHGCend34FMludt3UAfy4\nOYN3libyztLEes+bPLIHd199Fv51DLxvzJB5/+Cf63fwxD2vcaSkiiF9wwkZNwaWLYO1a+Gcc+q8\nLraXEVqS0vPo6K2fsD10YUlQaBERERH5xfz5sG6d0VXF3Lxe9Nn5JadaWB6aFY/FbN/g8SYbOhRW\nrDDCy003Nf36mg+oNR9YPVjbkAD+cM3ZfLs2nfo6YY2MjeLS8X3sHqx/hnXrYNkyuk2cyD/nXMAn\n3+9hwtndYegTsHKl0dryww91Xhrbx2ixStqfx7h+TX+0R1BoEREREfECt99ubGfNgvPPb9atEk6u\n7zF+eNeWCyw14uONL0ec3tLiBcYO7cLYoV1a5uZz5xrbJ54gtG0gt/9mmPHfvc+FqVONwLJuHYwd\nW+vS6M7tCQnyIzE9l3H9mjYts8fw4NCigfgiIiIiYEwpXOOtt5p9u82JxgfA+EEOfgA8dqzBgclO\nExVlTKNcVtbyz/Jkx47Brl1GWJ0wofbxp582BqiPGlXn5RaziZieHTmUU0xxWf0TBXg0hRYRERER\nD2c2wz//aXy/cCHk5Tl8q4rKaran5NA9si2dw9vUPqGyEnIbmR535kyIiWn5Wb0mTYLiYvi//2vZ\n53i6iAhITYX33qv7eFyc8XdiqX9c0qDexixlGTkOTj/tbv/6Fyxfbixi6mrPP2+0ZtVD3cNERERE\nwPig9sc/GkHB3x9CmzAt8a/sSsulvKL6l1aW/Hx46inYs8dYRC8tDaqq4Ior4JNPIDDwzBvs3Qvf\nf29MYdyMOuziyNgPXxUUBN27O3z5oJMLS2YeK3dWRa7Vt6/x5Q47dxqBqR4KLSIiIiKnu+SSZt8i\nIelk17CYk6ElMND4TTIYUwyPGgXl5cYaLL8OLACvvGJs77mn2bWI6wyMDsPPYmJbWgl7M/IZEO2l\nY1vcYcCABg+re5iIiIiIk21KyiI40HJqRilCQmDTJmPcxLFjxloYmzbBggW1Ly4qgnfegS5d4Mor\nXVu4NEtQoB+3XzmM0gorj7zyM2t3HHZ3Sd5DoUVERETEdQ7nFHHkWDFnDYg8c52Q+PhfFnIEo1tW\nu3a1b/DZZ0Zwuf12o5uatJwjRyApqenXVVUZ4z8++6zWoYvG9uK6CeGYTfDM+5tYtCoFm62+CZrl\nlAsugH376j2s0CIiIiLiRJtPdg2Li3FwBqbx46FtW/j9751YVSMqKuDQIaO7WmuxeTOMHAnTpjV9\nsoNDh+Dxx43ue3VM2DCwWzDP3D2esHZBvL1kN68u3EF1tQtmgvNm7dtDv/oXuFFoEREREZk7F268\n0Rgwf7rsbGMa3CbYVDOeZeEbsHFj02sJDYUNG4zuYa5y883GAPTDraQ70yefGJMcHD4Md95pfGBu\nip49jZ+ZnBx4+OE6T+nbvQPP3zeBXl3a8+26/Tz59gZKyiqbXXqL+e47GDECvvjC3ZXUSaFFRERE\nZOFC4+v07lq5udCjB9xxh923KS2vYldqLn3amgj/11PGPZsqKsqYwcyVahaYrFmnw1dZrfDnP8P1\n1xtd75YsMUKHIzOoPfAADBtmrOmzenWdp0R0CObZe8YzIiaShORs5rz8P/JPeOh6OOnpsHUrlJa6\nu5I6KbSIiIhI61ZQALt3G12F/E6bWDU8HM47zxg0n5xs16127MuhqtpKXEGasePii1ug4BZQE1qy\ns91bR0tbtQr+8Q9jWt/162H6dMfv5e8P8+cbgef2243Z4OoQEuTP4zeP5uKxvdh/5ARvLm5ay53L\nePDCkqDQIiIiIq3dpk1gs8GYMbWP3XqrsX3rLbtutTnZ+NA/8uelRqvNuHHOqrJl1XxQ9fWWlvPP\nN/4uN2yj1TwIAAAgAElEQVSA2Njm32/0aLjrLujcuXbXwtNYLGbu+M0w+nQLZfXWQ6QfbuEFQx2h\n0CIiIiLiwdavN7Z1hZbLLzdaXN57zxis3gCbzcbmxKO0C7QwIGElTJniPbN/tZaWFjDG75w+i1tz\nPf88/PijEVwaYDabmD1tEAAffmtfy51LKbSIiIiIeLCa0DJ6dO1jgYEwa5Yx4Hrp0gZvc+BoIccK\nyjjbcgKLzeo9XcPA+MAdEeHuKrxTYKDdY2JGDIxkcJ9wNiYeJXl/7VnH3CorCywW5wY6J1JoERER\nkdbtnXdg2bL6f1N+663G9MONDI6vmep45ITBMG8eXHKJsyttOXFxRjCbM8fdlfg0k8nErIuN1pb3\nv0nyrPVbPv7YCPAWi7srqZNf46eIiIiI+LBOneDCC+s/PngwvP56o7fZnJSFyQRnj42BqcOdWKA0\nS0UFBAS4u4pTBvcJJ35QFJuTsti2N4ezB0Y2+R5FJRW8vWQ3Mb06csHonnZdU1ll5cNvkwgO8uO3\nkwdgMf+qdahHD+PLQ6mlRURERKSZikoqSNqfx4DoMELbBrq7HDndgw/CwIGQluaa5x08SPiXXzZ4\nyg0XGa1273/b9NaWnPxSHn75f/ywMYOXPtvGG1/tpNra8D1Kyir525vr+WJVCguWJfP0uxspK69q\n0nPdzaHQYrPZePzxx7nuuuuYPXs26enpzq5LRERExGts3ZuD1Wpj5CDPHMTcatls8PXXcPSo61oR\npk+nxwsvNDhxQ9/uHRg/vCspmcdZt/OI3bfef+QED720msysQi4c05MeUe1YvDqtwRCSd6KMP837\nH9v25TAqtjPD+0ewYfdRHnn1Z89dM6YODoWWFStWUFRUxCeffMLf//53nnnmGWfXJSIiIuI1asaz\nxCm0eJY9e4xFEy+4wHUzuU2ahKW4GNasafC0mRfFYDab+HBZUqMtJQA7UnKY8/IacgvKuPnSwdx9\n9XCe+8O5DYaQzKxCHvrPatIPn+Cisb149KaR/PXWsUwZGU1K5nEe/M9qDhw50aw/rqs4FFr279/P\nsGHDAIiOjiYzM9OzBhKJiIiINKaqqt4FARu0eTPs2HHqP61WG1uSswlrF0ifzu2cWKCLFRbC3r2N\nTu3sVb75xthOm+a6Z9ZMwLBkSYOndY9sx+T4HmRmFfHTlswGz12z9RB/nb+eispq/jgzjisn9sNk\nMtE22L/eEJKYnsucl9eQnV/KDRfHcNdVw7BYzPj7mbn32rOYdfGgk13N1rB1j+dPde1QaOnfvz9r\n1qzBarWSlpbGkSNHyG9gQR0RERERj7N+PbRvD//v/9l/zb59MGoU3HYbWK0ApBw8zvGicuJtuZi7\ndoGVK1uo4Bb28MPG2I99+9xdifPUhBZXTj89YQLVbdoYoaWRX+pfd8FA/CxmFny3h8oqa53nfPlT\nCs99uJkAfzNzbxvLeSO6n3G8rhDy8XfJ/OW1tRSXVXHftWdz7ZSBmE6bltlkMnHNlAH8cWYcFZVW\nnpi/lu+n3GAstOqhHJo97LzzziMhIYGZM2dy9tlnExkZqZYWERER8S7r1xutCt262X9N//5w7bXw\nySfGgpO/+x2bEk92DUtea0wb3L9/CxXcwk5fYHLwYPfW4gzV1VBQYEzn3MjCj04VEMCJMWMIW7HC\n6J7WwFTZkWEhTDunF4vXpHH1n5bUXu/FZsNqg47tg5h72xh6dw2t8z41ISSqYwj//mQrH32/h6AA\nC3+5aRTxDXRZPG9EdyI6BPPUSyt4afhvmffpYfhssd1/VBNwxXl9uemSlv95MdmamTaqqqqYMGEC\na9eurfechISE5jxCRERExOn6PPwwYT/+yM4lS6jo0sXu6/yzshh81VVYg4PZtXAhL6wqpqi0mvdf\nvRFLVASJn37aglW3nE6ffUb0c8+R9tRT5Dc0BbSXMZWVYQsKcukzQ9esoc3OneRcdRWVjawwX1xW\nzVfr8ymtrLulpW2QhQtHhNKhjX1tDRk55axLLmJ8bDu6hds31XO7+x/h0/CRHB11Djaz/R2xck9U\nUVph5faLIukc5rxppePi4mrtc6ilJTk5mQ8//JC///3vLFu2jFGjRjn0cPlFQkKC3pED9N4cp3fn\nOL07x+ndOUbvzXENvrs9e6BzZ4ZOn273iuanPP44lkcfJeCrVeRbRnB+FzNtiwrgzt9779/Vydlg\n+7RtC3Fx+rlrhgSg3/33Y28UnjDOec+OA668qIkXHUjmL/uT4MunmnRZQnIWc99Yz//2VvOPO0ec\n0QXNUfU1djg0pmXgwIFUV1dzzTXX8PHHH/PII480qzgRERERlzp4EA4dgjFjmh5YAP7v/6BfP1ak\nFQNw/sGTH7RcOXbC2Wq6h2VlubcOca3ycuPfQ9++Tb40LiaKkbFR7ErNZe0O+6dudoRDLS0mk4mn\nn37a2bWIiIiIuMb+/dCxoxFaHBEYSNlHn/K/Lw7TqU0AQ/elQ1gYjHPir8xdrUsXiI6G4GB3VyKu\ndOCAMWFAnz4OXX7rZUPYuiebt5fsIj42ikB/i5MLNDgUWkRERES82vjxcOxYs6b3XWfuRGlFJped\n1wPzY+9BWRkEOK9fv8v17298gJXWpX//Zv1b6NqpLZed25cvVqWwaFUK100d6OQCDQ51DxMRERHx\neiYTBAY6fPmKTRkATI6PNna4eLC3NGD+fGN2OGmcyQTh4UZLm4OunTqADu0C+XzFPnLyS51Y3C8U\nWkRERESaKDuvhB0pxxjcJ5wuEW3cXU7rUlkJJxpYxT0/H+66yxh35G6LF8OwYfDTT+6upEWFBPlz\n47RYKiqreXfp7hZ5hkKLiIiISBOtTMjEZoPJ8T3cXUrrc/fd0KmTsU5OXb7/3lijZfp019ZVF39/\n2LkTli51dyUt7vz4HvTv0YHV2w6xOy3X6fdXaBERERFpApvNxopNmQQGWBg3vKu7y2ldrFb47jtj\n/MVNN8Gf/mTsO9033xjbadNcXl4tkyZBSEjjoWXXLmPBUi9mNpv4/ZVDAZj/5U6qrc5deF6hRURE\nRFqXvDxITISSEocuT0zP40huMecM7UJIkL+Ti3OzvDzYtg2Ki91dSd3MZmPmtzVrjAHkzz4Lv/kN\nFBUZx61W+PZbY3zGWWe5tVTAGOc0dSokJ0NKSv3n3Xij8VXz53AVm61Zk1H8WkzPjkyK607aoQKW\nb8xw2n1BoUVERERam6VLYfBg+PBDhy7/cXMmcNoAfF/yzDNw9tlGlyZPZTIZs79t2ACTJ8OOHVB6\ncvB3QgLk5Bjr5ThhoUOnuOQSY9tQa8tFFxnhYdUql5R0Sna2McX17bc77ZY3To8lKMDCB98mUlRa\n6bT7KrSIiIhI61IzrW/Pnk2+tKyiijXbDhHRIZih/SKcXJgH8KYFJsPCjFaVVauMMS4APXrA888b\nrRaeomZszbZtv+yz2YywVePCC43td9+5ri6A1FSjdap9e6fdMjw0mGumDKCgqILPlu912n0VWkRE\nRKR1yTjZbSW66S0l63ceobS8isnxPTCbPeQ3+c4UFWVss7PdW4e9/P3P/Hvs3NmYNWzCBPfV9Gtd\nuhhd2t5995d9H38Mw4fDvHnGf48dC+3awbJlrq0tLc3Y9u3r1NtePqEvkWHBLFmTxtFc53Q1VGgR\nERGR1qWmpcWB0LJik9E17PyRPjprmDe1tHiT01v18vLg/vuNblk1kwX4+xtd3VJSjNYPV6kJLX36\nOPW2Af4Wbpo+mKpqK+9+neiUeyq0iIiISOty4ABERECbpq2vkp1fwvaUHGJ7d6RrRNsWKs7NPLWl\nZetWmDsXMjPdXUnzzZljjLuZOxd69/5l/003GftCQlxXS01AcnJoARh/VlcG9gzj5+2HSUxv/hTI\nCi0iIiLSuvTsCWPGNPmyU2uzjPTBAfg1OneGQYOMFdI9yZtvwhNPwO6WWbjQZdasMf4sw4bBAw+c\neezyy+Gvf23WyvRNlpcHFotD47saYzKZuPWyIQC8tXgX1mZOgeznjKJEREREvMb33zf5EpvNxo+b\nMgnwtzDel9dm6dzZmA4ajJm4PEFFhbGGSVQUTJni7mqa5/HHjVnN5s83uoS525IlxvTWLVRLTK+O\nnHtWN9ZsO8TqbYeYOKK7w/dSS4uIiIhII/YfOcHhY8WMGdzZ99Zm8XTffGO0CMycCX5e/vv2L76A\nBQtg9Gh3V/KLJnaTbKobp8fi72fmva8TKa+sdvg+Ci0iIiIijdicZAxMHzm4s5sraYXef9/Yzprl\n3jqcISwMrr/e3VW4VFTHEC47tw/HjpeyeLXjkwwotIiIiIg0IiE5G5MJRgyMdHcprUtBAXz9NQwd\nakwRLF7pt5MH0L5NAJ+v2Et+YZlD91BoEREREWlAUUkFSfvzGBgdRvs2Ae4up3UJDTVmDnv5Zc9Z\n4b6lvfEGDB4MR464uxKnaRPsz8yLYigtr2bBsmSH7qHQIiIiIq3H+vXGAHOb/TMZbd2Tg9VqIz42\nqgUL8yBZWfDzz1gKC91diSE21rMWi2xpJ04YkyE4MGEEAAcPwkcfQVVVw+dlZUFJiWPPcMCFo3vS\nI6otP2w4wP4jJ5p8vUKLiIiItB533AHnndekSzYnG+NZ4mNaSWh54w0YP54Qb59e2FtddJGxXbas\nadclJ8PNNxtrrsycCW+/3fD5t9xiDMIvKHCsziayWMzcfOkQrDZ4+bNtFJVUNOl6hRYRERFpPTIy\nIDra7q5GVquNhOQsOrYPpE+30BYuzkNEGuN2/PPy3FxIKxUbC926wQ8/QLWds23961/Gde+8Az16\nGPuWL2/4mrQ0Y2KAUNf9XMfFRHLe2d3Zk5HPQy+t4Whusd3XKrSIiIhI61BYCPn5TVpIL+XgcQqK\nKoiLicLUWsZUnAwtfgot7mEyGa0tubmwZYt910yYACNHGlMq79sHK1fCe+/Vf77VaoSWPn2cU7Od\nTCYTD8wYwRXn9eVgdhF//M9q9hyw7+dMoUVERERahwMHjG0TQkvNVMfxg1pJ1zAwFnHEzS0tubmw\ne7f9LQ2+pqaL2Lp19p0/apQxXuvKK8FshokTITi4/vOPHIHycujbt9mlNpXFbOKWy4Zw51XDKCyu\n4NFXfubnHYcbvU6hRURERFqHmtASHW33JZuSsrCYTZw1oFMLFeWBalpa8vPdV8PixTBkiDG+pjW6\n+GLYvx/uvbf2sfoG2DelJTAtzdi6uKXldNPO6c1fbhmDxWLimfc28cXKfdgamCBDoUVERERahzZt\nYOpUGDbMrtPzC8tIyTzO4D7hhAT5t3BxHiQqCuLjqejsxoU0ExKMbVyc+2pwpzZtarcI2mzw2GNw\n2WVQ0bRB7LUUFUH37m5paTld/KAonrn7XMJDg3hnaSKvLNxR77l+LqxLRERExH0mTjS+7LQlORto\nZV3DANq2hU2bOJKQQFd31bB5M/j5GYtKihFYHngAXnzRCBrHjkHXZvztXHwxZGY6r75m6NMtlOfv\nm8Df3tzAsnX7GdO7e53nKbSIiIiI1GFTaxzP4gmqqmD7dqN7WFCQu6txv+pqY6ruN980Zghbvhy6\ndLHv2txcqKwEd7aa2SE8NJhn7hnPt2vTgbrXcFH3MBEREZFfqaq2sm1PNpEdQ+ge2dbd5bQuiYlQ\nVgbx8e6uxP0qK2H2bCOwjBgBP/1kf2DZsAE6dYLnnmvZGp0kONCP30zqX+9xhRYRERGRX0nen0dx\nWRUjB7WiqY49RVmZMYXv+PHursT9rFajK9g558CPP0JEhP3XDh8OgYGNr9fiJdQ9TERERORXWuVU\nx55i1CijRUGM0LFokRFe2jaxxS8oyAh/338PR496fBexxqilRURERHxfXh589BHs2WPX6ZuTsgjw\nMzOkb3gLF+ahrFbabdwIn3/u7kokJKTpgaXGlCnG9vTWlvx8Y9HKwsLm1+ZCCi0iIiLi+7Zvh5kz\n4YMPGj01O7+EA0cLGdovgqCAVtopxWSi92OPwX33GTNXiXeaOtXYnh5aVq0yppJ+/XW3lOQohRYR\nERHxfRkZxvbXa1/UIeHkVMcjW3PXMJOJwrg4Y+X0vXvdXY04atgwYwD/6V3DahaWdPMaLU3VSn99\nICIiIq3KgQPG1o7QsjnRGM8S15pDC1AYF0fHH36AlSth4EB3lyOOMJt/WaizRk1o6dPH9fU0g1pa\nRERExPfZGVoqKqvZnpJD98i2dA5v44LCPFfhyJHGNytXuu6hixfDf/9rzCAmLSM11dh6WWhRS4uI\niIj4vprQEh3d4Gm70nIpr6jWrGFAeXS0ser6qlXGuBZXTP389NOweTOcqHuBQXGCtDRj/ZZ27dxd\nSZMotIiIiIjvmzjR6NcfHNzgaZrq+DQmEzz8sNHFqLISAgJa9nlVVcaECYMHN/r3JA6y2WDAAK98\nvwotIiIi4vsee8yu03amHCPA30Js71Y61fGv3Xef656VlASlpcbMVtIyTCZYutTdVThEY1pERERE\ngLLyKjKyCunbLRR/P31EcrmaAeMKLc5XUAAvvAALFri7EofpX6SIiIgIkHqoAKvVxoDoMHeX0jop\ntLSshx6Cl192dxUOU/cwEREREWBfZj4AA6I7uLmSVurCC41xLcOGubsS3xMaCqNHw/r1RqtLaKi7\nK2oytbSIiIiIAHszjgPQv4daWtzikkvg1Ve9cpC4V5g6FaxW105h7UQKLSIiIuLbvvkG3noLCgsb\nPG1fZj7tQvzpHB7iosK8RHk53HAD3H67uyuR5pgyxdg+/bR763CQQouIiIj4ttdeg1tvNabtrUdB\nUTlHc0voHx2GyRXrkXiTwEBYtw4+/RSqq91djThq9Ghju3Gje+twkEKLiIiI+LYDB6BtWwirv9vX\nvsyarmEaz1KnSZOMsRDbtrm7EnGUv7+xDs6ePe6uxCEKLSIiIuLbMjIgOrrBFd1rQotmDqvHpEnG\n1kvHQ8hJw4YZi0t6IYUWERER8VnmoiI4fhx69mzwvL0ZxsxhammpR01o+fFH59+7qgquvhrefNP5\n9xafodAiIiIiPivg6FHjmwZCi81mY19mPp3CgglrF+SiyrxM164wcCCsXev8cS3JybBwoXFvkXoo\ntIiIiIjPsrZpYyyqd+GF9Z6Tk19KQVEFAzTVccM+/9wYH2SxOPe+WlRS7KDFJUVERMRnVXTpAs89\n1+A5e7WopH2GDm2Z+yq0iB0cCi0lJSXMmTOHgoICKisrufvuuxk/fryzaxMRERFpcVpU0s0SEozW\nm+HD3V2JeDCHQsuiRYvo06cPDzzwANnZ2dx44418++23zq5NREREpMXtzcjHZIK+3UPdXUrrU1UF\nW7dCbCwEB7u7GvFgDoWWjh07sufkHM8FBQV07NjRqUWJiIiIuEK11UbqweP0iGpHSJC/u8vxPlYr\nJCUZrSWzZtU9rfTevdChA0RG1j5mMsEPP0BJScvXKl7NodBy8cUXs2jRIi644AIKCwuZP3++s+sS\nERERaXEHswopq6jWIPymyMqChx+Gw4eN1dVPnDD2jx8PffrUPn/cODh2DAYPhquuMqY3HjLECCwW\ni3FcpBEmm81ma+pFixcvZvPmzfztb38jOTmZv/zlL3z++ef1np9QM8BKRERExEVMFRV0ffVVioYP\np2DixDrP2ZJazOIN+Uwf2YGR/du6tkAvZC4uZthFF2EpLQWgrGdPioYOpXjIEPKnTKG6w68mM7DZ\n6PGvfxGYmUm7zZsxV1QAUNq7N0kffYTNX61bUltcHZMyONTSsmXLFs4991wAYmJiOHr0KDabDVMD\nK83W9XD5RUJCgt6RA/TeHKd35zi9O8fp3TlG781BqanwwQfGb/QffLDOUzakbwfymTJuOP20sOQZ\n6v25W77caF0ZPZqgsDCCgAig3pVwPvnE2BYWwjffwMKFBJeVMWLMmJYp3APo36zj6mvscCi09OzZ\nk23btjF16lQOHTpESEhIg4FFRERExOUOHDC2DSwsuTczH38/Mz27tHdRUT7gnHMcu65dO7j2WuOr\n6R19pJVzKLRce+21PProo8yaNYvq6mqefPJJZ9clIiIi0jwZGca2ntBSXlnN/sMn6Ne9A/5+Wm/b\npfTLbmkih0JLSEgI//73v51di4iIiIjzpKcb23pCS/qhAqqtNvprUUkRj6dfK4iIiIhvSk01tv36\n1Xl4b2Y+AAOiNXOYiKdzqKVFRERExOPNmMGRoCC69OhR5+F9GccB6K8B+CIeT6FFREREfNO0aRyO\niqKLxVLn4b0Z+bQJ8qNrhKY6FvF06h4mIiIirU5RSQWHjxXTv0cYZrMGhYt4OoUWERERaXX2ZZ7s\nGqZB+CJeQaFFREREWp2aQfj9e2gQvog3UGgRERGRVqdmEP4AtbSIeAUNxBcRERHf8+9/Q1oa5quu\nqnXIZrORfCCPiNAgwkOD3VCciDSVWlpERETE93zxBcybhy0wsNahw8eKKSiqILZ3uBsKExFHKLSI\niIiI70lJgehobP7+tQ4lpecCMKh3R1dXJSIOUmgRERER31JcDEeOQL9+dR5OTM8DYFAvhRYRb6HQ\nIiIiIr4lLc3Y9u1b5+HE9DyCA/3o1aW9C4sSkeZQaBERERHfkpJibOtoaSkoKudQThEDe4Zhsehj\nkIi30OxhIiIi4ltGj4aPPoKzzza6ip0mab/RNUyD8EW8i37FICIiIr6la1e4/nqIial1KOnkeJZY\njWcR8SoKLSIiItJqJKbnYjabGNAzzN2liEgTKLSIiIhIq1BRWU3KwQL6dG1PcKB6yIt4E4UWERER\naRX2ZR6nqtqq8SwiXkihRURERFqFRC0qKeK1FFpERETEd6xaBVOmwLff1jpUM3OYFpUU8T4KLSIi\nIuI7duyAFSvgxIkzdlutNpLS84jqGEJ4aLCbihMRRym0iIiIiO+oZ2HJg9mFFJVWEquuYSJeSaFF\nREREfEdNaOnb94zdiSfXZxmkQfgiXkmhRURERHxHaiqEh0OHDmfsrhnPokUlRbyTQouIiIj4hqoq\nSE+v1TUMICk9jzbB/vSIaueGwkSkubSykoiIiPgGsxk2boSKijN2558o40huMfGDojCbTW4qTkSa\nQ6FFREREfIPZDGedVWt3Yk3XMA3CF/Fa6h4mIiIiPu3UopIazyLitRRaRERExKclpefhZzHRPzrM\n3aWIiIMUWkRERMRnVVRZST1UQN/uHQj0t7i7HBFxkEKLiIiI+KxDuRVYrTZitT6LiFdTaBERERHv\nZ7MZUx3fdtsZuzNyjJnENJ5FxLsptIiIiIj3O3LEWFjy+PEzdmfklAOaOUzE2ym0iIiIiPdLSTG2\npy0sWW21cfBYBd06tSG0baCbChMRZ1BoEREREe9XR2jJOHqC8kqNZxHxBQotIiIi4v1SU41t376n\ndiWmG4tKajyLiPdTaBERERHvV0dLS1JNaNF4FhGvp9AiIiIi3u/dd2H3buja9dSuxP25hASa6dap\nrfvqEhGnUGgRERER7xccDLGxYDY+2uTkl5KTX0qPTgGYTCY3FycizaXQIiIiIj4naX8uANGdNGuY\niC9QaBERERGfUzOeJToiwM2ViIgzKLSIiIiIz0lMzyPAz0yXjgotIr5AoUVERES8W1XVGf9ZUlbJ\n/iMF9I8Ow8+i8SwivkChRURERLzb734HERFw6BAAyQfysdogVlMdi/gMhRYRERHxbqmpUFAAUVHA\naeuzaFFJEZ+h0CIiIiLeLSUFevUCPz8AEtONmcNiFFpEfIZCi4iIiHivEycgJwf69QOgqtrK3ox8\noju3o12IBuGL+AqFFhEREfFeGRnGtlcvANIPF1BWUa2uYSI+RqFFREREvFdeHphMEBkJ/DKeJbZ3\nuDurEhEn83Pkov/+97989dVXmEwmbDYbu3fvZsuWLc6uTURERKRhEyZAZaXxBSTurwktamkR8SUO\nhZarr76aq6++GoBNmzaxbNkypxYlIiIiYjeLBSwWbDYbSem5dGwfSFTHEHdXJSJO1OzuYfPmzeOu\nu+5yRi0iIiIiDsvKKyHvRDmDeoVjMmlRSRFf0qzQsnPnTrp06UJ4uPqNioiIiHslpqtrmIivMtls\nNpujFz/++ONceumljBw5ssHzEhISHH2EiIiIiF2WbMwnIaWY2y6MpFu4pjsW8VZxcXG19jk0pqXG\nxo0befzxxx1+uPwiISFB78gBem+O07tznN6d4/TuHKP31oDiYggJAZOJt3/8kcAAC9Mmj8bPYnQm\n0btznN6d4/TuHFdfY4fD3cOys7Np06YNfn7Nyj0iIiIijhs9Grp0oaikgoyjhQyMDjsVWETEdzj8\nrzonJ0djWURERMS9cnIgNJSkk1MdD9J4FhGf5HBoGTx4MPPnz3dmLSIiIiL2s1ohNxc6dToVWrSo\npIhvUvupiIiIeKf8fKiuhk6dSEzPw2yCmJ5h7q5KRFqAQouIiIh4p+xsACo7RbEvI59eXUIJCfJ3\nc1Ei0hIUWkRERMQ7nTgBwcGkhvekosqq8SwiPkyhRURERLzT6NFQUkLi1KsALSop4ssUWkRERMSr\nJR3IB2BQLw3CF/FVCi0iIiLitWw2G0n784joEEynsGB3lyMiLUShRURERLzW/iMnKCiqUNcwER+n\n0CIiIiJea2XCQQDOGdbVzZWISEtSaBERERGvVH0sl5WbM2gX4s+o2Ch3lyMiLUihRURERLzSlmvv\n4HhRBeed3R1/P4u7yxGRFqTQIiIiIl5pRcdYACaPjHZzJSLS0hRaRERExOucKCpnQ7eh9CzOpm/3\nUHeXIyItTKFFREREvM6a9alUWfyZXJyGyWRydzki0sIUWkRERMTrLN+cidlazUT/fHeXIiIuoNAi\nIiIiXuXA0ROk5JQRd2gXYVFh7i5HRFzAz90FiIiIiDTFj5syAZj82K2g9VlEWgW1tIiIiIjXqK62\nsjIhk7bBWptFpDVRaBERERGvsXVvDvmF5Zw3QmuziLQmCi0iIiLiNZZvygBg8sgebq5ERFxJoUVE\nRHnKQ0sAACAASURBVES8QmFJBRt2HSW6czv6de/g7nJExIUUWkRERMQrrN56iKpqK5PjozEdOQLH\nj4PN5u6yRMQFFFpERETEK6zYlIHZbGJiXHe47DLo0sXdJYmIiyi0iIiIiMc7cPQE+zKPM2JgJB3b\nB0FODnTqBCaTu0sTERdQaBERERGPt3KzsTbLlJHRxo6a0CIirYJCi4iIiHi8DbuPEhhgYWRsFJSU\nQGmpQotIK6LQIiIiIh7taG4xB7OLOKt/JwL8LUYrCyi0iLQiCi0iIiLi0RKSsgCIGxRl7Cguhuho\n6KG1WkRaCz93FyAiIiLSkE01oSUm0tgRGwsHDrixIhFxNbW0iIiIiMcqq6hiZ8oxenZuR2RYiLvL\nERE3UWgRERERj7UrNZeKKivxNV3DRKRVUmgRERERj7Up8SiAQotIK6fQIiIiIh7JZrOxOTmbNkF+\nxPTq6O5yRMSNFFqcqagIfvzR3VWIiIj4hIPZRWTnlXD2wEj8LKd9ZElPh0OHwGZzX3Ei4lIKLc50\n/fUweTJ88YW7KxEREfF6mxKNWcNqdQ2bMQN693ZDRSLiLgotzrJqFSxdanzvI4tdVVVb+WnLQU4U\nV7i7FBERsde2bfDdd65phTh4sEVvn5BshJYRNVMd18jJgYgIMJla9Pki4jkUWpyhqgruu8/4fuNG\nOPdc99bjJJ8t38u/FiTwxxdXcyinyN3liIiIPZ54Ai66CDZtatnnZGUZrR0339wity8pq2R3Wi79\nenQgrF3QmQdzcnzmF4QiYh+FFmeYPx927DD+h3vkSHdX4xS5BaUsXJlCYICFI7nFPPSf1exOy3V3\nWSIi0pC0NPjqK4iPN/7/aNcuuPxy2L7d+c/68EPjl3Znn+38ewPb9uZQbbUx8tddw8rL4cQJo6VF\nRFoN94SWxES3PLbFtGsHffrAP/7h3Pvu3Akvvmj8j7OLvf9NEhWV1fz+iqHcd+1ZlJRV8dhra1mV\nkOnyWv4/e/cd31T1PnD8k+5JF7SUvXfLHqUs2UtAEBQEZCvTieBCXD+/IC4ERARRFBFBwSLKEBBK\nGaVlFyh7l5YOaOlukt8fRxBoWpo06Xzer1dfF3LvPfcklCTPPec8jxBCiDxasEBNC3vhBTV16soV\nCAqC994z73X0eli+HOzsoFo16N4d1q0z6yXCTuawniU2Vm1lpEWIUqVggxadDt5/H/z81JtdYYuN\nhVdegYMH89fOiBFw+jT4mDmHfJUqsGaNGn6fOxdSUszbfg7OXr3F9rArVPMtQ5eWVejaqirvjg/A\n3taKT346yKotkeglY4sQQhQtSUmwbBmULw9DhqjHevaE1q1VghhzjraEhUFEBPTrB25usHUr7N1r\ntub1ej1hJ6Nxc7GjViX3B3empkL9+lCzptmuJ4Qo+gouaLl5E3r3hlmzoGJF9YbzsIwCXvC9ZAl8\n+ik0bw5vvAFpaaa3ZW2d/bH4eIiMNL1NZ2f1gaDTwYwZ6g16wQI1NG4her2eb4MiABjbryHWVmqR\nY+M65Zg7tT3eHo78tPkUn/98iMwsncX6IYQQwkg//KBG5idOVCMgoEZbZs9Wf373XfNd6+6Nx9Gj\n1Y1IULMDzOT8tdskJKXTvJ4PVlYPLbavVUvN2PjwQ7NdTwhR9BVc0NK0qcpm0rs3HDoEbdo8uP+L\nLyAgQH3RLyivv65Gfnx84KOPVB/37DFP2zExash8zBjTM7jY2MBrr6l89G++qe6iTZ0Kkyebp48G\n7I+4wbFzsbRs4EOTOg9ma6lSvgzzXuhA7crubA+7wjtL9nInRTKLCSFEkfDss7B4MTz33IOP9+ih\nRlvWrVOZxcyhVi1o21ZNC/PwgMqV1dpOM7k3NayemWcwCCGKrYILWqKi1JqPDRvAy+vBfXq9umty\n8CB061ZwgYtGA2+9BWfPqmAgMhL69FHBQX55e0OnTioI2rEjf225u8MHH6gFli+/DNOm5b9/BmRm\n6Vi+IQIrKw2j+zY0eIyHqwP/NymQAD9fjp2LZfqXwdyIS7ZIf4QQQhjB2VkFLA9PVdZo1CiLiwuc\nPGmea738MoSEqJtroEZbrl+HOPMkbAk7GY2VBprWlXUrQgil4IKWbdvUyIaVgUtqNPDVVzBunApc\nuneHhIQC6xouLjB/PuzaBd98oxbW5yY5WQ2Na7W5H/f222qbhwWQmrQ09aGS29Qvb2/45BPw939k\ne6b4a88Frscm0zugGpV9cn4NHOxsmDGyJQM61uRqzB1enb+LU5cKcIRMCCGEcbp3h8uXVRFkS7j7\nuWSGKWK376QTeTmBetU8cXGyy3d7QoiSoeCClk6dct9vZQVff60Cl/BwNY1MV8BrJtq1gyefNLxv\n8WLVv0OH1IjRmDFqfUluWraEXr1g504VEOUkM5MaM2eqeceff25y9/MjKSWDVVsicXaw4enudR95\nvLWVhrH9GjFxkD9JyRm8uSiE3UeuFUBPhRBCGE2jUdO4LGXCBHXTMSAg300dioxBrzeQNUwIUarZ\nFHYHHnA3cLl+XQ07X76s1oUUBXPmwMWL//29YkUYO/bR5739Nvz1lxpt+fvvB/fp9Wrty/TpuO/e\nreYdv/SSWbudV6u3nuZOaiaj+zbEzcU+z+f1blsdbw8n5v5wgDkrwojuk8LAx2qhkSrFQghRelSv\nbramwk7GALkELZGR6vtCzZqGZ28IIUqkove/3coKfvpJrWuxVMCybp1aH2KMoCBYulTdTWrbVk0j\nc3F59HkBAWoEZc6c7Pv69FGpKX/4gTuNGsGvv/6X8SWvbt1Sefjz4frNO2wMOY+PpxOPtzf+g6dF\nfR/mTGmPl5sD3208wcK1R8jSSmYxIYSwuIQElTXMglkl79HrTU8sk0danZ6DkdF4uTlQzbeM4YPG\nj4d69SzeFyFE0VK0RlrucnOzXNtJSfDMMyrTyalTasg8L/z81E9eRlce9s47hh9v0wbs7aFRI84+\n9hhNnJ2Na/fCBWjSBLp0UTn4TZCSlsmXaw6TpdUzum9DbG0MpG7Og+oV3PjkhQ68t2w/m/ddYkf4\n1Xvpku/n7GjLxEH+tGpQ3qTrCCGEuM/SpSrLZHy8KiiZV1lZMGWKqlVWu3bezgkJUVO4582Dvn1N\n6++/lqw/xt+hl7M9rtfrScvQ0qNNhZxH7G/eBE9Pw6UGhBAlVtEMWizp999VYaphw/IesFjKrFn3\n/qgNDzf+/GrVVL2bdevU4se7ufLzKPZWKu8u3cfFqERaNyxPW39f4/twHy83R/43uR3frD/GuWu3\nDR5zNTqJD7/dz7j+fjzevka+rieEEKXejz+qm18jRxp3XlCQmo79449qfeazzz76M3H5cjU1y9HR\n9P4CCUlp/BlyAQd7G3w8nbLtt7OxoldAtZwbuHlTJaYRQpQqJgctQUFBLFu2DBsbG6ZNm0bHjh3N\n2S/LWblSbYcNK9x+mINGowKfPn1USuTVq/N86rmrt3hv2X7iE9PoFVCN557wM8s6FEd7G6Y91TTH\n/acvJ/D+t/tZsv4YN+KSGdOvkcERGSGEEI8QFaVqo3TrZvwi+4EDYdUqlSJ59GhVR23x4pxnOiQn\nwy+/QNWq8Nhjubet0+W61mRH2BW0Oj3De9ajbzsjb15ptWpUqaHhtPxCiJLLpDUtt27dYuHChfz8\n8898/fXXbNu2zdz9soyYGNi6VWX1yutweFHXqxc0bw5r1uQ5/37oiRvMXLibhKQ0xvZryMRB/lhb\nF8zypjpVPJg3rQOVfVwJCj7PR9+FkpaeVSDXFkKIEuVucpfu3U07/+mn4cgRtfby55/VdOOrV7Mf\nd+yYShJz544akckpIAkLg0qVck3zr9fr2bL/MrY2VnRqVsn4PsfFqbUs5aR+ixCljUnfVPfs2UNg\nYCCOjo6ULVuW9/JQh8Roer1aLH/ggPna/OUXdZfmmWfM12Zh02hUhjK9Hj788JGH/7H7PB9+ux+d\nHmaObMmAjgYyfZ04oe6qWYiPpxNzp7anSe1y7I+4weuLdhOfmGax6wkhRIm0ZYvamhq0gJpmvGuX\n+hxp0AAqVMh+TFiYSj5jawujRuXcVoUKcO1arrVaTl6M59rNOwT4+ZpWgyUtDVq0UFOjhRCliknT\nw65du0ZqaioTJ04kKSmJyZMnE2CG3OwPyMhQb0qNGqm6LebQrRvMmAFDhpinPTNJTM7IXwP9+sHU\nqbkGY1qdnm83HCdo13ncXex5e2xr6lQxMJ1Ar1e1ai5fhv791TS6Xr3MnlbSxdGWd8a3YdHaI2wN\nvcyr83fxztg2VM0pW4wQQpQEaWnq/bVOnfy3NWQIuLsbvZ4xGxsbNTqS07SuLl1gwwaoWzf31Ma+\nvmqB/NGjOR6ydb9afN+9VVXT+lqlinlvZgohig2Tvonq9Xpu3brFokWL+Oijj3jjjTfM3S+1sLBF\nCzh8WGX8Moe6deF//1NvrEVAllbHgjWHeWbWXxw8l4+RDY0G5s+H1q0N7k7P1DJnxQGCdp2nso8r\n817ooAKWY8fUwsr7i3hmZsKgQeDjo1JP9+2rgr1r5i8caWNtxdQhTRjZuz43E1J546sQ7qTkM4AT\nQoiibNIkdUNu7978t/X44/Dll+ZLKpPTzakqVdRnwaOmVWs04O8P584ZHK1PSctk95Fr+Hg64Ver\nrBk6LIQoTTR6vfGJzn/77TdiY2OZMGECAH379mXFihV4enoaPD7cxJGSivPnU37FCk4vXEhSDl/I\ni6u0DB1rdsdx7obKre9oZ8XUx8vjZG/eEY2UdB2rdsVy5WYG1bzteaqDF452VqDXU+f553ENDydy\nyRLuNGv24Il6PU4REfguW4Z7cDDJ9etzasUKi2Vc2xWRyPYjiQTUc6FHM3eLXEMIIQqT/cWLNBwy\nBI1OR1KzZpz++uvCz2JpZpU//hjv1as5+d13pDRq9MC+8LPJbAhN4DG/MnT0k1F1IUTOmjdvnu0x\nk6aHBQYG8sYbbzB+/Hhu3bpFSkpKjgFLbhd/pEGDYMUK6ty8qRablxAxCSm8t3Qfl26k07KBD7Uq\nubNqSyQnou157gl/810nPoV3vtnL1ZsZdGhSkReHNv2vDsvatWraXd++1B0/3nADLVqoNJpff42z\nvz/NW7QwW98e5uevJeLKdg6cSWbUE62pUDYPhTtRAbFJv1tCXrt8kNfOdKX6tfvsMzWyXbkyrjY2\nNK9VS03vyoNi87p17Qpr1lDf3j7b5/aq3bvQaGBE/zaU88hf2mRjFJvXrgiS18508tqZLqfBDpOC\nFh8fH3r06MGQIUPQaDTMuq/eiFm1bau2ISGWab8QnL1yi/eW7SMhKZ2+gdUZN8APnU7P5r3n+HPP\nRXq2qWaWdR3nL8by7vdhxCemM6BjTUb3bYjV3dTCKSmqoJidnfoQzY1GA88/n+/+PIqdrTXP9mnA\n3B/C+H7jCV5/tpXFrymEEAXm7nqRZs1g2zaVWriEjbIAMHSoWgvp9GD9lUs3Eom8nEDzet4FGrAI\nIUoOk+u0DBkyhCGWXtBetqxaFJ7fBYtxceDlZZ4+5cO+41HMWxlORqaW8QMa0a99TQCsrTT0bObG\nTzvj+Ob3Y7z/XNt81Uw5cvgiH34XSpq1HeP6+9G/Q80HD/j4Y7UQdMYMqFXL9Cd09arKJuPjY3ob\n92nXuAJBuzzYczSKiPNxNKxR+P9mQghhFlZWsGIFpKerNZsllbOzwYfvLsDv1trEBfh3HT2qsoD6\n+4O1df7aEkIUKyYHLQVmzZp7f9Tr9YSdjKZOFQ/cXPL4pp+aqt7c6tSB7dsL7c7WhuDzfPP7Mexs\nrXlzVCtaN3owGUDtCg40q+fNwVMx7Dt+gwC/nJMF3ExIJTQiCp2B1UiJyRms3XYasGb6H/NoX2kQ\ndHjpvwN0OpUm09cX3nwzf0/qf/+DhQuhVSu1SLNvX5Xn38TXWKPRMLZ/I6bPD2Zp0HE+mdbhv9Eh\nIYQoCcwRsLz1Fhw8qNIQV6yY//YsLDNLx47wK7i52NGqQfn8Nfbii7Bjhwr+JGgRolQp+kHLfbaG\nXubLXw5TzsMxb+lxtVo1TH39Ojz1VKEFLKcuxbNk/TE8XO2ZNbYNtSpnn8Os0WgY168RU0/vYFnQ\ncZrX88bONvsb8oXrt5n19V5u3UnP8XrODja8+Xg1/NZcgJdfBkfH/6Z4WVmpnPznz4Ora/6eWIsW\nqjLyrl0QGgqzZqkP0NWrITDQpCbrVfWkQ9OK7Dp0jZ2HrvJY88r566MQQpQ069er9/CyxSMDV2jE\nDRKTMxjQsSa2NvlMNnPzploHZGdCjRchRLFWbIKW1PQsfvzrJDbWGm4mpPLagmBmjGxJs7rehk/Q\n62HaNPXm3qWLGhUoBHq9nqW/HwdgxsiWBgOWuyr7uNK3XQ1+33WO33edY3CXB6fFnb6cwDtL9nIn\nNZNnetajso/hoKNuFQ/KujuqedMdOsDEiWp+8ciR6gBr60enrsyLUaPUz61bsHkz/PEHbNoENWsa\nPn7NGnXdJk1ybfbZ3g3YeyyKFRtPEODni4Ndsfk1FUII48XGgosLODg8+thr1yAiQtXPKibTzLaE\nXgKgW6sq+W/s5k0oVy7/7Qghih3z5te1oF93nCEhKZ3BXerw2vAWZGbpeHfpPjbvu2j4hLlzYdEi\nNTXs118L7a7M7iPXibyUQKB/hTyt0Xi6e13cXOz45e/TxN1Ovff48XOxvLU4hJS0TF4a2pSnu9Ul\n0L+CwZ+y7v8ucqxXD/7+Gzw84K+/VCBnCe7uaiTrhx8gOhrKGxj+12rh2WehaVNYuTLX5rw9nejf\noSaxt9P4fec5y/RZCCEKwvXrue/ftg1q1FCfV3mxdavadu+ev35Z2q1bcO0aNxNSORQZQ92qHlQp\nn88kMzqdCvAkaBGiVCoWQcvNhFTW/XMOzzL2DOxUi/ZNK/LB821xdrBlwZojfPdHBLr7F3jodBAc\nDJUrw59/qiwthSAjU8t3G09gY63h2T4N8nSOi6MtI3o1IC1Dy/cbTwBw8FQM73yzj4xMHa+NaEnn\nFkbcrfL3h/37VUBRENPjcipOptWq9S/OzjB1Kty4kWszg7vUxs3FjrXbzxCfmGaBjgohhIUdPaoK\nM773Xs7HNG2q3jf/7/8gMfHRbW7erLZFOWi5cEHdLJs5k21hl9HroVurfC7ABxUIabUStAhRShWL\noOWHNaFkZGoZUU2Dg72aKtSguhfzXmhPxXLO/LrjLHN/DCM9U6tOsLJS08J27y7URYobgs8TE59C\n33Y18C1rOKOKIV1bVaFGRTd2hF/lp82neP/b/ej1et4c3YrAxhWM70jt2mBTyFOs7Oxg9Gg1TS8h\nQVWFzmXkx8nBlmd61ictQ8vKTace3HnoEHz6KWRmqr/fvAknTliw80IIYYJ331VfsnOrceXpCdOn\nqyyXn36ae3t6vVo/WLEi1K9v3r6aU9Wq4OSE7ugxtoZexsHOmvZNTPjselh6upry/IgpxkKIkqnI\nLxY4cyWBHZG3qBFznscOnINne9zbV6GsC3OnduD/vgsl5Mh1rkYnUSnbOo/oXNt3sLPmyc61qeSd\nz0XpD7mVlM4v207j6mTHU93qGnWutZWGCQP8mLlwN6u2ROJgZ81bY1rTuHYJuLs0aZJa27JuHfzy\ni5pWloPurarwx+7zbA29RLfWVahX1VONok2aBPv2QfPm2GRm/vchlo96Pnq9nl93nKVCWWfa+pvh\nw1UIUbodPgy//QatW6v1J7l54QWYPx8++QQmT855JEGjgVOn4OLFol3jxcoKGjXiaGwWMfEpdG1Z\nBScH2/y36+sLO3fmvx0hRLFUpIMWvV7PsqAIAMbsXYm1S1a2Y8o42/H+cwEsWHOE7WFXuHQjyejr\n7D9+gzdGt8Kvpvkysfy05RQpaVk894QfLo7Gv1k3rOFFjzZV2Xc8ijdHtaZ+dU+z9a1QWVnBsmUw\ndiw0bJjrodbWVozv34hZS/by9uI9vDaiBS33blQBy+DB0LEjWeHh0LmzSgKweze0a2dStw6cjOb7\njSewt7OmblUPvNyk+JkQIh/efVdtZ89+dIDh4qLSGE+bBh98AF98kfOxtrbmSaRiYTo/P35MVv3s\nGWCGqWFCiFKvSAct+46rIoOtG5an8QEndSc9MRHKPLiYzzbqOi/1qcW4/o3Qao1bbH7gxA0W/XqE\nWV/vYeqQpnRukf8Uu5dvJLJ570UqlnOhZ0A1k9uZ/GRjJg70x9q6WMziy7tatfJ8t6xJHW9ef7Yl\n81Ye5INv9zNh7yb6ODs/OI1i5kwVtMyZY1LQkpmlvZfhLf3f6WjTnmpqdDtCCAHA8eNqinKbNtCj\nx6OPB5gwQb0vTptm2b4VkJ01AoiMK0ugRxZ1q5aQm25CiEJVZL8NZ2bpWL7hBNZWGkb1baC+jOp0\n6i77/S5cgPbtoXdvXG3A3dXeqJ9uravy7oQA7O1s+GzVQX7afAp9PrNsLf/jBDo9jOnXEJt8BBwa\njabkBSwmCPCrwEeTAimjS2dxm+F889ICtBXuW6sUGKh+/vhDfVkwUtCu80TFJtMnsDrVfMvw94HL\nnL9224zPQAhRqjg7w4wZeRtlucveHtauzTllfDGSmp7Fd8nlsNNmMsY39dEnCCFEHhTZb8QbQy4Q\nFZdM78Dqar3J3WKF969bOHcOOnaES5egZ0+T0xr71yrHx1Pb4+PpxKotkXy66iCZWVqT2joYGUPY\nyWj8a5WlZX0fk9oQ2dXxdWHeiZVUToomKMWDj74LJS39vumCM2ao7dy5RrWbkJjG6r8jcXWyY3jP\neox5vCF6PSwLOp7v4FUIUUpVr66SjuR1lKWEWbPtNPFpegb2bIT32OGF3R0hRAlRJIOWpJQMVm+N\nxNnRlqfvLmIPDIQFC+CZZ9TfT59WAcuVK+rD4a238nXNyj6uzJvWgbpVPfgn/Cpvf72XpJQMo9rQ\n6vR8G3QcjQbG9muEpigvlCxubG3x+Ws9c9/sQ+PaZdkfcYPXF+0mKfXf4LJPH3j1VXjlFaOa/f7P\nE6SmaxnRqx4uTnY0retNi/o+HD0by4GTuSdxEEKIguIUEfHIVPFFwY24ZNbvPEdZNwcGPVbLvI3/\n+COcOWPeNoUQxUaBrWkZMXtTno/NzNSSnJbF2H4NKeP87+iJu7vKqgJw+TJ06gRRUTBvntFfVHPi\n7mrPhxMD+eyng4Qcvc7YD7Zgb0Q1dq1WT1JKBt3+TVks8ig2Vs3jfvJJ6N8frK0NH6fR4FK1Iu+M\n82XR2iP8feAy86MSWfb3v79bzl1gXZT6AZrWKcfkwU2wtzXc3unLCWw7cIVqvmXo3qbavcdH923A\nwcgYvg2KoFld73xN8RNCCJPp9WqKmZ0d1ZYuVZ+B8fFqMX4RtSzoOJlZOkY/3vBeiQKzuHkTRo1S\n6aMfniYuhCgVCixocTYm3aGDLQ1qONMnsLrh/RUqqHUsbduqVJFmZG9rzWsjWrB6ayS7Dl8zuoh8\nxXLODO9VhPPnF0U3bqi53KtWqfnfHh6qdsHo0fDGG9kOt7WxYtpTTajs48ofwZHY2WX/3UpNz2JH\n+FViElJ5e0xrnB/K4KbT6Vmy/hgAE57ww9rqv1GxKuXL0KNNVf7ac5FNey/St10N8z5fIYTIi1u3\n4Pvv4dIlHEGNKBfhgOXw6Rj2Hb9Bg+qetG9i5hpp69apmjdDhpi3XSFEsVFgQcvimV3M15iNDfz8\ns8Xy1FtZaRjaox5De9SzSPviIY0aqdoty5eru4hxcWqbkpLjKRqNhoGP1aJqmds0b9482/7MLC2f\n/HSQkCPXeWNRCLMntMHD1eHe/n8OXiXyUgKBjSsYTHU9rHs9dh68yk+bI+nUrBIuTqatlxJCCJN5\neMD27aoW1bVr0K1bYfcoR1qtjm9+V9OjJwzwM//06F9+UdsnnzRvu0KIYqP4znuR9SIlS//+KkXo\nrl0QEaGm/n3wgcnN2dpYM314C3oGVOP89dvMWLCbG3HJgBqF+X5jBHY2Vozpa7hWjLurPYO71FHr\nq9bsh6AgjB52E0KULqGh0Lw5/P67+dqsUQP++Ycbw4er6VFF1F97L3L5RhLdW1elZiV39WBWFuzZ\no97X8yMmBnbsUCmkq1TJd1+FEMVT8Q1ahMjNmTNY79jOpEH+PNW1DlGxycxYEMylqESV2SYxnYGP\n1cbb08nw+YmJ9Du7E+/02/xxKJqokc/Bt98W7HMQQhQvGzfCwYMqPb851arFtRdfBLeiuVYyMTmD\nlZtO4exgw/Ce902P1ulUwpy72R1N9dtvqi2ZGiZEqVaki0sKYZLkZGjWDBwd0UREMLxXfVyd7Vj6\n+3FmLNxNeoaWsu6ODOqcQ2ab1ath9GjsUlMZVbcdc/u8yrcDX2F02y5w806eu2FvZ42Xm6OZnpQQ\nosj78081fbmLGadDFwMrN53kTmomY/s1wt3V/r8ddnZQr56qn6XTgZWJ90k7d1YZQmVqmBClmgQt\nouRxdlYZd159FZ57Dn79lf4dauLqZMsXqw+j0+kZ07chDjllhvP3V8keRo2i3YgR/P77JfZRm31L\njxjdlT6B1Rnfv5EUCRWipIuOhrAweOwxKFOmsHtTYC5GJbJp70UqebvQt52B5Dl+fipouXhRTXUz\nRZ068P77+emmEKIEkKBFlEwvvqjWoaxbp3L7jxhB5xZVKOfuxMWoRNo1qZDzufXrq1oAGg0a4IWn\nPNkQfB6tzrg1LScvxrEx5ALR8SlMH94cJ2My6AkhipfNm9W2d+/C7UcB0uv1LAs6jk6vapMZTA/v\n56cyQx47ZnrQIoQQSNAiSipra/juOzVqMmWKqutTuTJ+tcriVyt7trBs7kv0UNnHlUlPNja6Cylp\nmcz5IYywk9G8vjCEWeNay3QxIUqq/fvVtlevwu1HAQo/FcPh0zdpWqcczet5Gz7I319tjx5VCVeE\nEMJEMmdFlFzVq8Pnn6sMNocPGz5m5Uq1BsYCnBxsmTWm9b0MZq98sYvz125b5FpCiEK2YAGcnNYH\nJQAAIABJREFUOgUNGhR2TwqEVqvj2w0RWGlgTL9GOac4btIE+vVTU7yEECIfJGgRJduYMRAZCY8/\nnn3fN9/A8OEwdqxxbYaHw7BhkJb2yEOtra2YNMif0X0bEnc7jRkLggk7GW3c9YQQRZ9GA3Xrlpp0\n/Fv2X+JKdBLdWlelmm8ua3gqVlQpoJ96yviLJCWZ3kEhRIkjQYso2TQaqFQp++ObN8PEieDlZXw9\nmB9/VHO0P/ssj11QhTBnPtsSnU7P+8v2sTHkgnHXzMWV6CTOXrlltvaEECI3yamZrNx8Ckd7a56x\nZBHmxx9X08vycINICFHySdAiSp8jR2DwYJWaNCgIauWQ+jgn77wD5crBhx+qKtV5FOhfgQ8nBeLq\nbMfi346yLOi40Yv7HxZ8+BovfPoPr3yxk017L+arLSGEyIs1205z+04GT3aug0cZB8tcJCpKFaV0\ncwMHC11DCFGsSNAiSpeoKOjTR007+OEHaNvW+Dbc3eGjj9RaGCOLptWr6sm8aR2o5O3C+p3nmLPi\nAGkZWUZ3Qa/Xs2bbaeb+EIaNtRUuTnYsXHuEHzedRK/PXyAkRL4kJEB8fGH3QljIjbhkft91nrLu\njvTvWNNyF/rtN9Dr1Q0mIYRAghZR2nh6qkxic+fm78Nw9Gho3lwt5A8JMerU8l7OfDy1Pf61yrL3\nWBRvLAohITHv0x+ytDoWrDnCij9PUtbNgTlT2vHx1PaU93Ji9dbTfPnLYbK0Zq7ILURe6HRqOk/j\nxuavCl9UHTmiMmOVkpsFK/48SZZWx7N9GmBva225C/3yi5reO2iQ5a4hhChWJGgRpYu9vRphefXV\n/LVjZQXz54OHB1y/bvTpLk52zB4fQJeWlTlz5RavzN/FpRuJjzwvOTWTd5fuY8v+S9So6Ma8FzpQ\nvYIbFcq5MHdqe2pVdmdr6GU++HY/qenGj+AIkS/bt8PVq+onNLSwe1Mw3ntPBWlnzxZ2Tyzu1MV4\ngg9fo04Vdzo0qZj3E/V6WLpUZVjLi6goCA6Gdu3UQn4hhECCFlEaaTTmyfDTti1cuWLyiI2tjRUv\nPNWU4T3rcTMhlde+DObw6Zgcj4+JT+G1BcEcPn2TVg3K87/J7R6o++Lh6sD/TQykeT1vwk/F8MZX\nIdxKSjepb0KY5P5sT7/+Wnj9KCgZGbB1K9SsafzauGJGr9ezNOg4oApJWlkZ8R6q0ag1gHlNenL1\nqkodLVPDhBD3keKSQuSHs3O+TtdoNDzVrS4+Xs588fMhZn+zj8DGFQxWlj4YGcOtpHQeb1+Dsf0a\nYW3gS4OjvQ1vjWnNwjVH+PvAZV6Zv4tGNbwMXlubdhs/fy12eZjiodfr2bTvEh6u9rRp5Gv8ExWl\nwxNPQEoK+PjAunVqGmZJTgG8Z48K1EaNKtnPE9h9+DqRlxIIbFyBBtUNv6fkys8PNmyAmBjwzqEQ\n5V0tW8Lx46DVmtZZIUSJJEGLEEVAp2aVKOfuyP99F8quQ4YzkllZaRg/oBH92ue++NXG2oppTzXB\ny92B1VtPsz0+JcdjYxbv4c3RrXBzsc/xGJ1Oz+J1R/lrz0VsbaxY9FpnynvlL1gTJZijI6xdC40a\nlfgv8mzYoLa9exduPwrAX3svAvBsbxOLZ/r7q9fr2DHo0iVv51hbcM2MEKLYkaBFiCKiYQ0vvn27\ne45TupwcbHB1ssu+49NP1TSVmTPvPaTRaBjesz6Pt6tBWkb2u5V6vZ4vVoZw/GI80+cHM2tcayp5\nu2Y7TqvVMf+Xw2wPu4KHqz0JSel8uyGCN0a1Mv2JipKve/fC7oHlHT8OX3yhsgl27FjYvbGo5NRM\nTlyIo3Zld3zLmnjDws9PbY8ezXvQIoQQ95E1LUIUIfa21vh4Ohn8MRiwACxbBq+/DrdvZ9vl5mJv\nsK3yXs4MauvJU13rEBWXzPT5wRw/F/vAuZlZOj7+MZztYVeoW8WDha91pn41T/Yei+LI6ZuWePpC\nFB8NG8Kbb8Kff6rRpRLs8JmbaHV6WtT3Mb0Rf3+1PXbMPJ0SQpQ6ErQIkV96PcybB6+8UjjXHzhQ\nbY1MvazRaBjeqz4vPNWE1PQs3v56L/+EXwEgPVPL/30XSsjR6zSs4cV7zwXg6mTHhCf80Ghgye/H\n0EpaZVGaaTTw7rsQEFDYPbG48JPRAPkLWmrXhjfegKefNlOvhBCljQQtQuSXRgOrVqkUyLduFfz1\nO3VS23/+Men0rq2q8u6EAOxtrfjkp4P8uOkk7y3dR9jJaJrV9Wb2+DY4OdgCUKuSO91aVeXyjaR7\nc9xFKRcbq9avfP99YfdEWIBOpyfsZDRuLnbUquRuekM2NiqDWG5TB9evh7feMimNvBCi5JOgRQhz\neOIJyMqCjRsL/toBAWBra3LQAtC4djnmTm2Pt6cqUHn0bCwBfr68NaYVDnYPLn0b0as+Tg42rNx0\nisTkjHx2XhR7K1ZARAQkJGTfl5WlMmwVd7GxcPp0YfeiUJy/fpuEpHSa1/MxLs2xKb75RgU2aXkv\ntiuEKD0kaBHCHJ54Qm3XrbPsdXbvhpMnH3zMyQlatYLwcEh8dIHKnFQpX4Z509rTor4PvdtWY8aI\nFtjaZM/e4+5qz9DudbmTmsmPm04aaEmUGno9LFkCdnYwYkT2/WPGQGAgnDpV8H0zl6goVZOpWzeI\niyvs3hS4e1PD6uVjalhe3L6tat40aQI1alj2WkKIYkmCFiHMoUEDNWf7r78gNdUy1zh4UKVW7dpV\n1cK43/Tp8MMPagpGPni4OvDOuDZMHNQYawO1Yu7qE1iDiuVc2Lz3IheuZ08AIEqJ4GCIjIQnnwQv\nA7U77k4FKs6FJr/+Gs6cgUGDwNOzsHtT4A6cjMbKSkPTuuUse6GNGyEz8781ekII8RAJWoQwB43m\nv8J627ebr93QULXYd+ZM6NED7tyBzz5Toyv3698fhg3L/riF2NpYMX5AI3R6+Gb9cfR6fYFcVxQx\n33yjthMmGN7/+ONq6uLatQXXJ3O7O73tzTdLft2Zh9y+k87pywnUr+aJS07ZC83lbmArQYsQIgcS\ntAhhLs8/r4IMcxaa278fZs+GOXPU1JTFi2HIEPO1nw/N6/nQor4Px87FsudoVGF3RxQ0nQ7OnYM6\ndaBDB8PHuLmpaVWHD6tjixutVv0frFvX8EhSCXcoMga9HprXe0QFe2PMng3PPPPgY6mpapS6bl01\nai2EEAZI0CKEuVSvDi1bmnY39uxZtT7gYf37w99/q7u9Fy7kfEe7kIzv3wgbaw3fbjhOdHwKcbdT\ns/1kZmUvbilKACsrlWY7JCT33/lBg9S2OE4RO3FCrRNr27awe1Iowk7GAPlMdfyw4GD46SdISvrv\nMUdHFdguXlzqRrOEEHmXvwnwQoj827tX3Y2eMEFVt79flSrqp4iqUM6Ffu1r8ts/Zxn34VaDx7i7\n2vPmqFbUq1b61gOUeBoNlC2b+zH9+8PPP6s1X8VNmTKqtkgpDFq0Oj0HI6Mp6+ZANd8y5mvY319N\noY2IgDZt/nu8Th31I4QQOZCgRYjCdOgQ9OqlUnx27FjYvTHJU93qkJ6p5U5KZrZ9WVode49d582v\nQnhpWDPaNa5YCD0UhcrLC7ZsMe3cTZvg2WchKAhatzZvv/KialWVgrcUOn0pgaSUTNq2qYDGnKMf\nfn5qe/Tog0GLEEI8ggQtQhSWEydUdqXERFi5Ut2Rzg+9XrWRmqpShxYQJwdbnh/on+P+sJPRzP3h\nAHNWhBHdJ4WBj9Uy75cgUXLNng0xMWqK2ZUrMnWoAIWd+jfVsTmnhoEaaQE4dsy87QohSjxZ0yKE\nJZw7l3tV53PnVOri2FiVgWno0PxfU6NR7e3YobKMFREt6vswZ0p7vNwc+G7jCRauPUKWVlfY3RJF\nnV4Pycnqz9euwYYNhdufUibsRDQ21lY0rm3mVMcNGqj3qqNHzduuEKLEk6BFCHPbvBlq1YJFi3I+\nxslJ1Xz4/HMYO9Z81+7USWU8CgkxX5tmUL2CG5+80IEaFd3YvO8S7y3dR3Jq9ulkopj44gv45x/L\nXuPuF9t//lGL/t97z3CyCmF2cbdTOX/9No1qeuFob+YJGU5O8Ntv8NVX6r3q0CH5dxVC5IkELUKY\nW7t24OAA69apv+sMjCr4+kJYGLzwgnmv3amT2lr6C2Ve7d0Lv/8OgJebI/+b3I4W9X04dPomMxYE\nE5OQ8ogGRJETFwcvvqjScJvCmC+oGo1a67V8OaxfL9PDzCTudipXopNy3B9+ygJZw+43YIAacdm9\nG5o1g9dft8x1hBAligQtQpibs7Naq3LihFo8PHy44eMcHMx/7bZtwdq6aAQtV6+q/gwYADdvAuBo\nb8Nbo1vRN7A6l24kMX1+MBeu3y7kjgqjhIerbYsWxp2n18OLL1Jn/Hjj76yPHAmVKhl3Tn5NmgSv\nvlriRgHSMrJ47ctgpszbwdb9lwweE3bSQutZHnY3DXaXLpa9jhCiRJCgRQhLePpptQ0LUwvtC4qL\ni6oVc+oUpKcX3HUfptc/WFMmIuLeH62trXhuoD9j+zUkPjGNmQt3c+TMzULopDBJWJjaGhu0aDRw\n7Rquhw8XuemL2WRmqtGdrVtL3OjOun/OEZOQil6vZ/4vh1m1JRL9fYFZZpaOw6dj8PVypkJZZ8t1\nRKdT08Q8PP4bIRZCiFyYFLSEhoYSEBDAyJEjGTFiBB988IG5+yVE8fb006qSdlwc/PFHwV57zRqV\nccnevmCve7/vv1cVrtu2VemcDXwpGdCxFtOHNycjU8fsb/ay8+DVgu+nMJ6pQQvA5Mlqu3Ch+fpj\nCYcPq9/bElafJSYhhbXbz+Dhas+nL3TE29OJnzafYuHaI2j/TY5x4kIcqelaWjTwsWyWvwMHVIKF\nfv3A1tZy1xFClBgmr7Br1aoVX3zxhTn7IkTJodFAq1aFc+2CnkbzML1e3aV2dYVVq3INnjo0rYS7\nqz0fLg9l3spw4m6n8USnmpISuSgLC4Py5aFCBePP7diR1Bo1cFy7VhVS9fU1fNwPP6igqH79/PXV\nVHv3qm0JC1q+++MEGZlaJg3yp1Zld+ZNbc/spfvYvO8S8YlpvDa8xX9Tw+oV0NSwgQMtex0hRIlh\n8vQwfQmb5yuEMBONRk2r2b4dqlR55OH+tcrdS4m8/I8Ilv5+HJ1O3l+KJJ0OXn5ZrfUwJbDUaIgZ\nMgSyslSqb0Pi4mDUKBg/3vD+Q4egb191l95S9uxR2xIUtEScjyP48DXqVHHnseaVAfAo48BHkwJp\nWqccB05E8+biEPYfv4GdrTWNanpZtkM3bqht9+6WvY4QosQweaTl3LlzTJo0idu3bzN58mTalqA3\ndyFEPtnZGTV9qJpvGT6e2oHZS/cSFHyei1GJVPR2MXisf62ytGtcMc9th52MJvTEjTwff5dXGQcG\ndKqFva210eeWWFZWKnNYPsT36kXVJUvuJWfI5q+/VHDUt6/h/QcPwsaN8O67sGRJvvqSoz17oFw5\nqFHDMu0bKSExjU3ht9h/8YjB/ZW9XekTWB0rK8OBpFanZ8k6VcxxwgC/B45zcrDl7bFtWLDmMNvD\nrgDQsoEPdpb+vf/sM/i//7NMQhIhRImk0ZswZBIdHc3Bgwfp1asXV65cYeTIkWzduhUbG8MxUPjd\nbDNCCJGL1AwdP++K5VJMRq7HBdZ3oUsTN6xyuduv1+vZe+oOWw6Znp2skpcdT3f0wsVBAhdzskpJ\nQefkZHBf9ddfx3PrViJWryatZs3sB2Rl0eDpp3G4coWI1atJr1bN7P2zv3wZu+hoklq2NHvbpvgz\n7Bahp3MvGOtXzYkBbTywNhC4hJ+9w4bQWzSu7sQTAZ4Gz9fr9Ww7ksjuE0kMbudJwyqG/32EEKIg\nNG/ePNtjJgUtDxs8eDCff/45FSsavvsZHh5u8OLiP/IamUZet1xERUFsLPj5GdxdoK9dfLyqs9Gq\nFTRqlOuhOp2e67F3DE4RS07N4ovVB7l2M5lA/wq8NKyZwZEQnU7PsqDjBAWfx8vNgZeHNcPdJe+J\nCfTA2u1n+Cf8Kj6eTrwzrg2VfVzv7ZffO9Pl+tplZKgRDi8vOHcu5ylo69fDE0+o0Zhff1UjeyVU\nRqaWZ9/djF6vZc7Ujjz8imh1ehatPcKpSwm0qO/DjJEtcLD77wbindRMnvvobzKztCye2RXPMrmP\nbKSmZ5m/oGQhk/+vppPXznTy2pkup9fOpHemDRs2cOnSJaZMmUJcXBzx8fH4+Fh40Z4QIu+Sk6Fy\nZVUnpiDSy+7Zo4rFubsb3r9vH4wdq9ZCfPxxrk1ZWWmo5O2a4/6Pp3Xgw+WhhBy9TuztVN4a3Rp3\n1/8CkoxMLZ+uOkjIketUKe/K7HEBlPNwNPopvTy0Gb5ezqzaEsn0L4N5c1Qr/GqVNbodYYTdu1WK\n8GefzX3NTP/+qojrH39Anz5qDVUJte94FHdSMwms70LV8mUMHvP+c235aMUBwk5GM+vrvcwa2xoX\nJxXIrdpyisTkDEb2rv/IgAUocQGLEKLkMGkhfufOnTl+/DhDhw5l8uTJzJ49O8epYUKIQuDsrCpN\nh4aqAMaS7i6MbtNGLbA2pHNn1af16/NdrM/VyY73nwugU/NKRF5K4NX5u+5V976TksGsJXsJOXKd\nhjW8mDO5nUkBC4BGo2FYj3q8NLQp6RlZzFqyh+1hl/PVd/EI1avDrFkwbFjux2k0sGEDPPecCoZL\nsK371e9c05o510xxsLfhrdGt6dC0IicvxjNz4e57Ve837r6Ar5czAzoamGonhBDFiEmRhrOzM4sX\nLzZ3X4QQ5tSpk6qFEBJimQw9Oh3MmwdvvaWK8c2dCzndvHBwgJ491VSekyfVqEw+2NpY8/LQZlTw\ncuanf0dCJg7055dtp7l8I4lA/wq8PKyZWRYTd25RhXLuTnz4XSifrTpEVGwKdcuWwuxmO3eqhe9T\np6oA1RKqV1cL7PPC3R1K+OfQjbhkDp+5ScMaXpQtk3stE1sbK14Z1pwyTnb8EXKB1xbsxquMA1qd\nnrH9GmJrI+uyhBDFm8kpj4UQRVyfPmr7ySfmb/vqVejaFWbMUOsPNm+GceNyP2fAALX9/XezdEGj\n0TC0Rz1eGtqM9Iws5q0M5/KNJB5vX4PXRrQwa/Yjv1pl+Xhqe3w8nfh5ayQbw26Zre1iY8cO+Okn\ntT7JXC5cgMGDi07wkZ6ugvEi4u8DapSlW6tHpw4HNbVywhN+DOtel5j4FE5ejKdJnXK0aljekt0U\nQogCIUGLECVVx45qhGXLFhVUmNPOnepLbP/+cOxY3kZyevcGa2uzBS13dW5Rmfeea0vV8q6M7deQ\n8f0b5Zj6NT8q+7gyb1oHqvmWIexMMhHn48x+jSLtbhZIcy4sdXaGoCD44ot8Txu8Jy0NXn9dTR0z\n1vz5ULYs7Nplnr7kg1anZ1voZRztbQj0z3shz7vB/KRB/tSq5MZzT/hJsVYhRIkgQYsQJdnHH8Pz\nz0OTJuZtd9gwFQytW6e+5OWFp6eaQjZ7tnn7AvjVLMuC6Z0Z0LGWRb+gubvaM3lwYwCWrDuGtrQU\nwdTrISxMJXcwZ9IVb28YMgROnVLFSM3Bzg42bVLFKw8dMu7cPXsgIUFNUytkh0/HEHs7jQ5NK+Jg\nwuL4Xm2r89lLnXJNaiGEEMWJBC1ClGT+/vDVV+b9oglqIXS3bsZXRX/5ZbW2pRirV9UT/2pOnL9+\nm79DLxV2dwrG9euqgrkRBUPzbPJktV240DztWVmpYF2vh9dey/sIjl6vgpZKlVRwVsjuLsDv3rpq\nIfdECCGKBglahBA50+mMv1td0g0dyqjty3Cws2bFnye5k5pZ2D2yvLAwtbVE0NK6tdquW6emiplD\n167Qowf8/bcaEcyLCxcgJgbatjVPH/Lh9p109kdEUbW8K7Ur55BGXAghShkJWoQQhl2/rkZTAgPh\nxInC7k3REBMDP/9M+ctnGNK1DonJGfy8JfKRpxX7aWSdOql1UU89Zf62NRpVb6VuXTUyaC5z5qi2\nX3sNtNpHH79nj9oWgaBlR/hVsrR6urWuKutRhBDiXxK0CCGy27BBfYHcvl0FLt7eBd+H5cvh/fch\nNrbgr52TfxdoJ7ZpQ/8ONSnv5cQfu8/fqxNjyIETNxj29p98+lM4mVl5+PJcFLm5qWQLNS1U66NP\nH7WupVo187XZuLEqUlm7NiTl/O9zT1SUWg8TEGC+PphAr9ezNfQSNtYaOjWrVKh9EUKIokSCFiFK\nk3374LPPct5/+zZMmgT9+sGdO2qdwfr1eV9sb4zU1Nz3f/mlKjRYubJKJnDqlPn7YKx/g5akZqoG\nzNh+jdDq9Cz9/Th6A2sndh+5xofLQ0lJy2JH+FXeWryHxOSMgu516fXNN7B2rarp8ijTp0Nionmz\no5ng9OUELt9IonUjX9xc7Au1L0IIUZRI0CJEaaHTqerhr74KERGGj7l1C777Dho2VIUpJ00yfrF9\nXowYAVWqqKKUW7dChoEv8jt3qlS4vr7w9ddQvz707Zu3u+aWsnMnODiQ8m9xzNYNy9OkdjkORsZw\n4GT0A4duO3CZj38Iw87WmncnBBDYuAInLsQzff4ursfeKYzelz45FTvNib29SstdiLaG/rsAv5Us\nwBdCiPtJ0CJEaWFlpVIO63Rqnr8hVauqICI8HPz8LNcXDw817atbNzXt6IMPsh/j6grTpsGZM/Dr\nr2ptzY0b4OJiuX7lJj5e1aRp0wa9nR2gamKMG6Dqwiz9/TiZWaow4caQC3z+8yGcHGz54Pm2NKvr\nzWvDW/Bk59pcj03m1S+CS1+dF/FIqelZ7Dp0lbLujjSuU66wuyOEEEWKBC1ClCa9e8Njj8Gff+K6\nf7/hYwID1R1nS+rfX2137oRmzeDpp3M+1toaBg6E3bth2zbLjPzkhaur6u/9dWZiYqg6cxq9y+uJ\nik1mQ/A5fttxlsW/HcXdxZ7/mxRInSoegKpW/myfBkwZ3JjktEzeWryHnQevFs5zMYa5ij4WNVeu\nwNWi9fqHHLlGarqWbq2qYG2BAqlCCFGcGV+xSghRfGk0MG8eNG9OncmTYeLEwgkCOnaEMWPUwusZ\nM9QC6Lxwc7Not3Jlawvt26s/360OHxcHK1fyTPVQdj41jx/+OkmWVo+XmwMfPN/WYGG/Hm2q4e3h\nxP9WHGDeynAu3Uik7r+Bzf00Gg11q3qYbV1D5KV4biWlG9zn5GhLoxpehjNV9e2rFqnv3Wv5YNbS\nIiPB0VGlcB43To0mbt+e65SwzCwd56/donZlD6zyGEjo9XpOXIjnTopx65c2hlxAo4GuLasYdZ4Q\nQpQGErQIUdo0awbPP4/2+++xPntWZVcqaDY2sGxZwV/X3OrXh5dewuXjjxmhPccibRXKeznx/nNt\nKe/lnONpTet6M3dKe95dto81287keJy7qz1vj2l9b7TGFFqdnm83HCdo1/lcj3v1meZ0fDhblV6v\nghUvr+IfsISHq5owFSqoURZHR3jmGTVtMgdJKRl8uDyUiPNxtPX35eVhzbG3zX3NS5ZWx8I1R/j7\nwGWTutmkTjm8PZ1MOlcIIUoyCVqEKI0WLeLwqFE0L4yAxZwyMtQISGHWsnj7bVi5kh6fvobHH3up\n17o+7q6P/oJf1bcMn77Qkd1HrpGl1T24Uw9xv20gKLEary/azavPNCfAr4LRXUtLz2LeynD2R9yg\nso8L3VpVzfZSabV6ftx0iu//PEEbP98Hv5RfvAgJCWrdUXHXtKkK2A8cUOmQV61SQWcOomKTeXfp\nXq7dTMbNxY49R6OIuxXCW2Na5/jvm5qexf9WHODgqRhqVXanY9OKRnVRo9EQ0MjXqHOEEKK0kKBF\niNJIozE+s1JRc+IEDBkCL76opvoUFldXmDcPq2HDaDN/llFV3d1d7enbrkb2HXv2wJcv41ezJXOf\nnMVH3x9gzOMN6d+hJhqdDn75RY0W5JRQAYhPTOP9Zfs4e/U2/rXK8vqoVrg42ho8Niklg193nCVo\n1zkGd6nz346wMLVt0SLPz6nIsrKCNWtgyxYYOTLXkaOTF+L5YPl+EpMzGPRYLYb1qMeCNYfZEX6V\nV+fv4p1xbajs8+DUv4SkNN5bql7vFvV9eG1ECxzti/n/MSGEKEJkIb4QongqU0YtpH75Zbhs2lSc\nPDOUkvl+Tz8NXbqo7GtZWfm/3ooVALT66kP+N6UdHq72LAuKYPFvR9HqgXfeUTVs4uMNnn4xKpFX\nvtjF2au36dqyCrPHB+QYsAAM7lKHMs52rNl2moSktP92lKSgBdS/z/jxuQYswYeu8ebiEO6kZjJl\ncGNG9W2Ina01Lw1txrDudYmOT2H6l8EcPXvz3jnXb95h+vxgzl69TbdWVXhrdCsJWIQQwswkaBFC\nFE+VKqlCmUlJqv6MJbNcdekC/v6qrowhGg1s2qQKYuZ3BCstDVavVmsvOnemViV35k3rSDXfMvy5\n5yLvLw8lZdxzkJ4OP/yQ7fSDkTG89mUwsbdSGdGrPtOeaoKtTe5v9c6OtjzTsx6p6VpWbrqviOeZ\nf9fbNG2av+dUDOj1etZsO83cH8OwsbbinXFt6NGm2r39Go2GoT3q8dLQZqRnZDHr671sO3CZyEvx\nTP8ymOj4FJ7uVpepQ5pgbS0frUIIYW5yK0gIUXyNGqUqnv/5JyxZAs89Z/5rpKbC/v0qaLHNebTC\nbNPtNm5URT7Hj7+X1aqchyNzprRjzoowwk/FMKOcP00eGwv/XIbqx++dmpahZcv+S1hbaZg+vDkd\nmlbK6SrZ9GhdlT92n2fr/ks83q4GVX3LqPo4UVEWz9qWkJRG8OFrdG1ZBSeHXF5jC9Hr9Sxce4TN\n+y5R1t2R2ePaqOdvQOcWlSnn4cj/LQ/l858PYWNthU6nY8rgxg8EOUIIIcxLbgcJIYovjUYFK+7u\n8Mor6gv2w2bNUrVnTJ22tW+fGmHp2DF/fc0rNzfo1AlGjHjgYScHW2aNbU3PgGpcvJn+aD7RAAAZ\nt0lEQVTC+qaPs75GB9bvPHfvZ9Peizj/W9AyW8DyiJEoa2srxjzeCJ0evt0QoR7UaNSIjwXp9Xo+\n++kg36w/zqwle41OE2wOuw5dY/O+S9Ss5MYnL3TIMWC5y69mWT6e1p7yXk5YWWl4c3RrCViEEMLC\nZKRFCFG8VawIixerdSfly2fff/68Wtj+55/Qr5/x7e/apbYdOuSvn3nVtav6McDa2opJg/zp36EG\nqSH7YeLzMOhJmDnj3jEVyrrg/PD6lchI6NwZpkyB11/P8dLN63nTpE45DkbGEH4qmub1fMzylHJz\n4EQ0h07fxMnBhshLCbz51R7eey7AbPVpHiU9U8v3f57AxtqKmSNb4lnGIU/nVfJ2ZcH0zqSlZxVY\nX4UQojSTkRYhRPH31FNqZMJQ6uO7Gba++sq0tu8GLXcLSxYyjUZDJW9Xag/oQu1lX1D78/epXdnj\n3k+2gEWnU1PNrl+HgIBHtj22XyOsNLAsKALtw6mYzSwzS8vS349jZaVh7pT29Ayoxvnrt3l90W7i\nbqda9Np3Be06x82EVPp3qJFrbR1D7G2tJWARQogCIkGLEKJk8/eHtm1h82Y16mIMvR5iY1XldE/P\nvJ2zaxc89hj8/bfxfTWGRgN9+uS+zgbgm28gOBgGDlTTznKSmQlPP021sJ10bVWVK9FJbNl/yaxd\nfljQrvNExSXTJ7A6VX3LMGmQPwM61uRK9B1mLtxNdHyKRa+fkJTGmm1nKONs92CqZyGEEEWOBC1C\niJJv4kQVgHz9tXHnaTRw5IiqCp9XOh38849axF7Yrl1TI01ubiqzWU60WpXUYPVqWLSI4T3q4mBn\nzcrNp0hOzSFjWj7FJ6ax+u9IXJ3sGNa9LqBGesY83pCh3etyIy6FmQuCuRqTZJHrA/y0OZLU9CyG\n9aiXfYRKCCFEkSJBixCi5HvySShbFi5cMO18ZyOmDbVrp661fr0KYPLKEimbX3oJEhPh448NL6jX\n69XUsSFD4KefVMKCtWvxcHPkyS61uX0ng+V/RKDPY9+ytDq+3RDBkvXHyMjU5nrs9xtPkJquZUTv\n+rg42d17XKPRMKxHPUb3bUDs7TReXxjC2au38vyUL0Yl8sG3+zlw4kaux12KSmTLvotU9nGhZ5uq\neW5fCCFE4ZCgRQhR8jk4wOnTqpK8pdnYqAX/N26ozGN5odOpWiivvmrevrz3niq+OXas4f0HDsDy\n5fDbb9CsmUq3/G+ANqBjLSqWc2HzvkvMWxn+yCAkNT2L97/dz7p/zrIh+Dxvf72H23fSDR57+nIC\n28OuUL1CGbq3NhwwDHysNhMH+XM7OZ3XF+4mNCL3IATg2NlYZi4IZn/EDT74dj8bgnOeDvjthgh0\nehjzeCOpqyKEEMWAvFMLIUoHD4+Cu9YTT6jtunV5O37XLjUNLYcK94906xYsWABxcQ8+Xq8efPIJ\nWOXwVt+qlbr2yy+rNT/31WOxt7VmzpR21K/mya5D13INQhKS0nhj0W4OnoqhRX0f2jWuwIkLquji\n9Zt3HjhWp9ezZN0xACYM8MPaykDyhH/1blud159thU4PHy7PPQgJPnSNWUv2kp6pZXjPepRxsWfJ\n+mN8s/4YWt2DI0Xhp6I5GBlDkzrlaF7PO8c2hRBCFB0StAghhLl17QouLhASkrfj71a2HznStOst\nWwZTp/7XjjHatlWBTdmy2Xa5udjzwfNtad+kYo5ByLWbd5g+P5izV2/TrVUV3hrdiunDWzC4S22i\nYpN5df4uIs7/F0wdvZBC5OUE2jWuQKOa2a/5sAA/X/43OfBeELLEQBCyfuc55v4Yhq2NFbPHBfBU\nt7p8Mq0DVcq7EhR8no++CyUtXdXp0Wp1LAuKQKOBMY83RGMo45wQQogiR4IWIYQwJCwM9u83rSil\ng4M6Pzj40cempMCaNVClium1YJ59FuzsVKFNM6+NsbO15tVnmhsMQk5dimf6/GCi41MY2r0uU4c0\nwdraCisrDSN7N2DqkCakpGXx1uI97Dx4lZS0TP4+chs7GytG922Y5z7UruxxLwjZcF8QotPpWRZ0\nnGVBx/EsY8+cKe1oXKccAN6eTsyd0p4mtcuxP+IGMxftJj4xjS2hl7kSnUS3VlWpXsHtEVcWQghR\nVEhxSSGEMOT99yEoCC5fhsqVjT+/bt28HRcUBElJaqQkp2lcj1K2LAwaBKtWqdGddu1MaycHd4MQ\nXy9nFq49wluL99C/Qw027L5AVpaWKYMbG6wI3711Vbw9HPno+wPMWxlO7cru3EnVMbR7Xbw9nYzq\nw90g5H/fH7gXhJT3cibkyHUq+7gwe1xAtjadHW15Z3wbFq09wtbQy7zyxS4ys7Q42FkzvGe9/Lwk\nQgghCpiMtAghSpdr1+D559UC9JzodGqUpHp10wIWY5w5oxbvjxiRv3YmTFDb9u1VbRkL6Na6KrPH\nt8HO1opfd5wF4M0xrQ0GLHc1qePN3Knt8fZw5MyVW5RxsmbgY7VMuv7dIKRbqyqcu3qbkCPXqV/N\nkzlT2ucYBNlYWzF1SBNG9q5P7K1Ubt/J4MkutfEo42BSH4QQQhQOGWkRQpQu1tZqDUhIiKpNYmhN\nw/HjkJCgsoBZ2ttvw5Qp+U8U0LEjNGkCycng6GievhlwNwj5dfsZ+rarQZ0qj+531fJlmDetAys3\nn6KiawoOdqZ/9NwNQmpUdONGXAojetfH3tY613M0Gg2Du9ShkrcrR8/cZEBH04ImIYQQhUeCFiFE\n6VK+vKoO/8svhqdS6fUqBTCoQKAgmCOzmUajno9eb1xdGRNULV+Gl4c1N+ocjzIOTBnchPDw8Hxf\nX6PR0LddDaPPC/DzJcDPN9/XF0IIUfBkepgQovSZOFFtv/oq+77YWPjoI7WYvmvX/F/ryhVVaf6u\nxMT8t5kTJyeLByxCCCFEYZCgRQhR+nTsCPXrw9q1cPPmg/vKlYMvv4Q9e8yznmX4cBg6VF2rc2fo\n1s3sGb6EEEKIkk6CFiFE6aPRqMX4Oh3s3p19/4QJqkK9OQwcqIKUwYNhxw41FcySoy1CCCFECSRB\nixCidBo9WqUzvlu93lKGDIFq1aBXL9i3DzZteqDyvBBCCCEeTRbiCyFKJ1dX9WNpvr5w4YLlryOE\nEEKUYDLSIoQQQgghhCjSJGgRQgghhBBCFGkStAghhBBCCCGKNAlahBBCCCGEEEWaBC1CCCGEEEKI\nIk2CFiGEEEIIIUSRJkGLEEIIIYQQokiToEUIIYQQQghRpEnQIoQQQgghhCjSJGgRQgghhBBCFGkS\ntAghhBBCCCGKtHwFLenp6fx/e/ceFFXZB3D8ywK7ICAEitzBOwoCotigCMlYo5KCRv2haVojqeW1\nLLtMksy8jpWTzZDjJU0q0camcZwxRsXbWEqIAopoXDMRARVckItcdt8/fOE101gPxsH29/nTQXie\n7zxnd589Z88+++yz7N2793GNRwghhBBCCCH+pEublo0bN+Lk5PS4xiKEEEIIIYQQf6F401JSUkJp\naSlRUVGPczxCCCGEEEII8SeKNy2ffPIJq1atepxjEUIIIYQQQoi/ULRp2bt3L2FhYXh4eABgNBof\n66CEEEIIIYQQop2FUcGOY/ny5ZSVlaHRaKioqECn0/Hxxx8THh7+wJ8/c+ZMlwcqhBBCCCGE+Pcb\nNWrUX/5N0ablXsnJyXh5eREXF9eVXyOEEEIIIYQQDyTf0yKEEEIIIYTo0bp8pkUIIYQQQggh/kly\npkUIIYQQQgjRo8mmRQghhBBCCNGjyaZFCCGEEEII0aPJpkUIIYQQQgjRo8mmRfR4cq8I5W7fvq32\nEIQZqqysBMBgMKg8EmFO5LlCiH83y8TExES1B/FvV1tby5YtW2hqaqJ3797Y2tpiNBqxsLBQe2g9\nVvuTz5o1azAYDPj5+UmvR1BbW0tycjJ5eXmEhIRgaWmp9pCeGDU1NWzevJm2tjacnJzQ6XRqD+mJ\nUVdXx8aNG1mzZg2TJ0/GwcFB7SE9MWpra9m6dSstLS04ODjI84SJ9Ho9qampODo6otPp0Gq10s1E\ner2elJQUbG1tsbW1RafTSTsT1dbWcu3aNZycnNQeyhNHr9ezadMm6uvrcXR0pFevXiavOznT8g87\nfPgwb7zxBo2NjZw6dYrPPvsMQB4UOtG+gM+cOcOxY8e4evWq2kN6YqSmpjJv3jwcHBxISEhAq9Wq\nPaQnxtWrV3nrrbfQ6/WUlpZSUFCg9pCeGN9//z0LFy4E4KWXXkKj0cg73yZKT09n0aJFNDY2cvLk\nSdatWwfI80RnTp06xaJFi7h+/TppaWmsXbsWkG6mOH36NG+++SY3btxg//79rF69GpB2pmhtbWXe\nvHls2bJFXps8orNnz7J48WKMRiNnzpxh5cqVgOnrzuqfHJw5a2trw9LSkvLycuLi4njhhRfIysoi\nJyen42fkHY2/MhgMaDQaNBoNer0eZ2dn6uvrOXfuHC4uLtja2qo9xB6turqanJwcxowZQ0JCAnD3\nHaHevXsD/+8r/qz9eK2oqADoeAK/lxyvD1dUVERVVRWffvop7u7uJCQkEBcXJ7060b7url69Smxs\nLC+++CJFRUUcPHiw42dk3f1Ve7fKykrCwsJYtmwZAJMnT+bgwYM899xz8ljXiZqaGgICAli1ahUA\nMTExpKWlMXnyZFlznSgvL8fW1hYrKyvy8/Pp27evvDloorKyMgYNGsTy5csBmDlzJgUFBQwZMsSk\n/y+Xhz1mBQUFbNmyhdLSUoYNG0ZFRQXh4eE0NzezbNkyrK2tqaysJCgoSB4U7nFvN39/f6ysrNBo\nNNTU1BAYGEhmZiYhISFotVq51Ok+97YbOXIkvXr1oqqqihs3bpCSksLx48f59ddfiYyMlDV3n/Z2\nJSUl+Pv7Y2FhQVFRETY2NmzYsIEjR45w9uxZIiIipN19CgoK2Lx5M7///jtjx45l7NixHZeDXbly\nBSsrK/z8/NQdZA91//PEzz//TG1tLXV1daxfv56GhgYaGhoYPny4rLt73Hu8Dhs2jNzcXDQaDR4e\nHtjb21NYWMiePXuYPXu2dLvPH3/8wbFjx/D39wfg3LlztLW1MXjwYGxsbOjXrx/JycnMnDlT2t3n\n/natra1ERkYCd88c+Pr64uzsrOYQe6z721VUVBAaGkq/fv2orKwkLy+PqVOnmrzpk03LY9D+rkRp\naSmJiYlERkaSm5tLdnY2kZGReHt7c+PGDfr06cPUqVPZunUr5eXljBkzBoPBYLYPEA/qdv78eTIz\nM/H19cXa2ppt27axcuVKTp06xY4dO9Dr9YSGhppts3YPW3M5OTn079+fW7du8eOPPzJp0iRmz57N\nN998I2vufx627nJycrC2tqaqqoqCggLGjBnD7Nmz+frrr7l27Zq048Htzp07R0ZGBh4eHri4uNDa\n2sqRI0fw9/fHw8PD7Ju1e9gxm5+fT0hICIMGDWLt2rXExsYya9Ystm3bRkVFBaNHjzbrhg9bc/n5\n+bi6unL58mVOnjxJdnY2Hh4eXLlyhYaGBkJCQsz+jMG98//www85efIknp6e+Pj4cPv2bdLT0wkN\nDcXJyYkBAwZw+PBhWXP/86B23t7eeHt7Y2lpiYuLC76+vhw9ehSDwYCnpyc2Nja0tbWZ/Rm+v1t3\nPj4+uLm5AXdv2HLgwAEmT56MtbW1fKalu7S0tABQXFyMs7Mz06dP54MPPkCn03H8+HGqq6vx9vYm\nPj6e/v37k5iYyIEDB7hz545ZL+4HdXvvvfewt7cnPT2diooKIiIi2LVrF6dPn6a+vp4RI0aY9QNp\nu4etOa1WS3FxMcOGDWPJkiXExMTg5OTEmjVr+Omnn8x+zcGD273//vtotVpu3LiBVqvl5s2bDBw4\nECcnJ5KSkjh48KC04+HHrIODAydOnKCqqgorKys8PT1JSUkBMPtm7R52zMLdy+tcXV155plnmDZt\nGr6+vqxYsYITJ07Q3Nxs1g3/rlt9fT0xMTGEh4djZ2fHnDlzmD9/PuXl5Wb/ohv+366kpASdTkdc\nXBz79u3DaDQSFhaGk5MT+/fvp7a2FoDXX3+dS5cu0draatZrDh7cbu/evRiNRnQ6HW1tbdja2hId\nHU1OTk5HQ7lj4t+vO41GQ1tbGwC5ubn4+vpib2+PhYUFd+7c6fR3y5mWLsjIyGDdunVkZ2fj4ODA\n4MGDOXr0KP7+/ri5uaHRaMjLy8Pa2hqj0Uh1dTXOzs6cP38eo9HIhAkT1J6CKkzpVlRUhF6vZ8+e\nPbS1tZGUlISVlRXFxcUMHTrUbD/b0lk7CwsLLly4gIeHB1FRUTQ2NqLVarlw4QIajYaoqCi1p6Ca\nztrB3ctPvL29MRgMNDU1MWTIEAoLCzEYDERFRZntiyBTjtkLFy6g0+nw8/Nj0KBBHDp0CA8PD9zc\n3Mz6HW9T2hUWFqLX6zvOlHp4eHD27Fmsra2JiIhQewqqMOWxLjc3F09PT6Kjo/H390en05GWloar\nqyshISFqT0E17e1ycnKws7MjICCAoUOHMmDAALKzs7l+/TqBgYH4+vqSlpZGc3MzAQEBZGRkYGdn\nR1hYmNpTUE1n7aqrqxk+fHjHZ6b69+/PxYsXSU9PZ/369djY2BAYGKj2NFRhaju4+8H7I0eOMHHi\nROrq6liyZAkWFhYEBAT87d+QTYtCVVVVrF69mldeeQUXFxcOHz5MWVkZ/v7+XLp0iVGjRuHl5UVO\nTg4ajYampiZ++OEHdu/eTU5ODnFxcfj4+Kg9jW5narfMzExcXV1JSEhgxowZODg44OXlhZubG76+\nvmpPQxWmtsvOzqa5uRmtVsv27dvZtm0b586dIy4uDm9vb7WnoQpT2nl7e5OZmYmjoyOTJk3it99+\nY+fOnRw5coT4+HhZdyY81jU1NREcHExDQwNlZWVUV1czcuRIs92wmNru9OnTuLu74+bmxi+//MKu\nXbvIy8sjNjYWLy8vtafR7UztlpubS2NjI+7u7nz77bd88cUXXLt2jdjYWNzd3dWehirubefs7Ex6\nejo1NTWEh4djbW2NRqMhPT2dkJAQfHx8cHR05MKFC3z11VdcvHiR2NhYPD091Z6GKkxpd/DgQUJD\nQztubtPc3MyGDRsoLy9nxYoVTJs2TeVZqONR2rV/9vHAgQNs2rSJwsJC5s6dy5QpUzr9O7JpeQRt\nbW18+eWXFBYWUlJSgo+PDzNmzMDX15ennnqK1NRUAgICqKysxNLSEi8vL5qbm0lNTeXtt99m3Lhx\n9O3blyVLlpjVhkVJt9bWVrZv386rr74K3P3gm4ODA66urirPpnspXXO7d+8mISGB4OBg+vTpw/Ll\ny81uw6KkXUtLCzt27OC1114jNDSUwYMHM3/+fLM6XkF5u507dxIfH4+NjQ0+Pj6MHz9e7al0O6Xt\nUlJS+Oijjxg9enTH84Q5bViUdktNTWXOnDk8/fTTuLm5sXTpUrPbsPxdOycnJ7Zv3050dDS9e/dG\np9Nx5coVKisrCQ4OpqWlhSlTpuDn58eCBQvMbsOipF1VVRVBQUEUFxd3XNmwdu1aBgwYoPZ0ulVX\n2hUVFVFeXs6ECRN45513TL5pi3lftPgIKisrWbZsGXV1deh0OpKSkti3bx+NjY3odDqCg4MJCwvj\n7NmzjBgxguTkZFpaWqitrWXEiBE0NTVha2vbcccJc6G0W/sH7pubmwGwsjK/u3N3pV1QUBB37tzB\n0dGRiRMnqj2VbtfVddfU1ATAwIEDVZ5J91Pa7tatW4SGhnZcl2xuLxzh8TxPODg4mN1lnF1ZcyEh\nIR3H67hx41SeSffrrN2oUaMYMWIE27ZtA8DT05MpU6aQmppKREQEWVlZAAQHB6s5DVUobffdd98R\nERHB+fPnGT9+PLNmzVJ5Jt2vK+3GjRvHpUuXmD9/PvHx8Y/0d+VMi4nKyso4dOgQn3/+OQEBAVy+\nfJmsrCxu3rzZ8dkUR0dHcnNzmTVrFuXl5ezbt4+MjAwWLlxodmcI2nW1W9++fVWegXpkzSkn7ZST\ndspJO2Wkm3KdtTMajbi4uHDq1CmCgoK4ffs2ixcvxt3dnaSkJKKjo9Wegmq62i4qKspsb1jQ1Xbj\nx49X9PUV5vf2tUIuLi4sWLAAg8GAwWDAx8eHrVu38u6775KXl0dgYCD29vZYWVnRq1cvli5dSn19\nfcd1j+ZKuikn7ZSTdspJO+WknTLSTTlT29nY2NCnTx/0ej0LFizg+eefV3voqpN2yqnVTs60mMjO\nzg4fHx8sLCwwGAwkJyczd+5c7O3t2bVrF66urmRlZVFSUkJ0dDQ6nQ6dTqf2sFUn3ZSTdspJO+Wk\nnXLSThnpppyp7YqLi5kwYQKOjo4mf/v4v520U06tdnKmRYGCggLg7unql19+GVtbWzIyMrh+/TqJ\niYn06tVL5RH2TNJNOWmnnLRTTtopJ+2UkW7KddbOzs5O5RH2XNJOue5sJ5sWBSorK4mJiem4xVtQ\nUBDLli0z29t6mkq6KSftlJN2ykk75aSdMtJNOWmnnLRTrjvbyaZFgVu3bvGf//yH9PR0pk+fztSp\nU9Ue0hNBuikn7ZSTdspJO+WknTLSTTlpp5y0U64721kYjUbjP/bb/6UyMzPJz89n5syZaLVatYfz\nxJBuykk75aSdctJOOWmnjHRTTtopJ+2U6852smlRwGg0yilDBaSbctJOOWmnnLRTTtopI92Uk3bK\nSTvlurOdbFqEEEIIIYQQPZp5fiuOEEIIIYQQ4okhmxYhhBBCCCFEjyabFiGEEEIIIUSPJpsWIYQQ\nQgghRI8mmxYhhBBCCCFEjyabFiGEEEIIIUSP9l9I0Ywe7OCyhQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -569,7 +651,8 @@ "model = regression.linear_model.OLS(Y.reset_index(drop=True), predictors).fit()\n", "theta = model.params\n", "print theta\n", - "predictions = model.params[0] + model.params[1]*gold[s:e] + model.params[2]*iwm[s:e] + model.params[3]*inflation[s:e] + model.params[4]*qqq[s:e]\n", + "predictions = (model.params[0] + model.params[1]*gold[s:e] + model.params[2]*iwm[s:e]\n", + " + model.params[3]*inflation[s:e] + model.params[4]*qqq[s:e])\n", "\n", "predictions.plot(label = 'model', linestyle = '--', c = 'r');\n", "Y.plot(label = 'unemployment');\n", @@ -600,7 +683,7 @@ }, { "cell_type": "code", - "execution_count": 930, + "execution_count": 220, "metadata": { "collapsed": false }, @@ -617,7 +700,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAHoCAYAAACIMzrDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0VOW9x//PTEiGXJAQSAYhEoFAQIgBo4dLvCEItKV6\nXBVkWalaV7vqhbZirQoc9Fgp4qUcuixLPEf8gZemKqUip7/gr+2x7RJUOkgQFCSIwUDIBQghEBJC\n5vdHzDCTzJDMLbP3nvdrLRaZmZ2ZZ/JkYD7zfJ/vtrndbrcAAAAAwMLssR4AAAAAAEQbwQcAAACA\n5RF8AAAAAFgewQcAAACA5RF8AAAAAFgewQcAAACA5Rku+OzZs0c33nijXn/99Qsed+LECd1zzz36\n2c9+5rmupaVFv/jFL3T77bdr3rx5qqioiPZwAQAAAJiAoYJPY2Ojli9frqKioi6P/c///E9NnDjR\n57pNmzapb9++euONN/STn/xEzz//fLSGCgAAAMBEDBV8HA6HVq9erQEDBniu279/v+68807dfffd\neuCBB9TQ0CBJWrp0qQoKCny+f+vWrZo2bZokafLkydq+fXvPDR4AAACAYRkq+NjtdiUlJflc96tf\n/Uq/+tWv9Morr2jy5Ml67bXXJEnJycmdvr+2tlYZGRmSJJvNJrvdrpaWlugPHAAAAICh9Yr1ALqy\nc+dOLV68WG63W2fPnlV+fn63v7e1tTWKIwMAAABgFoYPPikpKVq3bl23js3KylJtba3y8vI8Kz29\nehn+KQIAAACIsrBK3S7Uge3DDz/Ubbfdpttvv12LFi0K+THy8vL0j3/8Q5L05z//WR9++KHnNrfb\nLbfb7blcVFSkkpISSdLf/vY3TZgwIeTHBQAAAGAdNrd3cghCY2Oj7rvvPuXk5GjEiBH6/ve/73P7\njBkztG7dOjmdTv3sZz/T9773PV177bUXvM/S0lItXrxYx44dU0JCgvr27asnn3xSzz33nOx2u3r3\n7q3nn39eaWlpuvnmm9XY2KgTJ05o4MCBeuSRRzR58mQtWrRI5eXlcjgcevrpp+V0OkN5egAAAAAs\nJOTg09raqpaWFr300kvq169fp+DT0NCgtLQ0SW2tp8ePH6+bbrop/BEDAAAAQJBCLnXz14HNW3vo\nqa6u1pYtW3TdddeF+lAAAAAAEJao7vw/evSo7r33Xj3xxBPq27fvBY91uVzRHAoAAAAACygsLAzp\n+6IWfBoaGvSjH/1IDz30kCZNmtSt7wn1SSD2XC4X82dSzJ25MX/mxdyZG/NnbsyfeYWzWBK1E5g+\n/fTTuvvuu1VUVBSthwAAAACAbgl5xadjB7bi4mJ973vfU3Z2tq6++mpt3LhRBw8e1Jtvvimbzabv\nfve7mj17diTHDgAAAADdEnLwKSgo0Lvvvhvw9p07d4Z61wAAAAAQUVErdQMAAAAAoyD4AAAAALA8\ngg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAA\nALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAyyP4AAAAALA8gg8AAAAAywsr\n+OzZs0c33nijXn/99U63bdmyRbNnz9bcuXO1atWqcB4GAAAAAMIScvBpbGzU8uXLVVRU5Pf2pUuX\n6oUXXtDvf/97ffDBB9q/f3/IgwQAAACAcIQcfBwOh1avXq0BAwZ0uu3rr79Wenq6nE6nbDabrrvu\nOn344YdhDRQAAAAAQhVy8LHb7UpKSvJ7W21trTIyMjyXMzIyVF1dHepDAQAAAEBYevXEg7jd7m4d\n53K5ojwSRBPzZ17Mnbkxf+bF3Jkb82duzF/8iUrwycrKUk1NjedyVVWVsrKyuvy+wsLCaAwHPcDl\ncjF/JsXcmRvzZ17Mnbkxf+bG/JlXOIE1Ku2sBw8erFOnTunw4cNqaWnR+++/r6uvvjoaDwUAAAAA\nXQp5xae0tFSLFy/WsWPHlJCQoOLiYn3ve99Tdna2pk2bpscff1wLFiyQJM2aNUs5OTkRGzQAAAAA\nBCPk4FNQUKB333034O1XXnmliouLQ717AAAAICRNTc0qKTmourpEpaef1cyZQ+Rw+G/KhfgRlVI3\nAAAAIFZKSg6qqipXTU05qqrKVUnJwVgPCQZA8AEAAICl1NUlXvAy4hPBBwAAAJaSnn72gpcRnwg+\nAAAAsJSZM4fI6SyTw1Eup7NMM2cOifWQYAA9cgJTAAAAoKc4HEm6+ebcWA8DBkPwAQAAgGnRwQ3d\nRakbAAAATIsObugugg8AAABMiw5u6C6CDwAAAEyLDm7oLoIPAAAATIsObugumhsAAADAtOjghu4i\n+AAAAMDw6N6GcFHqBgAAAMOjexvCRfABAACA4dG9DeEi+AAAAMDw6N6GcBF8AAAAYHh0b0O4Qm5u\nsGzZMpWWlspms2nhwoXKz8/33Pb666/r3XffVUJCgsaOHavHHnssIoMFAACAtQVqYkD3NoQrpBWf\nbdu2qby8XMXFxXrqqae0dOlSz20NDQ16+eWX9fvf/16vv/66ysrKtHPnzogNGAAAANZFEwNES0jB\nZ+vWrZo2bZokafjw4aqvr9epU6ckSUlJSXI4HGpoaFBLS4vOnDmjvn37Rm7EAAAAsCyaGCBaQgo+\ntbW1ysjI8Fzu16+famtrJbUFn/nz52vatGmaOnWqrrjiCuXk5ERmtAAAALA0mhggWiJyAlO32+35\nuqGhQatWrdJ7772n1NRU3Xnnnfriiy80cuTILu/H5XJFYjiIEebPvJg7c2P+zIu5MzfmLzqyss6q\nrGyfGhqSlZbWqPz8fnK5TkT8cZi/+BNS8MnKyvKs8EhSdXW1MjMzJUlffvmlLrnkEk95W2FhoXbt\n2tWt4FNYWBjKcGAALpeL+TMp5s7cmD/zYu7MjfmLjECNDCZNiu7jMn/mFU5gDanUraioSJs3b5Yk\n7d69W06nUykpKZKkwYMH68svv1Rzc7MkadeuXRoyhHaDAAAA8EUjA/SkkFZ8xo8frzFjxmju3LlK\nSEjQkiVLtGHDBvXp00fTpk3TPffco3nz5qlXr14aP368rrzyykiPGwAAACZHIwP0pJD3+CxYsMDn\ncl5enufrOXPmaM6cOaGPCgAAAJaXnn5WVVW+l4FoCanUDQAAAAjXzJlD5HSWyeEol9NZppkz2R6B\n6IlIVzcAAAAgWA5Hkm6+OTfWw0CcIPgAAAAgqgJ1bwN6EqVuAAAAiCq6t8EICD4AAACIKrq3wQgI\nPgAAAIiqjt3a6N6GWGCPDwAAACLG336emTOHqKSkzOc6oKcRfAAAABAx7ft5JKmqSiopKdPNN+fS\nvQ0xR6kbAAAAIob9PDAqgg8AAAAihv08MCqCDwAAACJm5swhcjrL5HCUy+ksYz8PDIM9PgAAAAha\noJOSOhxJ7OeBIbHiAwAAgKBxUlKYDcEHAAAAQaOJAcyG4AMAAICg0cQAZsMeHwAAAAQUaC8PJyWF\n2YQcfJYtW6bS0lLZbDYtXLhQ+fn5ntuOHDmiBQsWqKWlRZdddpmeeOKJSIwVAAAAPSzQCUlpYgCz\nCanUbdu2bSovL1dxcbGeeuopLV261Of2p59+Wvfcc4/efPNNJSQk6MiRIxEZLAAAAHoWe3lgFSEF\nn61bt2ratGmSpOHDh6u+vl6nTp2SJLndbrlcLt1www2SpP/4j//QwIEDIzRcAAAA9CT28sAqQgo+\ntbW1ysjI8Fzu16+famtrJUnHjh1TSkqKli5dqttvv12/+c1vIjNSAAAA9DhOSAqriEhzA7fb7fN1\ndXW17rrrLg0aNEg//vGP9fe//13XXXddl/fjcrkiMRzECPNnXsyduTF/5sXcmZsV56+5+ay2bDmu\nhoZkpaU1avLkfkpKSlR2tpSd3XbMrl2fxnaQEWLF+cOFhRR8srKyPCs8klRdXa3MzExJbas/gwcP\nVvY3r45JkyaprKysW8GnsLAwlOHAAFwuF/NnUsyduTF/5sXcmZtV5++dd8rUp89E9enTdrm6usyS\nDQysOn/xIJzAGlKpW1FRkTZv3ixJ2r17t5xOp1JSUiRJCQkJys7O1sGDBz23Dx06NOQBAgAAoGfQ\nyABWFtKKz/jx4zVmzBjNnTtXCQkJWrJkiTZs2KA+ffpo2rRpWrhwoR599FG53W6NHDnS0+gAAAAA\nxpWeflZVVb6XAasIeY/PggULfC7n5eV5vh4yZIjeeOON0EcFAACAqOGkpIhHEWluAAAAAPPgpKSI\nRyHt8QEAAIB5sZcH8YjgAwAAEGc4KSniEaVuAAAAFuZvPw97eRCPCD4AAAAWFmg/D3t5EG8odQMA\nALAw9vMAbVjxAQAAsIBALarj7tw8Z89K+/dLe/ZIl1wiFRbGekQwCIIPAACABQQqabPsfp76emnv\n3raA8/nn5/8uK5NaWtqOufRS6cCBmA4TxkHwAQAAsIBAJW2mPjeP2y1VVvoGmz172v4cOtT5+L59\npSuvlEaPlkaNkmbM6Pkxw7AIPgAAABZg6pI27/K0jgGnvr7z8ZdcIk2f3hZu2kPO6NFSVpZks/X8\n+GEKBB8AAACTMW2L6vbytI4rON7lae0SE6WRI33DzahRUl6elJYWm/HD1Ag+AAAAJmPoFtUdy9O8\nA053ytPa/x46VOrFW1VEDr9NAAAAJmOIFtVnz7at1PgrTzt5svPxQ4ZIN97YFmwoT0MMEHwAAAAM\nyhAtquvrO4ebzz9v25PTnfK00aPbrqM8DTFG8AEAADCoHmtR7XZLhw/7L087fLjz8enp0lVXnd93\nQ3kaTIDfTAAAAIOKeIvq9u5p/tpDBypPmzGjc8ChPA0mRPABAAAwqJBL2trL0zoGHH/laUlJ58vT\nvMNNXp6Umhq5JwPEWMjBZ9myZSotLZXNZtPChQuVn5/f6Zjnn39eO3bs0KuvvhrWIAEAAKws0F6e\nC5a0+StPaw85FypP89c9LSGh554sECMhBZ9t27apvLxcxcXF2r9/vxYtWqTi4mKfY/bv369//etf\nSkyMQZcRAAAAEwm0l8fhSNLN38453z3t+TfPh5u9e7suT/M+/w3laYhzIQWfrVu3atq0aZKk4cOH\nq76+XqdOnVKq13Lo8uXL9dBDD+m3v/1tZEYKAABgUXV1iUpsPKH0I3uVfuRzDaj5SPp/KgN3T0tK\nkkaM6NwaeuRIytOAAEIKPrW1tRo7dqzncr9+/VRbW+sJPhs2bNCkSZN08cUXR2aUAAAAVuB2q+nL\nA3K9/k8lfPGVso7tU87pQ7pt52fqfby68/He3dO8Q86ll9I9DQhSRF4xbrfb8/WJEyf0zjvvaM2a\nNTp8+LDPbV1xuVyRGA5ihPkzL+bO3Jg/82LuzO1C82c7e1aOigr1PnBAvb/6qu3v8nL1/uorOU6f\n1uSO3zBwoA7kFao6PUf1gy/WoKmXqSU3Vy0ZGZ3L006ckEpLI/584g2vv/gTUvDJyspSbW2t53J1\ndbUyMzMlSR9++KGOHj2q22+/XU1NTfr666/19NNP69FHH+3yfgsLC0MZDgzA5XIxfybF3Jkb82de\nzJ25eebvxInAJ/c8d873mxwOaeRIfdV7iI5ljtfxi0erbuBonRnSW9//8WgNlTQ0Js8m/vD6M69w\nAmtIwaeoqEgvvPCC5syZo927d8vpdColJUWSNGPGDM2YMUOSdOjQIT322GPdCj0AAACG5HZLhw75\nhJsRH3/cdl1lZefj+/WTJkzQuREj9bnNqar0kWrNy9G1P5gsR0qySt8p8zQykCSns6wHnwwQv0IK\nPuPHj9eYMWM0d+5cJSQkaMmSJdqwYYP69OnjaXoAAABgKs3N57undTy5Z0ODz6EXSVJOjjRz5vmu\nae37cDIzJZtNmzoEnNP/X1untgu2qAYQNSHv8VmwYIHP5by8vE7HDB48WOvWrQv1IQAAACIvmPK0\n9pN7djj3zSenTmn81Vd7DvOch+f/bVR6+n7NnDlEdXW+p/Rov+xwJOnmm3MFoGfRDgQAAFiPn/I0\nz98XKE/zOe/N6NFt3dP8nNyztcM+A3/n4UlPb/u6XXr62Ug+QwBBIvgAAADz8i5P8y5N81OeJqmt\nPG3GDN8VnNGjpQEDwjq5p7/VnblzL6akDTAQgg8AADC+ujr/e28u0D3NuzTNc3LPb5oxhaq9pG3H\njpOqqCjTzJlD5HAkKT39bKfVHUraAGMh+AAAAGNwu6WKCv/7b44c6Xx8RoY0caJvadro0W2rOn7K\n0yKhvaStuTlRVVU5KimhYQFgFgQfAADQs9rL0zruvdmzRzp1yvdYm+1897TRo6W8vIiVp4WChgWA\neRF8AABAdIRSntahe1okytNC4enS5rWCE6ikDYA5EHwAAEDovMvTOq7gXKg8zbt72qhRAbunxYq/\nLm3eJW2VlRVyOilpA8yE4AMAALrW3Czt2+d/BcdfedqQIefL07xXcDIzYzP+C/C3utNVSVt29gkV\nFlLaBpgJwQcAAJznrzzt88+lL7+8cHma9wpOjMrTQsU5eID4QPABACDetJenea/adKc8rWN76Ch2\nT4uGQPt2OAcPEB8IPgAAWFVTk//uaXv3+i9Pu/RS6Vvf8g04Bi1PC0WgfTucgweIDwQfAADM7vjx\n8ys33gEnUHlae0to7/PfjBwpJSfHZvxREMy+Hc7BA8QHgg8AAGbgdktff+2/e5r3ckW7AQOkSZPO\nB5v2sGOy8rRQBbNvh9UdID4QfAAAMJKO5WntAaer8rSOKzgDBsRk+D2NfTsAuovgAwBADCScPClt\n3eq/e1prq+/BvXu3rdh4B5tRo6QRI0zVPS0a2LcDoLsIPgAAREtra8DuaeP8laf1799WnubdHnr0\n6LZz4sRBeVpX2LcDIBwhB59ly5aptLRUNptNCxcuVH5+vue2Dz/8UCtWrFBCQoKGDh2qpUuXRmSw\nAAAYUlNT28k9/ZWnnT7te+w35WknJk9W344touOkPC1U7NsBEI6Qgs+2bdtUXl6u4uJi7d+/X4sW\nLVJxcbHn9scff1zr1q2T0+nUz372M/3jH//QtddeG7FBAwAQE+3d0zo2FwimPO2b7mllLpcKCwtj\n8zwMjn07AKIhpOCzdetWTZs2TZI0fPhw1dfX69SpU0pNTZUkrV+/XmlpaZKkjIwM1dXVRWi4AABE\nWWtr5+5p7V9XV3c+fsAAqaioc8ChPC1k7NsBEA0hBZ/a2lqNHTvWc7lfv36qra31BJ/20FNdXa0t\nW7bo5z//eQSGCgBABAVbnjZ0qHTllb57b/LyKE8LQzArOxL7dgCEJyLNDdxud6frjh49qnvvvVdP\nPPGE+vbt2637cblckRgOYoT5My/mztyYvwtLqK9X7wMH1Purr87/OXBAjsOHZetQntbqcOhMTo7O\nXHqp758hQ+Tu3bvznZeXt/0JUbzP3fvvV+vYscu+uZSosrK/6vrrs1RbW61jx84fl5HxmVyuWklS\ndnbbH0natevTnh1wB/E+f2bH/MWfkIJPVlaWamtrPZerq6uVmZnpudzQ0KAf/ehHeuihhzRp0qRu\n3y+1zublolbdtJg7c2P+vhFOeZrX+W/sOTlKsdvVEw2i423u/K3u7NpVqT59cjzHOBxSYWGOxo7t\neOxUORxJMRx9Z/E2f1bD/JlXOIE1pOBTVFSkF154QXPmzNHu3bvldDqV4nUegaefflp33323ioqK\nQh4YAACddCxPa//7QuVpV13lu/+G8rSoClS+Rkc2ALEWUvAZP368xowZo7lz5yohIUFLlizRhg0b\n1KdPH1199dXauHGjDh48qDfffFM2m03f/e53NXv27EiPHQBgVceOdTrvTZfd07z33rR3T/NXnoao\nCtSYgI5sAGIt5D0+CxYs8Lmcl5fn+Xrnzp2hjwgAEB9aW6WDB/2Xp9XUdD4+M7NzeVr7yT3t9p4f\nP4I6oSgd2QDEWkSaGwAAENCZM23laR3Pf7N3r9TY6Htsx/K00aPPh5z+/WMzfkSkfI2ObABijeAD\nAIiMY8c6773Zs0c6cKBzeVpysm95WnvIGTGC8rQY8xdyIlG+xuoOgFgj+AAAus+7PK3jCk6g8rSr\nr+5cnnbJJZSnGZS/kEP5GgArIPgAADprL0/z1z2tY3ma3d5WnvZv/+a7gkN5mqEFc/JQfwFHonwN\ngLkQfAAgnnmXp3kHnO6Up7X/TXmaoQWzP+fmm3P9hpxAAYfVHQBmQvABAKvz1z2t/W9/5WlZWW3d\n07wbC4waRfc0Ewh3f47kfxWHgAPACgg+AGAVZ85IX3zRefWmu+Vp7X9nZMRm/Oi2YFZxgtmfI7GK\nA8C6CD4AYDZHj3pCzeC///38yT4PHJDcbt9jk5N999xQnmY64a7isD8HANoQfADAiNrL0zqWpn3+\nuVRb6zlsYPsXWVnSNdf4Bhy6p5lKtFZx2J8DAG0IPgAQS42NgbunnTnje6zdLg0bJk2c6Ak3e9xu\njbrlFsrTTKQ94OzYcVIVFWVdNhsIdxWHgAMAbQg+ANATvMrTfPbgBCpP824s4F2e5nD4HHrK5SL0\nGECg1ZoLlak1Nyeqqiqny2YDrOIAQGQQfAAgUlpbpfJy/93TvMrTPLKypGuv9Q03o0ZRnmZwwey5\niUSzAVZxACAyCD4AEKyO5WntAeeLLwJ3T5s40XcFJy+PlRoD8RdmJIW95yYSzQYIOQAQGQQfAAjk\n6NHzocZ7BeerrzqXp6WkdG4sMGqUlJtL97QYCKb0LFCYafs6vD03FypTq6yskNNJwAGAnkLwARDf\nzp3z7Z7W3fK0vLzzAWf0aCk7m/K0KAtlH43UdenZhfbX+LsumD03FypTy84+ocJCgg4A9BSCD4D4\n0Nh4/uSe3qs3X3zRre5plKeFL5hysmjtowl2f024e25YxQEA4wg5+CxbtkylpaWy2WxauHCh8vPz\nPbdt2bJFK1asUEJCgq699lrdd999ERksAHSpttZ/c4FA5WmXXdb5BJ9xXJ4WzKqK1P3QEmw5WbT2\n0QS7v4Y9NwBgHSEFn23btqm8vFzFxcXav3+/Fi1apOLiYs/tS5cu1Zo1a5SVlaU77rhDM2bM0PDh\nwyM2aABx7ty5zt3T2r8+erTz8U6ndN11nQOOCcrTugoi3ueCkYILIuGuqrR9HZ1yskjto+lO6ZkU\nOMwQcADAOkIKPlu3btW0adMkScOHD1d9fb1OnTql1NRUff3110pPT5fT6ZQkXXfddfrwww8JPkAc\nCXd1oP3Yk9XnNPjUF7p6QL0Sy/bp3GefqWHbp0o9dEC9zjb5PGarza7TAy9R8ncmKuGyy3Q2d4S2\nHk/XoT55Shmc0vnx/s+t9PQvQx5bOOEimPvoKoh4nwum7ZjuB5FIlIgFc2ww5WSR2kfTEas1ABC/\nQgo+tbW1Gjt2rOdyv379VFtbq9TUVNXW1irDqwY+IyNDX3/9dfgjhSGF+6lzMMdG4j6sMrZIPl7H\ns8fHoqSpbn+60o/sUb/Kz/X1mg/Vp2K/phw8qD5Hv5LNqzwtQVJKUoqOXzxGdQNHqyU3Uyezh6k8\n+QadyMxVa6JDTmfb/f75nTJVqe3xTkZw5SKYYyNxH9EMIpEoEYtWORlhBgAQaRFpbuDuWDffzdtg\nfuF+6hzMsT39ptXIY4vk43U8e3y0SppsrefUp+ZLpR/Zo/Qjn6t/9b+k5yo0Y8du9W443ul36/RF\nTlWOuFZ1A0erITtL/3Znkd7elaZjKRM95WkOR7kkqakpx+exvP/u7vXROrYny7uk4IJIJErEolVO\nRpgBAERaSMEnKytLtV5tXqurq5WZmem5raamxnNbVVWVsrKyunW/LpcrlOEghnbsOKnm5rY3a+Xl\n5aqsrJAkz3WSVFlZoezsEz7Htl8fzLGRuA+rjC3Sj9c+d5G430sGVMm2c4cu+tKtzNoyZR7dr4F1\nu9Wv5pASW5rlzW2363TGQB24uFA1/Yerpv9wNQ3rpWOZg1V5ZoLnuIyMz5TQv7/K3dU65rWCnJHx\nmSTp2DH5XOdy1aq2trrb1wdzHz39eCNH9lNZ2T41NCQrLa1R+fn95HKdUFbWWZWV7VNSUrJOnvxM\n+fn9JOmCx3bn+l27Tig7u237kyTt2vWpZzz+rg/mWHTG/3vmxvyZG/MXf0IKPkVFRXrhhRc0Z84c\n7d69W06nUykpKZKkwYMH69SpUzp8+LCysrL0/vvv6/nnn+/W/RYWFoYyHMRQRUWZqqpyVF5erpyc\nHDmd7Z86n/8E3uk8q8LCXM+x3tcHc2wk7sMqY4vk43nPXVD3O6SvTif+Re6yfUqv/FzpVXvUv+ZT\npf7nIV3RYaXXnZIid/4YfX3RJarNyNXZEZdq3NxrlHTZaKXKpi+8yuVm+S2tmyqHI0ljx3YsrZsa\n1LGRuI+efjyHI0mTJsmvSZPa/uMuLLze57pAxwZzPaKvbe74f8+smD9zY/7MK5zAanOHWIv2m9/8\nRh9//LESEhK0ZMkSffbZZ+rTp4+mTZumf/3rX3ruueckSTNnztRdd93V5f3xC2hO5/f4VGjcuGzT\n7Gsx+9giu8fn/Nx1OrbPGc0c7ZZ97x7tfecjJX15QP1rypRR/ZVsfrqnuZ1O2UaP9u2cNnq0NHiw\n4bunmRX/dpoXc2duzJ+5MX/mFc7chRx8Io1fQHNj/szL5XKpcPTozif33LMn8Mk9hw8/H2y8W0T3\n6xebJxHHeO2ZF3NnbsyfuTF/5hXO3EWkuQEAk6ip6XRyz7E7d0qVlZ1P7pmaKo0Z0zng5OZKDkds\nxg8AABAigg9gNefOSV995XtSz/av/ZSn2fv3bzu5Z3u4af87O1uy2Xp+/AAAAFFA8AHM6vTpzuVp\nn3/edl2T78k9lZAgDRsmFRV1Kk/buX8/y/0AAMDyCD6AkbndUm2t76pN+9fl5f7L08aO9V25GT26\nbU8O5WkAACCOEXwAIwhUnvb5574nfGk3cKB0/fWd999QngYAAOAXwQfoSadPS3v3dg44gcrThg+X\nrr66Ldzk5Z0POenpsRk/AACASRF8gEhzu/12T/OUp3WUlibl559fvWkPOLm5UlJSz48fAADAggg+\nQKjay9MZ58VhAAAgAElEQVT87b/xV5528cXSlCm+pWntJ/ekPA0AACCqCD5AV7zL0zp2T2tu9j02\nIaFtpeaaa3z33+TlUZ4GAAAQQwQfQDpfnhaoe1pH7eVpo0d37p5GeRoAAIDhEHwQXzqWp3n/ffx4\n5+M7lqe1/015GgAAgKkQfGBNp061laJ1XMHZt89/97TcXOnaazu3h+7bNzbjBwAAQEQRfGBeoXZP\n67h6Q3kaAACA5RF8YHwtLYG7pwUqT7vhBt/OaZSnAQAAxDWCD4zj1Cn/3dP27QvcPe26684HHMrT\nAAAAEADBBz3L7Zaqq33DTfvXBw92Pj4tTSoo6Lz3hvI0AAAABIHgg+joWJ7mHXL8lacNGiRNndq5\nPG3QIMrTAAAAELaQgk9LS4seffRRHT58WAkJCVq2bJmys7N9jvnzn/+sV155RQkJCZowYYIefPDB\niAwYBrRvn/qVlEh/+tP5cHOhk3u2l6d5r+BcdFFsxg4AAIC4EFLw2bRpk/r27avnnntOH3zwgZ5/\n/nmtWLHCc/uZM2f03HPPadOmTUpJSdGcOXN00003afjw4REbOAyislIaNUrDWlvPX9enT+fytNGj\npWHDKE8DAABATIQUfLZu3ap///d/lyRNnjxZCxcu9Lm9d+/e2rhxo1JSUiRJ6enpqqurC3OoMCSn\nU/rNb3Tw0CENmTGD8jQAAAAYUkjBp7a2VhkZGZIkm80mu92ulpYW9ep1/u7S0tIkSXv37tXhw4c1\nbty4CAwXhmO3Sz/7mWpcLg0pLIz1aAAAAAC/ugw+b731lt5++23ZvvkE3+12a+fOnT7HtHqXOXn5\n6quv9Itf/ELPP/+8EhISuhyMy+XqzphhUMyfeTF35sb8mRdzZ27Mn7kxf/Gny+Aze/ZszZ492+e6\nxx57TLW1tcrLy1NLS0vbHfXyvasjR45o/vz5evbZZ5WXl9etwRSyYmBaLpeL+TMp5s7cmD/zYu7M\njfkzN+bPvMIJrPZQvqmoqEglJSWSpL/97W+aMGFCp2MWLVqkxx9/XKNGjQp5cAAAAAAQCSHt8fn2\nt7+tDz74QLfffrscDoeefvppSdJLL72kCRMmqG/fvtq+fbt++9vfyu12y2az6e6779aUKVMiOngA\nAAAA6I6Qgo/dbteyZcs6Xf/jH//Y8/Unn3wS+qgAAAAAIIJCKnUDAAAAADMh+AAAAACwPIIPAAAA\nAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIP\nAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwPIIPAAAAAMsj+AAAAACwvF6hfFNLS4seffRRHT58\nWAkJCVq2bJmys7P9HrtgwQI5HA4tW7YsrIECAAAAQKhCWvHZtGmT+vbtqzfeeEM/+clP9Pzzz/s9\n7oMPPlBFRUVYAwQAAACAcIUUfLZu3app06ZJkiZPnqzt27d3Oqa5uVkvvvii7r333vBGCAAAAABh\nCin41NbWKiMjQ5Jks9lkt9vV0tLic8xLL72kO+64Q6mpqeGPEgAAAADC0OUen7feektvv/22bDab\nJMntdmvnzp0+x7S2tvpcLi8v1969e/XAAw/oo48+6vZgXC5Xt4+F8TB/5sXcmRvzZ17Mnbkxf+bG\n/MUfm9vtdgf7TY899phmzZqloqIitbS0aOrUqfr73//uuX3t2rX64x//qOTkZJ08eVLHjx/XPffc\no3vuuSeigwcAAACA7gipq1tRUZFKSkpUVFSkv/3tb5owYYLP7XfeeafuvPNOSdLHH3+sDRs2EHoA\nAAAAxExIe3y+/e1vq6WlRbfffrt+//vf66GHHpLUtq+ntLQ0ogMEAAAAgHCFVOoGAAAAAGYS0ooP\nAAAAAJgJwQcAAACA5RF8AAAAAFheSF3dIuXcuXNatGiRDh48qNbWVv3yl7/UFVdcoT179uiJJ56Q\n3W5XXl6eHn/88VgOExewbNkylZaWymazaeHChcrPz4/1kNCFZ555Rtu3b9e5c+f04x//WPn5+Xr4\n4YfldruVmZmpZ555RomJibEeJi6gqalJs2bN0v3336+JEycyfyaxceNGvfzyy+rVq5d++tOfKi8v\nj7kzidOnT+uRRx7RiRMndPbsWd1///3Kzc1l/gxuz549mj9/vu666y59//vf15EjR/zO2caNG7Vu\n3TolJCRo9uzZuvXWW2M9dKjz/FVWVmrhwoVqaWlRYmKinn32WfXv3z+o+Yvpis8777yj3r176403\n3tBTTz2lZcuWSZJ+/etf6z/+4z/0xhtvqL6+Xv/85z9jOUwEsG3bNpWXl6u4uFhPPfWUli5dGush\noQsfffSRysrKVFxcrP/+7//Wr3/9a61cuVJ33HGHXnvtNQ0ZMkTr16+P9TDRhVWrVik9PV2StHLl\nSs2bN4/5M7i6ujr97ne/U3FxsVavXq2//vWvzJ2JbNiwQcOGDdO6deu0cuVKLV26lH87Da6xsVHL\nly9XUVGR5zp/r7nGxkatWrVKa9eu1bp167R27VrV19fHcOSQAs/fnDlz9Oqrr2rq1Kl65ZVXgp6/\nmAafm266SY899pgkKSMjw/NJSkVFhcaMGSNJuuGGG7Rly5ZYDhMBbN26VdOmTZMkDR8+XPX19Tp1\n6lSMR4ULueqqq7Ry5UpJ0kUXXaTTp09r27ZtuuGGGyRJU6ZM4fVmcF9++aUOHDig6667Tm63W9u2\nbdOUKVMkMX9GtmXLFhUVFSk5OVkDBgzQk08+qY8//pi5M4mMjAwdP35cknTixAllZGTwb6fBORwO\nrV69WgMGDPBc5+81V1paqssvv1ypqalyOBy64oortH379lgNG9/wN3+PP/64ZsyYIantNVlXVxf0\n/MU0+PTq1UsOh0OStHbtWn33u9/V8ePHPZ9kSm1PrKamJlZDxAXU1tYqIyPDc7lfv36qra2N4YjQ\nFbvdruTkZEnS22+/reuvv16NjY2e8oz+/fvzejO4Z555Ro8++qjnMvNnDocOHVJjY6Puvfde3XHH\nHdq6davOnDnD3JnEt771LR05ckTTp0/XD37wAz3yyCO89gzObrcrKSnJ57qOc1ZdXa2jR4/6vJfh\nfacx+Ju/5ORk2e12tba26o033tCsWbM6vRftav56bI/PW2+9pbfffls2m01ut1s2m03z589XUVGR\nXn/9dX322Wd68cUXdfTo0Z4aEiKMU0KZx1/+8hetX79eL7/8sqZPn+65njk0tj/96U+66qqrNGjQ\nIL+3M3/G5Xa7PeVuhw4d0g9+8AOf+WLujG3jxo0aOHCgXnrpJe3du1eLFi3yuZ35M59Ac8ZcGltr\na6sefvhhTZo0SRMnTtSmTZt8bu9q/nos+MyePVuzZ8/udP1bb72l999/X6tWrVJCQoLPcrIkVVVV\nKSsrq6eGiSBkZWX5rPBUV1crMzMzhiNCd/zzn//USy+9pJdffllpaWlKTU1Vc3OzkpKSeL0Z3N//\n/ndVVFTovffeU1VVlRITE5WSksL8mcCAAQM0fvx42e12XXLJJUpNTVWvXr2YO5PYvn27rrnmGklS\nXl6eqqqqlJyczPyZTMf/75xOp7KysnxWCKqqqjR+/PgYjhIX8thjj2no0KG67777JCno+YtpqdvX\nX3+tP/zhD3rhhRc8S4+9evXSsGHDPPV57733nucfGxhLUVGRNm/eLEnavXu3nE6nUlJSYjwqXEhD\nQ4OeffZZvfjii+rTp48kadKkSZ553Lx5M683A1uxYoXeeust/eEPf9Ctt96q+++/X5MmTVJJSYkk\n5s/IioqK9NFHH8ntduv48eM6ffo0c2ciOTk52rFjh6S2ssWUlBRNnjyZ+TMZf//fXX755dq1a5ca\nGhp06tQpffLJJyosLIzxSOHPxo0blZSUpAceeMBzXUFBQVDzZ3PHcE1vxYoV+vOf/6yLL77YU/62\nZs0alZeXa8mSJXK73SooKNAjjzwSqyGiC7/5zW/08ccfKyEhQUuWLFFeXl6sh4QLePPNN/XCCy/o\n0ksv9bzmli9frkWLFqm5uVmDBg3SsmXLlJCQEOuhogsvvPCCsrOzdfXVV+uXv/wl82cCb775pt56\n6y3ZbDbdd999Gjt2LHNnEqdPn9bChQt19OhRnTt3Tj//+c81dOhQPfLII8yfQZWWlmrx4sU6duyY\nEhIS1LdvX7388st69NFHO83Ze++9p//5n/+R3W7XvHnz9J3vfCfWw497/uavtbVVDodDqampstls\nys3N1ZIlS4Kav5gGHwAAAADoCTEtdQMAAACAnkDwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAA\nlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8A\nAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5BB8AAAAAlkfwAQAAAGB5\nQQefPXv26MYbb9Trr7/uc/0///lPjRo1ynN548aNuvXWW3Xbbbfp7bffDn+kAAAAABCiXsEc3NjY\nqOXLl6uoqMjn+ubmZr300kvKysryHLdq1SqtX79evXr10q233qrp06froosuitzIAQAAAKCbglrx\ncTgcWr16tQYMGOBz/Ysvvqh58+YpMTFRklRaWqrLL79cqampcjgcuuKKK7R9+/bIjRoAAAAAghBU\n8LHb7UpKSvK57sCBAyorK9P06dM919XW1iojI8NzOSMjQzU1NWEOFQAAAABCE1Spmz/Lly/XkiVL\nJElut9vvMYGu9+ZyucIdCgAAAACLKywsDOn7wgo+VVVVOnDggBYsWCC3262amhrNmzdPP/3pT/V/\n//d/PseNHz++y/sL9Ukg9lwuF/NnUsyduTF/5sXcmRvzZ27Mn3mFs1gSVvBxOp3avHmz5/INN9yg\nV199VU1NTVq8eLEaGhpks9n0ySefaNGiReE8FAAAAACELKjgU1paqsWLF+vYsWNKSEhQcXGxXnvt\nNfXt21eSZLPZJLU1QXjooYf0wx/+UHa7XfPnz1daWlrkRw8AAAAA3RBU8CkoKNC7774b8Pa//vWv\nnq+nT5/u0/AAAAAAAGIl6BOYAgAAAIDZEHwAAAAAWB7BBwAAAIDlEXwAAAAAWB7BBwAAAIDlEXwA\nAAAAWB7BBwAAAIDlEXwAAAAAWF5QJzAFAAAAJKmpqVklJQdVV5eo9PSzmjlziByOpFgPCwiIFR8A\nAAAEraTkoKqqctXUlKOqqlyVlByM9ZCACyL4AAAAIGh1dYkXvAwYDcEHAAAAQUtPP3vBy4DREHwA\nAAAQtJkzh8jpLJPDUS6ns0wzZw6J9ZCACwq6ucGePXs0f/583XXXXfr+97+vyspKLVy4UC0tLUpM\nTNSzzz6r/v37a+PGjVq3bp0SEhI0e/Zs3XrrrdEYPwAAAGLA4UjSzTfnxnoYQLcFteLT2Nio5cuX\nq6ioyHPdypUrNWfOHL366quaOnWqXnnlFTU2NmrVqlVau3at1q1bp7Vr16q+vj7igwcAAACA7ggq\n+DgcDq1evVoDBgzwXPf4449rxowZkqSMjAzV1dWptLRUl19+uVJTU+VwOHTFFVdo+/btkR05AAAA\nTKGpqVnvvFOmtWvL9c47ZWpqao71kBCHggo+drtdSUm+/dmTk5Nlt9vV2tqqN954Q7NmzVJtba0y\nMjI8x2RkZKimpiYyIwYAAICp0PoaRhCRE5i2trbq4Ycf1qRJkzRx4kRt2rTJ53a3292t+3G5XJEY\nDmKE+TMv5s7cmD/zYu7Mjfnrvh07Tqq5+Xy768rKCmVnn4jhiJi/eBSR4PPYY49p6NChuu+++yRJ\nWVlZPis8VVVVGj9+fJf3U1hYGInhIAZcLhfzZ1LMnbkxf+bF3Jkb8xeciooyVVXleC47nWdVWBi7\nxgjMn3mFE1jDbme9ceNGJSUl6YEHHvBcV1BQoF27dqmhoUGnTp3SJ598wi8XAABAnKL1NYwgqBWf\n0tJSLV68WMeOHVNCQoKKi4vV2toqh8OhefPmyWazKTc3V0uWLNFDDz2kH/7wh7Lb7Zo/f77S0tKi\n9RwAAABgYLS+hhEEFXwKCgr07rvvduvY6dOna/r06SENCgAAAAAiKexSNwAAAAAwOoIPAAAAAMsj\n+AAAAACwPIIPAAAAAMsj+AAAAACwvIicwBQAAMSfpqZmlZQcVF1dotLTz2rmzCFyOJJiPSwA8IsV\nHwAAEJKSkoOqqspVU1OOqqpyVVJyMNZDAoCAWPEBAAAhqatLvOBlWAMre7AKVnwAAEBI0tPPXvAy\nrIGVPVgFwQcAAIRk5swhcjrL5HCUy+ks08yZQ2I9JEQBK3uwCkrdAABASByOJN18c26sh4EoS08/\nq6oq38uAGbHiAwAAgIBY2YNVsOIDAACAgFjZg1UQfAAAABAxdIGDUQVd6rZnzx7deOONev311yVJ\nR44c0bx583THHXfowQcf1NmzbXWfGzdu1K233qrbbrtNb7/9dmRHDQAAAB9NTc16550yrV1brnfe\nKVNTU3NMxkEXOBhVUMGnsbFRy5cvV1FRkee6lStXat68eXrttdc0ZMgQrV+/Xo2NjVq1apXWrl2r\ndevWae3ataqvr4/44AEAANDGKIGDLnAwqqCCj8Ph0OrVqzVgwADPdR9//LGmTJkiSZoyZYq2bNmi\n0tJSXX755UpNTZXD4dAVV1yh7du3R3bkAAAA8DBK4Aj3/E5GWbmC9QQVfOx2u5KSfGs0GxsblZjY\n9sLq37+/qqurdfToUWVkZHiOycjIUE1NTQSGCwAAYD2ReLNvlBPKhtsFzigrV7CeiDY3cLvdQV3f\nkcvliuRw0MOYP/Ni7syN+TMv5s7cIjl/779frWPHLvvmUqLKyv6q66/PCuo+srLOqqxsnxoakpWW\n1qj8/H5yuU5EbIzByM5u+yNJu3Z9GtT37thxUs3N51erKisrlJ0d+efB6y/+hB18UlNT1dzcrKSk\nJFVVVcnpdCorK8tnhaeqqkrjx4/v8r4KCwvDHQ5ixOVyMX8mxdyZG/NnXsyduYUzf/66nu3aVak+\nfXI8xzgcUmFhzgXuxb9Jk0IakqFUVJSpqur8c3c6z6qwMLLttHn9mVc4gTXsE5hOmjRJmzdvliRt\n3rxZ11xzjS6//HLt2rVLDQ0NOnXqlD755BN+uQAAgOm1l6Rt2nQy5JI0f6VcRilTMwJOmIpoCWrF\np7S0VIsXL9axY8eUkJCg4uJivfzyy3r00Uf1hz/8QYMGDdItt9yihIQEPfTQQ/rhD38ou92u+fPn\nKy0tLVrPAQCAsHDeEXRXe2hpbk5UVVWOSkrKgj65p78mBHPnXqySkjKf38F4FfYJU1tapL17pdJS\n6ZJLpGuuidzgYGpBBZ+CggK9++67na5fs2ZNp+umT5+u6dOnhz4yAAB6SPubWUmqqlJIb2YRHyLR\nOS09/ayqqnwvh/1m/wIsHexPnJB27pR27GgLOjt2SLt2SU1Nbbfn5EhffRXTIcI4ItrcAAAAMzJK\nG2AYn7/QEqyZM4f06OqOJYK92y2Vl/sGnNJS6cAB3+OSkqQxY6Rx46SCAulb34rNeGFIBB8AQNyL\nxJtZxIf20FJZWSGnM7TQEs3VHX9MF+wbG6Xdu30Dzs6dbas73jIzpWnTzoecggJp1Cgp0eDPDzFD\n8AEAxL2e/gQe5tUeWrKzT0S801i0GDrYV1X5BpwdO9r255w7d/4Yu10aObJt9aY94IwbJw0cKNls\nfu/W0uV9CBnBBwAQ93r6E3igJxki2Le0SF98cT7gtIcc70QmSX36SBMn+gacsWOllJSgHs4S5X2I\nOIIPAACAhfV4sG9vOOC9krNrl3TmjO9xOTnSTTedDzgFBdLQoW0rPGEyXXkfegTBBwAAwKAMXbLV\n3nCgY6laVw0Hxo2TLr9c6tcvakMzdHkfYobgAwAA4oKhQ0QAhinZOnOmreGAd8AJ1HDgxht9V3Hy\n8nq84YAhyvtgOAQfAAAQFwwTIoIQk5Kt6uq2YNOdhgMzZ54POV00HOhJ7NuDPwQfAAAQF8y47yOq\nJVvtDQe8S9VKS6UjR3yPS0uTJkzwDTghNBwAYo3gAwAA4oIZ931ErGSrvt63m1qghgNDhkSt4QAQ\nawQfAAAQF8y47yPoki23W/rqq84hJ1DDAe+AU1AQ1YYDQKwRfAAAgKEE04QgmGMtt+8jmIYD06b5\nBpxRo3q84UC4zNicAsZC8AEAwMLM+GYxmCYEZmxYEJL2hgPeqzh79vg2HLDZ2jqozZzp2zraIA0H\nwhU3c42oCTv4nD59Wo888ohOnDihs2fP6v7771dubq4efvhhud1uZWZm6plnnlGiyT5VAADACsz4\nZjGYJgRmbFhwQd4NB7xDTqCGA94BJ4iGA0YJxMGMw3JzjR4XdvDZsGGDhg0bpgcffFDV1dW68847\nNW7cON1xxx2aMWOGVqxYofXr12vu3LmRGC8AIIqM8mYoWqz+/Pwx45vFYJoQmLFhgUd9fVtpmvdK\nTqCGA9/9rm+p2rBhYTUcMEogDmYcpp5rGELYwScjI0N79+6VJJ04cUIZGRnatm2bnnzySUnSlClT\ntGbNGoIPAJiAUd4MRYvVn58/kXiz2NOBMZgmBKZoWOB2S+Xlvi2jS0ulL7/0PS4pSbrssvMto6PY\ncMAogTiYcZhirmFoYQefb33rW9qwYYOmT5+ukydPavXq1br33ns9pW39+/dXTU1N2AMFAESfUd4M\nRYvVn58/kXiz2NOBMZgmBIZrWNCx4UD7n44NBwYMaGs44N1VrQcbDhhl9SSYcRhurmE6YQefjRs3\nauDAgXrppZe0d+9eLVq0yOd2t9sd7kMAAHqIUd4MRYvVn58/kXizGI+BsVu8Gw60l6r5azgwcmRb\nwwHvkHPxxTFtOGCU1ROjjAPxIezgs337dl1zzTWSpLy8PFVVVSk5OVnNzc1KSkpSVVWVsrKyunVf\nLpcr3OEghpg/82LuzC2S85eVdVZlZfvU0JCstLRG5ef3k8t1outvNAmjPT+zvPZqa6t17Nj5yxkZ\nn8nlqo3dgHpaS4t6f/21kvfuVcq+fUret0+X790rHT3qc9i5lBQ1jh2r0yNHqnHEiLa/c3Pl7t3b\n9/4qK9v+xFh2dtsfSdq169O4G4dZXn+InLCDT05Ojnbs2KEbb7xRhw4dUkpKiiZMmKCSkhLddNNN\n2rx5sycYdaWwsDDc4SBGXC4X82dSzJ25RWP+Jk2K6N0ZjlGen5lee2PHdtzjM9W6TSG62XCg2en0\nbTgwbpwShg5Vmt2utBgNHd1nptcffIUTWMMOPrfddpsWLlyoefPm6dy5c/rVr36loUOH6pFHHtGb\nb76pQYMG6ZZbbgn3YQAAQIxYcm9Fe8MB75bR/hoOJCZKY8b4to2+/HJ9euAAb5wNIh67NSI0YQef\nlJQU/dd//Ven69esWRPuXQMAAISvveFAx5BzoYYD7SEnUMOBAwd6ZuzoUjx2a0Rowg4+AAAAhlFV\n5dtNzUQNBxAamm+guwg+AABYRFyV/LS0SPv2+e7FKS2VjhzxPS4tTZowwfe8OGPHSqmpsRk3Ii4e\nuzUiNAQfAAAswrIlP+0NB7wDzqefdmo4oCFDfBsOFBRIw4ZJdntsxo0eQUtsdBfBBwAAizB9yY93\nwwHvUrVuNhxQRkZIDxtXK2UWZMnmG4gKgg8AABZhqpKfM2ekzz7zLVXbuVOqq/M9bsAAaepU31Wc\nUaOkpMgFE38rZW2rCIQhwEoIPgAAWIRhS36qqzt3VPv8c/8NB6ZP9w05gwZFveGAv5Uyy5YNAnGM\n4AMgrlDSAiuLecnPuXPSF1/4hpwdOzo3HEhNbWs40B5uCgqk/PyYNRzwt1Jm+rJBAJ0QfADEFT7F\nRbgIz9/obsOBSy5pazjg3TbaYA0H/K2Utf1bcf4YQ5cNAugWgg+AuMKnuAhX3IVnt1s6eLDzKk7H\nhgNJSdJll/mWqRUUhNxwoCf5WykzbNkggJARfADEFVNt/oYhWTo8d2w40P6nq4YD48a1NRxItM7P\nIhJlg6wOAsZC8AEQV/gUF+HyF55N+Qa3veGA90pOdxoOjBsnXXxx1BsOWEHcrQ4CBkfwARBXYr75\nG6YXeD+IQd/g+ms4UFoqVVb6HpeaKv3bv/kGnLFjY9ZwwAosvToImBDBBwAswoyrDmYcs7/wbJg3\nuCdPtjUc8N6Ls2uX1Njoe5x3w4H2kBODhgNmnP9gUFoLGAvBBwAswtCrDgGYccz+9PgbXLdbKi/v\nXKrWseFAYqI0ZoxvwDFQwwGrzH8glNYCxhKR4LNx40a9/PLL6tWrl376058qLy9PDz/8sNxutzIz\nM/XMM88o0UIbHgHAiAyz6hAEM47Zn6i+wW1qknbv7lyqFqjhgHfAGTWqrdua37uN/WpLNOffCM+P\n0lrAWMIOPnV1dfrd736nP/3pTzp16pR++9vfqqSkRPPmzdP06dO1YsUKrV+/XnPnzo3EeAEAAZix\nrMaMY/YnYm9wa2p8w82OHdKePVJLy/ljbDZpxIi2hgPeIWfQoKAaDhhhtSWa82+E5wfAWMIOPlu2\nbFFRUZGSk5OVnJysJ598UlOnTtWTTz4pSZoyZYrWrFlD8AEizAifZsJYzFhWY8YxR8S5c+p94IC0\nb5/vSo6/hgNXXeUbcPLzI9JwwAirbdGcfyM8PwDGEnbwOXTokBobG3Xvvffq5MmTuv/++3XmzBlP\naVv//v1VU1MT9kAB+OLTTHRkxrKaQGO2VLAP0HBgjL+GA7Nm+Yac4cOj1nAg0GpLT/7so/k7a5XV\nRACRE3bwcbvdnnK3Q4cO6Qc/+IHcbrfP7d3lcrnCHQ5iiPnrWTt2nFRz8/lPMCsrK5SdfSKk+2Lu\nzM2K8/f++9U6duyyby4lqqzsr7r++qyYjqlLbreSjhxR8hdfKOWLL5T8xRdK3rdPvSsqfA5r7dVL\nZ6WBmusAAB79SURBVIYN0+mRI9U4YoRO5+WpccQInevb1/f+6uulTz6J2nCzss6qrGyfGhqSlZbW\nqPz8fnK5TpjzZ+9HoOcXSVZ87cUT5i/+hB18BgwYoPHjx8tut+uSSy5RamqqevXqpebmZiUlJamq\nqkpZWd37B7OwsDDc4SBGXC4X89fDKirKVFWV47nsdJ5VYWHwn5wyd+Zm1fnbtatcffqc//12OKTC\nwpwLfEcP627Dgf79OzUcsI8apZSkJH1ugLmbNKnzdYb/2QfB3/OLlI6vPUutUsYBq/7bGQ/CCaxh\nB5+ioiItXLhQP/rRj1RXV6fTp0/r6quvVklJiW666SZt3rxZ11xzTbgPA6CDuN0bgbhgqDKlmhrf\ngHOhhgM33uh7AtAgGw4YgaF+9h0YOVxQfgwYX9jBx+l0asaMGZozZ45sNpuWLFmisWPH6pe//KXe\nfPNNDRo0SLfcckskxgrAixn3c4TLyG96EFkxCfbnzrU1G/BewSktlQ4f9j2uveGAd8AZOzYiDQeM\nIFo/+0i8fo0cLmimABhfRM7jM2fOHM2ZM8fnujVr1kTirgHAw8hvehBZUQ/27Q0HvFdyPv1U6tBw\n4PSAi3W0YKpOj8zTsFuuUeJVV0rDhkWt4YARROtnH4nXr5HDhZFXygC0iUjwAYCeYOQ3PTAot1s6\neND3vDilpdL+/b7HJSZKl13ms4rz54o0VTRe5TlkT0qZbs4laIcqEq9fI4cLyo8B4yP4ADANI7/p\ngQF4NxzwDjn+Gg7ccINvqdqoUVKSb9lVzdpyn8sE7fBE4vVr5HARj+XHgNkQfACYhpHf9KCHVVf7\n7sMJ1HAgNzfkhgME7ciKxOuXcAEgHAQfAKbBm5441LHhQPvflZW+x7U3HPA++Wd+flgNB3o6aFul\neUeg58Hr1xys8nsI+EPwAQAYQzcbDig7W5o1yzfkDB8e8YYDPf1G3SrNO6zyPOIV8wcrI/gAAHqW\n2y19/XXnttFlZb7HtTcc8A44BQVte3RMrP0T9R07TqqioszzibpVmndY5XnEK+YPVkbwAQBET1OT\n9NlnnUvVAjUc8A45o0d3ajhgNv7Khto/UW9uTlRVVY7nE3Wr7CmyyvOIV8wfrIzgAwCIjJoa33BT\nWip9/nnnhgMjRoTccMBs/JUNBfpEPZg9RUbeh0ETEnNj/mBlBB8AQHDaGw54h5wdOzo1HDjrSNHJ\n4fnqe+2VSrjiiraAM3aslJYWo4H3PH8hJ9An6sHsKTLyPgyaGJgb8wcrI/gAAAI7ebKtwYB3wOmi\n4cDHZ536Mm2m6jPbGg44ncZ5U97T/IWc9k/UKysr5HSG9ok6+zAAIHgEHwA+jFxCY2Sm/7m1Nxzo\nWKoWQsOBz9eWq6kpx3M5nt+U+ysbav9EPTv7hAoLQwuE7MMAgOARfAD4MHIJjZEF+rkZMhC1Nxzo\nGHKOH/c9LiPjfMOB9j+XXdZlw4FovSkP9LM05M/4G9EqG2IfBgAEj+ADwAclNKEJ9HOLeZBsbzjQ\n/mfHDv8NB3JzpWnTfFdyBg/2NBzwhIvSyi7DRaA35eEGlEA/y5j/jGOAfRgAELyIBZ+mpibNmjVL\n999/vyZOnKiHH35YbrdbmZmZeuaZZ5SYyJsnwAwooQlNoJ9bjwVJ74YD3is5hw/7HpeaKl15pW+Z\nWn5+lw0HggkXgd6UhxtQAv0s/V1v5FUgIBL4HQeCF7Hgs2rVKqWnp0uSVq5cqXnz5mn69OlasWKF\n1q9fr7lz50bqoQBEkb9P6/kPtmuBVjnCDZJ+f/bNTZ6GA0P+8hfp0KHADQe+8x3fkJObK9ntQT+/\nSAS4cO8j0M/S3/XxuAqE+MLvOBC8iASfL7/8UgcOHNB1110nt9utbdu26cknn5QkTZkyRWvWrCH4\nACbh79P6d94p4z/YLgRa5QhrL4bbrfdf/UiOT+p0WUWp+lfs0Nl7/yVHZbnnkEzJt+FA+59x43wa\nDoQrEiuB4d5HoJ+lv+uLi31ba1OyCauhLBkIXkSCzzPPPKMlS5boj3/8oySpsbHRU9rWv39/1dTU\nROJhAMSIGf+DNcoqVbf3YgRoODCjQ8OBM6np5xsOjBunzxITddn3vtdlw4FwRWIzfbj3Eehn6e96\nSjZhdfyOA8ELO/j86U9/0lVXXaVBgwb5vd3tdof7EABizIz/wUarDCQigaq2tvPJPwM0HDg0eqIO\nZxbpaHaBjl4yTml5jbr530d4Dmt0uaIeeqTIbKbvyQ35dD2D1fE7DgTP5g4zmTz44IOqqKiQ3W5X\nVVWVZ6Xnf//3f5WUlKRt27bptdde08qVKy94Py6XK5xhAN3S3HxWW7YcV0NDstLSGjV5cj8lJRl/\n9SLWzPhz27TppJqbh3ouJyUd0KxZfcK+3/ffr9ax/7+9ew+Osjz7OP7bHMmJwwKJBpBCIgdjiBDp\nECMV0EFtAYeOMEjB6T/1nYI4aIdTKLE6HAbolGGGUqQNLbRQIGEqjGMTRjv0xUIhsykRpFRDfQNh\nZENCAEMiicm+fyxZsjlv9vQ8m+9nxoFskt07Xm7c397XfT03H3N9bLVe1LRpiR1/cVOToq9eVezn\nnyvmiy+cf37+uaLa7II39eun+kcfVf2jj6puzBjVjxmj+tRUNcfGmvLfPQAA/pSZmdmr7/N6x2fb\ntm2uv+/YsUPDhw9XSUmJCgsLNWfOHBUVFWnq1Kk9uq/e/hAIPpvNZor6HT1apoSEKUq4//q3spKz\nKj2tXVZWABbjQxUVZbLbH1xEMympsdcXi2ztwoVyJSQ8uN/oaCkzc6T09dfOAQOtd3LOn5fq6tzv\noIOBA+EpKYoPD1dnc9W6+ndvluce2qN25kb9zI36mZc3myV+uY7PG2+8oZUrV+rw4cNKTk7W3Llz\n/fEwgMfMeFYFveOvNpCBAxpUe+mKBl91DhsYduMf0vrLUlmZ+xdGRkrjxz8IOC1/+nDgAAAA6Dmf\nBp/XX3/d9fc9e/b48q4BnzDjWRX0jk/Ok9y75zx70+oszpzSUlnaDByQ1fpg4EBLyBk/PiBnb3qi\ns3NJRhkAAQBAIPhlxwcwKg6DolMtAwdat6pdvNhu4IAlNVV69tkHAeeJJ6Rhw5zDCAyqs0EPXAcE\nANCXEHzQpwRyqhQMqqnJ2ZbWZmy0rl1z/7rYWCkz0z3gpKdL8Z2dxAmslt2ac+e+VkVFWZe7NZ21\neNL6CQDoSwg+MD0ztuuYcc2mVFsrffpp9wMHhg1zDhxofRYnJUUKDw/OunugZbemoSFSdvvILndr\nOmvxpPUTANCXEHxgemZs1zHjmg3N4ZCuXm3fqnb5svNzLSIipMcecw84GRnSkCHBW3svebJb01mL\nJ62fAIC+hOADQ/JkR8SM7TpmXLNhNDQ4z960vvhnaanU0cCBadPcQ8748c750yHAk92azlo8af0E\nAPQlBB8Ykic7ImZs1/HXmo3cQtertfVw4IBSUpxT1VrO4mRkOK+XY+CBA95q2a356qsKJSWxWwMA\nQHcIPjAkX7TxGJm/1mzkFrou19Z64EDrkNPRwIEnn3TfxTHQwIFAatmtGT78tk8uzAoAQKgj+MCQ\nfNHGY2T+WrORW+ha1hLxTa2s184r6R8fS3+tcIaczgYOfP/77hcANfjAAQAAYFwEHxiSGXdxjMBQ\nbX8Oh1RR4drBee6v/1Bc2WUNuFEmS9uBA+PHu7epmXTgAAAAMC6CDwzJjLs4RhC0wNgycKDttXFu\n3nR9yTBJDQkDdX3cFNWljtUjc55W5JOZITVwoK8x8pkyAADaIvgAISQggbGjgQP//rfU2GZ3KTXV\nOXCg1XmcqOHD9XAIDxzoa4x8pgwAgLYIPghZvBvtJU8GDkya5H4Wp48OHOhrjHymDACAtgg+CFmB\nfjfa1EGrttY5YKB1wPn00/YDB5KT+9TAAVPXNAAMdaYshPHfIQD4BsEHISvQ70abou2n9cCB+yEn\n7exZ6epV5+datB440Hp0dB8bOEB47hpDSALDFL9bAMAEfBJ8tmzZopKSEjU1Nem1115Tenq6VqxY\nIYfDoaFDh2rLli2KjKQFAoEV6HejDdf204OBA5IU0b+/NG3ag2lqTzzBwIH7CM9dYwhJYBjudwsA\nmJTXwefMmTMqKyvTwYMHdevWLc2dO1dTpkzRokWL9Pzzz2vbtm06cuSIFixY4Iv1Aj0W6HejvQ1a\nXr3b33rgQEvQ6WzgwPTpbjs5pXa7Mp980qO1+vVn8cH3+0qfD88wBFoKAcA3vA4+kydP1oQJEyRJ\n/fv3V11dnYqLi/Xuu+9KkqZPn649e/YQfBBwgX432tug1aN3+5uapMuXH+zg9HTgQEaGc+BAQkL7\nB66s9GidPvtZ/Pj9vmK28IzQREshAPiG18EnLCxMMTExkqSCggJNmzZNn3zyiau1bfDgwbpx44a3\nDwMYnrdBq+27+7XXG6TTp7sfODBsmOEGDni7cxHonY/OdpjMFp4RmmgpBADf8Nlwg48++khHjhxR\nXl6eZs6c6brd0frAdDdsNpuvloMgoH695HAosrJS/f/3rOIv39VD9n/r4cqLGlzzf24DB5rCwlWd\n9Igs3xurb8aNU/2YMap/9FF9O2iQ+/19/bUzKLXS0NCoU6dqVFsbo/j4ej311CBFRT0IE76uXVVV\npdtRIqv1omy2qoB9v6dOnKjUzZuP3f8oUmVlH2vatES/PV5Xhg93/iNJFy6c79H38NwzL2pnbtTP\n3Khf3+OT4HPy5Ent3r1beXl5io+PV1xcnBoaGhQVFSW73a7ExJ69gMjMzPTFchAENpuN+vVEQ4Pz\n7E3bVrWbNzWh9ZfFD5Dje8/IMvEJlTQ/rC/7z1TNQ+PVHBmtpCTP276OHi1TQsIUV6dbZeWD+/BH\n7R5/vO0OyrMendHx9vs9deFCuRISRro+jo6WMjNHdvEdxsFzz7yonblRP3OjfublTWD1OvjU1tZq\n69at+sMf/qCE+6+qsrKyVFRUpNmzZ6uoqEhTp0719mEA86mubj9R7eLF7gcOZGQoasQIyWKRJJ3f\nW6579x68CO9N21egW8e8bc0JdGsPZ2sAAAh9XgefDz/8ULdu3dLy5cvlcDhksVi0efNmrV27VocO\nHVJycrLmzp3ri7XCJPw5kcso077cNDdLZWXuIefcufYDB2JinAMHWoYNZGRIEyZ0PHCgFV+8KOeF\nfdc4WwMAQOjzOvjMnz9f8+fPb3f7nj17vL1rmJQ/J3IFfdpXba10/nz3AweSk50DB1pf/DM1tVcD\nB3zxopwX9l3j8DgAAKHPZ8MNgBb+bKsKWMuWwyFVVLhfF6e01Lmz03pgR0SE82KfrcdGZ2RIQ4f6\nbCm+eFHOC3sAANDXEXzgc/5sq/LLfXcxcMDNoEHSM8+4h5zHHnOehAcAAIChEXzgc560VXl6Zsfr\nlq2WgQOtA05HAwdSUpwDB1oCzsSJzhnD9wcOAAAAwFwIPvA5T9qqPD2z0+P77mjgQGmps32ttZgY\nZ6hpvYvTg4EDAAAAMBeCD4LKJ2d27t51Dhxo3ap2/rzz9tZaDxxoGTrQy4EDAAAAMBeCD4LKozM7\nDodzRHTbszidDRxoHXB8PHAAAAAA5kLwQVB1emanZeBA22vjMHAAAAAAvUDwQVBFR0fppanWB8Hm\nf+7/2dHAgdTUBwMHWoLOiBGGHjhgyAuuAgAA9EEEHwROc7N0+XL7VrWOBg5MmuTeqpaebsqBA0G/\n4CoMiUAMAEDgEXzgH54MHHjxxQcBJ8QGDgTsgqswFQIxAACBR/CB9yor1f+TT6TCwgdjo7/4ov3A\ngXHj3ANOHxg44M+LucK8CMQAAAQewQfeuX5dGj1aj9bXP7ht4EDnwIHWZ3H66MABry+4ipBEIAYA\nIPAIPvDOkCHSW2/pWnW1hr34ojPoGHzgQCB5cjFX9B0EYgAAAo/gA+9EREjr1+u6zaZhmZnBXg1g\nCgRiAAACz6/BZ9OmTSotLZXFYlFOTo7S09P9+XAwOCZZhR5qCgAAzCLMX3dcXFys8vJyHTx4UOvX\nr9eGDRv89VAwiZZJVvfujZTdnqrCwivBXlKfdu9eg44eLdMHH3yto0fLdO9eg8f3QU0BAIBZ+C34\nnD59Ws8995wkKSUlRXfu3NHdtqOM0acwycpYWkJLQ8OoXocWagoAAMzCb8GnqqpKVqvV9fGgQYNU\nVVXlr4eDCbSdXMUkq+DyRWihpgAAwCwCNtzA0fqaLp2w2WwBWAn8pbv6JSY2qqzsC9XWxig+vl7p\n6YNks90O0OrQVlVVpW7edP69vLxcVutF2WyevTlBTY2B353mRe3MjfqZG/Xre/wWfBITE912eCor\nKzW0m4tVZjIVzLRsNluP6peVFYDFoEcef9w5mODcuQo98cRwvfDCs70aTBDsmvb1AQs9fe7BeKid\nuVE/c6N+5uVNYPVbq1t2draKiookSZ999pmSkpIUGxvrr4cD4KGWkcqzZiXopZdSTRsWGLAAAAB6\nwm87PhMnTlRaWpoWLFig8PBw5ebm+uuhAPRhDFgAAAA94dczPm+99ZY/7x7wq77eQmUWAwc2ym53\n/xgAAKCtgA03AMympYVKkux2qbCwTC+9lBrkVYUebwPmCy88osLCMrfvBwAAaIvgA3SCFqrA8DZg\ntpxVAgAA6IrfhhsAZsc1agKDgAkAAAKB4AN04oUXHlFSUpmio8uVlFRGC5WfEDABAEAg0OoGdIIW\nqsDgjA4AAAgEgg+AoCJgAgCAQCD4AGJ0NQAAQKjjjA+gB5PF7t0bKbs9VYWFV4K9JAAAAPgQwQcQ\nk8UAAABCHa1u8EpLi9i5c1+roqLMtC1iAwc2ym53/7gztMUBAACYDzs+8EpLi1hDwyhTt4h5Mrqa\ntjgAAADzYccHXgmVFjFPJouFys8MAADQl7DjA6/0xYtP9sWfGQAAwOy8Cj5NTU1avXq1Fi5cqAUL\nFqikpESSdOnSJS1YsEALFy7UO++845OFwphaWsSior7stkUsVHjSFgcAAABj8KrV7ejRo+rXr58O\nHDigsrIyrVmzRvn5+dq4caPWrVuntLQ0/exnP9PJkyc1depUX60ZBtLSIjZ8+G1lZvaNi1BywU0A\nAADz8WrHZ86cOVqzZo0kyWq16vbt22psbFRFRYXS0tIkSTNmzNCpU6e8XykAAAAA9JJXOz4RERGK\niHDexd69ezV79mzV1NRo4MCBrq+xWq26ceOGd6sEAAAAAC/0OPjk5+eroKBAFotFDodDFotFy5Yt\nU3Z2tvbv36+LFy9q165dqq6u7vVibDZbr78XwUf9zIvamRv1My9qZ27Uz9yoX9/T4+Azb948zZs3\nr93t+fn5OnHihHbu3Knw8HBZrVbV1NS4Pm+325WYmNijx8jMzOzpcmAwNpuN+pkUtTM36mde1M7c\nqJ+5UT/z8iawenXG5+rVqzp06JB27NihyEjntUwiIiI0evRo14S348ePM9gAAAAAQFB5dcanoKBA\nt2/f1k9+8hNX+9uePXuUk5Oj3NxcORwOZWRkKCsry1frBQAAAACPeRV83nzzTb355pvtbk9JSdH+\n/fu9uWsAAAAA8BmvWt0AAAAAwAwIPgAAAABCHsEHAAAAQMgj+AAAAAAIeQQfAAAAACGP4AMAAAAg\n5BF8AAAAAIQ8gg8AAACAkEfwAQAAABDyCD4AAAAAQh7BBwAAAEDII/gAAAAACHkEHwAAAAAhj+AD\nAAAAIOT5JPhUVVXpu9/9roqLiyVJly5d0oIFC7Rw4UK98847vngIAAAAAOg1nwSfrVu3asSIEa6P\nN27cqHXr1unAgQO6c+eOTp486YuHAQAAAIBe8Tr4/POf/1RCQoLGjBkjSWpsbNS1a9eUlpYmSZox\nY4ZOnTrl7cMAAAAAQK95FXwaGxv1m9/8RsuXL3fdVlNTowEDBrg+tlqtunHjhjcPAwAAAABeiejp\nF+bn56ugoEAWi0UOh0MWi0VPP/20XnnlFcXHx7t9rcPh6NVibDZbr74PxkD9zIvamRv1My9qZ27U\nz9yoX99jcfQ2pUh65ZVX5HA45HA4dOXKFQ0ePFi//OUvtWTJEv3tb3+TJL3//vv6/PPPtXLlSp8t\nGgAAAAA80eMdn478+c9/dv19zZo1+uEPf6hx48Zp1KhRKikp0aRJk3T8+HEtXrzY64UCAAAAQG95\nFXw6k5OTo9zcXDkcDmVkZCgrK8sfDwMAAAAAPeJVqxsAAAAAmIFPruMDAAAAAEZG8AEAAAAQ8gg+\nAAAAAEKeX4Yb9FRTU5PWrl2rK1euqLm5WStXrtSkSZN06dIl/eIXv1BYWJjGjh2rt99+O5jLRBc2\nbdqk0tJSWSwW5eTkKD09PdhLQje2bNmikpISNTU16bXXXlN6erpWrFghh8OhoUOHasuWLYqMjAz2\nMtGFe/fuadasWVq6dKmmTJlC/Uzi2LFjysvLU0REhN544w2NHTuW2plEXV2dVq1apdu3b6uxsVFL\nly5Vamoq9TO4S5cuadmyZfrxj3+sH/3oR7p+/XqHNTt27Jj27dun8PBwzZs3Ty+//HKwlw61r99X\nX32lnJwcffvtt4qMjNTWrVs1ePBgj+oX1B2fo0ePql+/fjpw4IDWr1+vTZs2SZI2btyodevW6cCB\nA7pz545OnjwZzGWiE8XFxSovL9fBgwe1fv16bdiwIdhLQjfOnDmjsrIyHTx4UL/97W+1ceNGbd++\nXYsWLdKf/vQnPfLIIzpy5Eiwl4lu7Ny5UwMHDpQkbd++XYsXL6Z+Bnfr1i39+te/1sGDB/Xee+/p\n448/pnYm8pe//EWjR4/Wvn37tH37dm3YsIHfnQZXX1+vzZs3Kzs723VbR8+5+vp67dy5U3v37tW+\nffu0d+9e3blzJ4grh9R5/ebPn68//vGPevbZZ/X73//e4/oFNfjMmTNHa9askSRZrVbXOykVFRVK\nS0uTJM2YMUOnTp0K5jLRidOnT+u5556TJKWkpOjOnTu6e/dukFeFrkyePFnbt2+XJPXv3191dXUq\nLi7WjBkzJEnTp0/n+WZw//3vf/Xll1/qmWeekcPhUHFxsaZPny6J+hnZqVOnlJ2drZiYGA0ZMkTv\nvvuuzp49S+1Mwmq1qqamRpJ0+/ZtWa1WfncaXHR0tN577z0NGTLEdVtHz7nS0lJNmDBBcXFxio6O\n1qRJk1RSUhKsZeO+jur39ttv6/nnn5fkfE7eunXL4/oFNfhEREQoOjpakrR3717Nnj1bNTU1rncy\nJecPduPGjWAtEV2oqqqS1Wp1fTxo0CBVVVUFcUXoTlhYmGJiYiRJBQUFmjZtmurr613tGYMHD+b5\nZnBbtmzR6tWrXR9TP3O4du2a6uvr9dOf/lSLFi3S6dOn9c0331A7k3jxxRd1/fp1zZw5U6+++qpW\nrVrFc8/gwsLCFBUV5XZb25pVVlaqurra7bUMrzuNoaP6xcTEKCwsTM3NzTpw4IBmzZrV7rVod/UL\n2Bmf/Px8FRQUyGKxyOFwyGKxaNmyZcrOztb+/ft18eJF7dq1S9XV1YFaEnyMS0KZx0cffaQjR44o\nLy9PM2fOdN1ODY3t/fff1+TJk5WcnNzh56mfcTkcDle727Vr1/Tqq6+61YvaGduxY8f00EMPaffu\n3frPf/6jtWvXun2e+plPZzWjlsbW3NysFStWKCsrS1OmTNEHH3zg9vnu6hew4DNv3jzNmzev3e35\n+fk6ceKEdu7cqfDwcLftZEmy2+1KTEwM1DLhgcTERLcdnsrKSg0dOjSIK0JPnDx5Urt371ZeXp7i\n4+MVFxenhoYGRUVF8XwzuL///e+qqKjQ8ePHZbfbFRkZqdjYWOpnAkOGDNHEiRMVFhamESNGKC4u\nThEREdTOJEpKSjR16lRJ0tixY2W32xUTE0P9TKbt/++SkpKUmJjotkNgt9s1ceLEIK4SXVmzZo1G\njRqlJUuWSJLH9Qtqq9vVq1d16NAh7dixw7X1GBERodGjR7v6844fP+76ZQNjyc7OVlFRkSTps88+\nU1JSkmJjY4O8KnSltrZWW7du1a5du5SQkCBJysrKctWxqKiI55uBbdu2Tfn5+Tp06JBefvllLV26\nVFlZWSosLJRE/YwsOztbZ86ckcPhUE1Njerq6qidiYwcOVLnzp2T5GxbjI2N1VNPPUX9TKaj/99N\nmDBBFy5cUG1tre7evat//etfyszMDPJK0ZFjx44pKipKr7/+uuu2jIwMj+pncQRxT2/btm368MMP\n9fDDD7va3/bs2aPy8nLl5ubK4XAoIyNDq1atCtYS0Y1f/epXOnv2rMLDw5Wbm6uxY8cGe0nowuHD\nh7Vjxw595zvfcT3nNm/erLVr16qhoUHJycnatGmTwsPDg71UdGPHjh0aPny4nn76aa1cuZL6mcDh\nw4eVn58vi8WiJUuW6PHHH6d2JlFXV6ecnBxVV1erqalJy5cv16hRo7Rq1SrqZ1ClpaX6+c9/rps3\nbyo8PFwDBgxQXl6eVq9e3a5mx48f1+9+9zuFhYVp8eLF+sEPfhDs5fd5HdWvublZ0dHRiouLk8Vi\nUWpqqnJzcz2qX1CDDwAAAAAEQlBb3QAAAAAgEAg+AAAAAEIewQcAAABAyCP4AAAAAAh5BB8AAAAA\nIY/gAwAAACDkEXwAAAAAhLz/B8joTYiGW3WQAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -663,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 931, + "execution_count": 221, "metadata": { "collapsed": false, "scrolled": true @@ -698,7 +781,7 @@ "source": [ "## Cross-Validation\n", "\n", - "Cross-validation is a technique used to determine how well a model will predict values outside of the sample used to select or fit it. In the case of our unemployment model, we used data from 2002 through 2012 to select our parameters. Now to ensure the accuracy of our model parameters (stored in `predictors`) we will employ a cross-validation technique known as *forward chaining* on the 2002-2012 data. We will leave the 2012-2017 data untouched for further validation methods later on.\n", + "Cross-validation is a technique used to determine how well a model will predict values outside of the sample used to select or fit it. In the case of our unemployment model, we used data from 2002 through 2012 to select our parameters. Now to ensure the accuracy of our model parameters (stored in `predictors`) we will employ a cross-validation technique known as *forward chaining* on the 2002-2012 data. We will leave the 2012-2017 data untouched for further validation methods later on in this lecture.\n", "\n", "Forward chaining cross-validation works by splitting the data up into $k$ equal sized partitions, and conducting an \"out-of-sample test\" for each partition. During each of these out-of-sample tests we will choose a training set and a testing set and use the training set to fit the model and the testing set to asses its performance. For time series data the training set must come before the testing set, and in the case of forward chaining the training set consists of all the data before the testing set. Forward chaining iterates through all possible testing sets and asses model performance in each.\n", "\n", @@ -742,7 +825,7 @@ }, { "cell_type": "code", - "execution_count": 1058, + "execution_count": 222, "metadata": { "collapsed": false, "scrolled": false @@ -773,7 +856,8 @@ "X = [qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]]\n", "\n", "# Our step AIC algorithm selected all predictors except for fx_rate\n", - "predictors = pd.DataFrame(data = [qqq[:e], inflation[:e], iwm[:e], gold[:e]], index = ['qqq', 'inflation', 'iwm', 'gold']).T\n", + "predictors = pd.DataFrame(data = [qqq[:e], inflation[:e], iwm[:e], gold[:e]], \n", + " index = ['qqq', 'inflation', 'iwm', 'gold']).T\n", "\n", "# Setting partition dates to the first day of every year 2002-2012\n", "cutoff_dates = pd.date_range(start = '2002-01-01', end = '2012-01-01', freq = 'AS')\n", @@ -788,11 +872,14 @@ " testing_data = predictors.loc[cutoff_dates[i]:cutoff_dates[i+1]]\n", " \n", " # Fitting model within the training set\n", - " fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], sm.add_constant(training_data)).fit().params\n", + " fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]],\n", + " sm.add_constant(training_data)).fit().params\n", " \n", " # Testing performance within the testing set\n", - " testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] + fitted_theta[2] * testing_data['inflation']\n", - " + fitted_theta[3] * testing_data['iwm'] + fitted_theta[4] * testing_data['gold'])\n", + " testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] \n", + " + fitted_theta[2] * testing_data['inflation']\n", + " + fitted_theta[3] * testing_data['iwm']\n", + " + fitted_theta[4] * testing_data['gold'])\n", " \n", " # Caluclate Mean Squared Error for the model runnning on the testing set\n", " errors = Y[cutoff_dates[i]:cutoff_dates[i+1]]-testing_model\n", @@ -810,7 +897,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Since unemployment usually is between 3 and 10 percent, a 2.5 MSE is large. However, we can also see that the a couple outliers around the 2009 recession led to this higher error. Excluding 2009, our average MSE would be 1.18, a more reasonable value." + "Since unemployment usually is between 3 and 10 percent, a 2.5 MSE is relatively large. However, we can also see that the a couple outliers around the 2009 recession led to this higher error. Excluding 2009, our average MSE would be 1.18, a more reasonable value." ] }, { @@ -819,7 +906,7 @@ "source": [ "## Out-of-Sample Validation\n", "\n", - "After conducting the forward chaining test we can be confident in the performance of our model within the time period of 2002-2012. So far in this lecture, all of the testing and development of this model has been done within this 10-year period. Working extensively within a single timeperiod can lead to overfitting." + "After conducting the forward chaining test we can be confident in the performance of our model within the time period of 2002-2012. So far in this lecture, all of the testing and development of this model has been done within this 10-year period. Working extensively within a single time period can lead to overfitting." ] }, { @@ -833,7 +920,7 @@ }, { "cell_type": "code", - "execution_count": 1080, + "execution_count": 223, "metadata": { "collapsed": false, "scrolled": false @@ -843,7 +930,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAHiCAYAAADcVpIVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9YVWWi9vF7gYK4RUBE06ApNaVMTZFSyfyZllNT1ujo\nUftl04w1WXPKUieC3XuyVzzZ64xTSqPOmTwTajpNzThhjueQRSluywlNSzHbaaKokAqIwnr/WAkS\n6EZk77U3+/u5Li5s7Qe460nl5lnPswzTNE0BAAAAQIAJsTsAAAAAADQGZQYAAABAQKLMAAAAAAhI\nlBkAAAAAAYkyAwAAACAgUWYAAAAABKQWngaUl5dr5syZOnLkiCoqKjRt2jRlZ2crPz9fMTExkqSp\nU6dqyJAhXg8LAAAAAGcZnp4zs3btWn377beaOnWqDhw4oAceeED9+vXTrbfeSoEBAAAAYBuPKzNj\nxoyp/vWBAwfUqVMnSRLP2gQAAABgJ48rM2dNmDBBhw4d0qJFi7Rs2TIVFRWpoqJC7du3V2pqqqKj\no72dFQAAAACqNbjMSNLOnTv19NNPa/bs2YqOjlZiYqIyMzNVWFio1NTU836cy+VqkrAAAAAAmrek\npKQGj/V4m1l+fr5iY2PVqVMnJSYmqrKyUt27d1e7du0kSSNGjFB6enqThoJ3uFwu5sEPMA/2Yw78\nA/PgH5gH+zEH/oF58A8Xuwji8WjmLVu2aNmyZZKkoqIilZaWKi0tTbt27ZIk5eXlqXv37o2ICgAA\nAACN53FlZuLEiZo9e7YmTZqkU6dOKS0tTa1bt9asWbPkcDjkcDg0Z84cX2QFAAAAgGoey0x4eLhe\neumlOtfXrFnjlUAAAAAA0BAebzMDAAAAAH9EmQEAAAAQkCgzAAAAAAISZQYAAABAQKLMAAAAAAhI\nlBkAAAAAAYkyAwAAACAgUWYAAAAABCTKDAAAAICARJkBAAAAEJAoMwAAAAACEmUGAAAAQECizAAA\nAAAISJQZAAAAAAGJMgMAAAAgIFFmAAAAAAQkygwAAACAgESZAQAAABCQKDMAAAAAAhJlBgAAAEBA\nauFpQHl5uWbOnKkjR46ooqJC06ZNU2JiombMmCHTNBUXF6eMjAy1bNnSF3kBAAAAQFIDysyGDRvU\nq1cvTZ06VQcOHNADDzygfv36afLkyRo9erRefvllrV69WhMmTPBFXgAAAACQ1IDbzMaMGaOpU6dK\nkg4cOKBOnTopLy9Pw4cPlyQNGzZMubm53k0JAAAAAD/gcWXmrAkTJujQoUN69dVX9eCDD1bfVhYb\nG6vDhw97LSAAAAAA1McwTdNs6OCdO3dqxowZOnLkSPVqzNdff61nnnlGb7zxxnk/zuVyXXpSAAAA\nAM1eUlJSg8d6XJnJz89XbGysOnXqpMTERFVVVcnhcKiiokJhYWEqLCxUhw4dmjQUvMPlcjEPfoB5\nsB9z4B+YB//APNiPOfAPgTwPJSXH5XTmyu2OUHx8qdLTUxQVFWl3rEa52EUQj3tmtmzZomXLlkmS\nioqKVFpaqoEDB+rdd9+VJGVnZ2vw4MGNiAoAAADgUjmducrJGaW9e2/W+++PltMZPPvZPa7MTJw4\nUbNnz9akSZN06tQppaenq2fPnnr66ae1cuVKde7cWWPHjvVFVgAAAAA/4HZHyDAMSZJhGHK7I2xO\n5Dsey0x4eLheeumlOteXLl3qlUAAAAAAGi4+vlQFBaYMw5BpmkpIKLM7ks80+DQzAAAAAP4nPT1F\nTuc6ud0RSkgoU1raILsj+QxlBgAAAAhgUVGRmj9/tN0xbOHxAAAAAAAA8EeUGQAAAAABiTIDAAAA\nICBRZgAAAAAEJMoMAAAAgIBEmQEAAAAQkDiaGQAAAH6lpOS4nM5cud0Rio8vVXp6iqKiIu2OBT/E\nygwAAAD8itOZq5ycUdq792a9//5oOZ25dkfyf1VVdiewBWUGAAAAfsXtjpBhGJIkwzDkdkfYnMiP\nffyxdP310siRdiexBWUGAAAAfiU+vlSmaUqSTNNUQkKZzYlsVFUl7dwprV9f/+vR0dIXX0gtWkjf\n/zcLJuyZAQAAgF9JT0+R07lObneEEhLKlJY2yO5IvnPqlPTOO1JenvXmcknffSe1aycVFUnfr1hV\n69HDer1FcH5bH5z/1gAAAPBbUVGRmj9/tN0x7GEY0qRJUkWF9c89ekg/+Yl0ww3SmTNSy5Z1xwdp\nkZEoMwAAAID3lZRIW7fWrLjk5UmbNkkdO9YeFxYmLV4sXXGFlJQkRUXZkzdAUGYAAAAAb7rjDulv\nf6t9LS5O2revbpmRpPvv90ms5oAyAwAAADTWmTPS9u3WSsvgwdZtYT905ZXSsGFScnLN2xVX1N3/\ngotGmQEAAAAuxsaN0po1VoHZulUq+/60tXnz6i8zv/udb/MFEcoMAAAA8EOmaW3CDw+v+9qHH0r/\n7/9JoaFSz541qy0jRvg+Z5CjzAAAACDohRYXS+++W3uD/pgx0pIldQdPnGjdUta3r9S6te/DolqD\nykxGRoa2bt2qyspKPfzww9qwYYPy8/MVExMjSZo6daqGDBni1aAAAACAV7z7rq6/7bba1+LjrQdS\n1udHP7LeYDuPZWbTpk3avXu3srKyVFxcrLFjx2rAgAF66qmnKDAAAADwb6dOSf/6l7XScvSo9Oyz\ndcf06aOSgQMVNWKE9TyX5GTpsst8nxUXzWOZSU5OVu/evSVJbdu2VWlpqaqqqmSaptfDAQAAABft\nxAnp6aetArNtm3T6tHW9VSvpmWfqPniyUyft/t3vlJSU5PusuCQey0xISIgiIiIkSatWrdLQoUMV\nEhKi5cuXa9myZWrfvr1SU1MVfb5lOAAAAKCpmaZUUCB16VL3iOPWraU//9k6Zez662sfiRwaak9e\neIVhNnCJZf369Xrttde0ZMkS5efnKzo6WomJicrMzFRhYaFSU1PP+7Eul6vJAgMAACD4tCgqkiM/\nX44dO9R6xw45Pv9cLUpK9Nlbb6kiPr7O+PB9+1TRqZPMsDAb0uJSXMwKWYMOANi4caMyMzO1ZMkS\ntWnTRgMGDKh+bcSIEUpPT2/SUPAOl8vFPPgB5sF+zIF/YB78A/NgP+aggW68Udq8ueafu3SRbr1V\nvRIT63+2y0X+N2Ue/MPFLoJ4LDMnTpzQvHnz9Mc//lGRkZGSpOnTp+vRRx9Vjx49lJeXp+7duzcu\nLQAAAILbyZPSJ5/UHIf88MPS0KF1xz30kHTHHdatYv37S7GxPo8K/+OxzKxdu1bFxcV64oknZJqm\nDMPQ3XffrVmzZsnhcMjhcGjOnDm+yAoAAPxESclxOZ25crsjFB9fqvT0FEVFRdodC4Fk6VLrwZPb\nt0tVVTXXr7mm/jLz85/7LBoCh8cyM378eI0fP77O9bvuussrgQAAgP9zOnOVkzNKhmGooMCU07lO\n8+ePtjsW/EllpbRrl7VRv2fPuq+Xlkp79kiDBtWstiQnS926+T4rAlaD9swAAACcy+2OkPH9CVKG\nYcjtjrA5EWx35Ii0YYN1q9jmzZLLZR2RPG6ctHJl3fEPPST98pdSC74dRePxfw8AALho8fGlKiiw\nbj83TVMJCWV2R4LdPv1UOns3j2FIiYnWSsuoUfWPb9XKd9nQbFFmAADARUtPT5HTuU5ud4QSEsqU\nljbI7kjwlpISa5Xl7Ab9kyelf/yj7rjkZCkjw3rfr5/Utq3vsyLoUGYAAMBFi4qKZI9Mc3f8uFVM\ndu2qfb1TJ6miQvrh81vatpVmzPBdPkCUGQAAgOB0+rR1klhennT//VLLlrVfj4yUQkOl4cOtUnP2\nLSHBuo0M8AOUGQAAgGCxZo2Uk2MVmE8+kcrLrev9+0t9+9Ydn59PcYFfo8wAAAA0J6ZpvYWE1H3t\nlVekf/7TWnG57rqa1ZbLL6//c1Fk4OcoMwAAAIGsqKhmc/7Zt5dfliZOrDvW6ZSef166/nqpdWvf\nZwWaGGUGAAAgUD33nPR//k/tawkJNbeP/VBKivczAT5EmQEAAPCykpLjcjpz5XZHKD6+VOnpKYqK\nirzwB5WXS9u2WSstl18ujR1bd0yfPtJtt9XeoN+xo3f+JQA/RJkBAADwMqczVzk5o2QYhgoKTDmd\n6+o/2vrzz6Xf/tYqMP/6l3XimCTdemv9Zeaee6w3IEhRZgAAALzM7Y6Q8f1mekNSyZfnuQ3sxAlp\n0SLrGS59+9astgwY4LuwQAChzAAAAHjT/v26tXy99M276lm6RdeUblHl7paS7qw7tk8facsWqVev\nug+lBFAHZQYAAMBbjh+XEhI01TSrLx2O7qyokYOkioq6hSUsTEpK8nFIIHBRZgAAABrj5Elp69aa\n45Bfe01q06b2mMhIado0qXNn63ax/v0V166dPXmBZogyAwAAcDFmzpT+/ndpxw6pqqrm+rRp0s03\n1x3/+9/7LhsQZCgzAAAA56qslHbtkjp0kNq3r/v6F19IBQXSoEE1G/RvuEHq0sX3WYEgR5kBAADB\nbf9+6cMPa24Xc7lqThX7xS/qjn/tNSkqSmrBt1GA3fhdCAAAgtsrr0hz5li/Ngzpmmus1Zbu3esf\nHxvru2wALogyAwAAmqfiYuuY47MrLv36Sc8+W3fcXXdJMTFWgenXz9q0DyAgNKjMZGRkaOvWraqs\nrNTDDz+sXr16acaMGTJNU3FxccrIyFDLli29nRUAAMCzDz+UHnzQ2ttyroqK+sef3fcCIOB4LDOb\nNm3S7t27lZWVpeLiYo0dO1YDBgzQ5MmTNXr0aL388stavXq1JkyY4Iu8AAAg2J0+LeXnSwcOSD/+\ncd3X27eXCgulESNqikpyshQf7/usALzKY5lJTk5W7969JUlt27ZVaWmp8vLy9Pzzz0uShg0bpqVL\nl1JmAACAd5SXS6tW1dwu9umn1rV27aSiImufy7m6d5eOHpVCQuzJC8BnPJaZkJAQRURESJLefPNN\nDR06VB988EH1bWWxsbE6fPiwd1MCAIDmzzTrFhPJKiUPPWTdJtaihdSrV81qy5kz0g9vdTeM+j8P\ngGbHME3TbMjA9evX67XXXtOSJUs0atQo5ebmSpK+/vprPfPMM3rjjTfO+7Eul6tp0gIAgGajxbFj\nar19uxw7dqj1jh1y7NihHW+8oTP1nBYW8+67qujcWaXdu8ts1cqGtAB8JSkpqcFjG3QAwMaNG5WZ\nmaklS5aoTZs2cjgcqqioUFhYmAoLC9WhQ4cmDQXvcLlczIMfYB7sxxz4B+bBP9g2D6NGSe+9V/va\nFVeoT2ysVF+eZvz/Cr8X/APz4B8udhHEY5k5ceKE5s2bpz/+8Y+K/P6owoEDByo7O1t33HGHsrOz\nNXjw4MalBQAAzU95ubRtm7W/Zfhw6dpr64657jrr9rCzt4v17y917Oj7rAACmscys3btWhUXF+uJ\nJ56QaZoyDENz587Vb37zG61YsUKdO3fW2LFjfZEVAAD4qw0bpJUrrQLzr39Ze1kkKSOj/jIzf75v\n8wFoljyWmfHjx2v8+PF1ri9dutQrgQAAgJ8yTenkSalNm7qvbd4sLV4shYdbt4SdXXEZOtTnMQEE\njwbtmQEAAEFo/35rpWXzZuv9li3S2LFSfT/QnDzZ2gdz3XVSWJjvswIISpQZAABQ19q1dR9I2a2b\ndNll9Y+Pj+ehlAB8jjIDAECwOXFCcrmkvDx13rlT+sMf6o7p29dahenfv2aDfkyM77MCwAVQZgAA\nCAbHj0vTp1u3i33+uVRVJUnqGB4uvfpq3QdPduokrVljQ1AAaDjKDAAAzUVlpbRzp3V6mGHUfs3h\nsMpJZaV0003VG/S3t2qlXi34dgBAYOJPLwAAAtXevTWb8/PyrFvHTp6UvvzS2t9yrpAQ69kvCQlS\naGj15QqXq27xAYAAQZkBACBQTZhglRnJKiTXXmutuJhm/eOvvNJn0QDAFygzAAD4m2PHrGOQz664\n/OpX0ogRdcdNmyaNH28VmH796n/+CwA0Y5QZAAD8xeLF0n/+p7R7d+3rN9xQf5m5/36fxAIAf0WZ\nAQDAV06flj77zNqz0qdP3dfPnJGKiqSRI6s36Cs5Wbr8ct9nBYAAQJkBAMBbDh2SsrNrNul/+ql0\n6pQ0bpy0cmXd8T//ufTII2zIB4AGoswAAOAt+fnSvfdav27RQurd21ppGTmy/vFhYb7LBgDNAGUG\nAICLdeiQtdJydsWlvFzasKHuuP79pd/9ziowffpIrVr5PisANGOUGQAAGuq776RevaSvv659vUsX\naz9My5a1r7dta51EBgDwCsoMAABnlZVZ+1q2bJF++cv6y0lsrFVozm7O799f6tDBnrwAEOQoMwCA\n4PbnP0v/+7/W7WL5+daJYpJ0001S3751x2/d6tN4AIDzo8wAQDNVUnJcTmeu3O4IxceXKj09RVFR\nkXbHskdVlVRZWXelRZKWLZPWr5fCw61VluRk67kuV1zh+5wAgItCmQGAZsrpzFVOzigZhqGCAlNO\n5zrNnz/a7ljeZ5rSN99YKy1n37ZskV55Rfq3f6s7fs4cKSNDuu66+ssOAMBvUWYAoJlyuyNkfP+8\nEsMw5HZH2JzIR2bPlv7v/6197eqrrZWZ+iQnez8TAMArKDMA0EzFx5eqoMCUYRgyTVMJCWV2R7p0\nx49be1by8qzbwMaPrzvmxhulsWNrb9CPjvZ9VgCA1zWozOzcuVOPPfaY7r//fk2aNEmzZs1Sfn6+\nYmJiJElTp07VkCFDvBoUAHBx0tNT5HSuk9sdoYSEMqWlDbI7UuPk50v/+Z9Wgfn8c+s2MkkaPbr+\nMnPXXdYbAKDZ81hmysrKNHfuXKWkpNS6/tRTT1FgAMCPRUVFBs4emcpK6cABKSGh7mvl5dJ//ZfU\npo108801Ky433uj7nAAAv+KxzISHh2vx4sXKzMz0RR4AQHNnmlJBgWKys61jkTdvtm4da99e2rev\n7vg+faTt26UePaTQUN/nBQD4LY9lJiQkRGFhYXWuL1++XEuXLlX79u2VmpqqaO5HBgA0xIkT0tVX\nq8vZ28VCQqRrr7VWW06frnuiWMuW1usAAPyAYZpn/za5sIULFyomJkaTJk3Sxx9/rOjoaCUmJioz\nM1OFhYVKTU0978e6XK4mCwwA8F+hJSVq/fnncmzfrtaff66vnE5VORx1xsXPn6+KDh1U2rOnSnv0\nUFXr1jakBQD4o6SkpAaPbdRpZgMGDKj+9YgRI5Sent6koeAdLpeLefADzIP9mAMv+PWvpXfekfbs\nqXU5JiREqu+/9X//N/PgJ5gH+zEH/oF58A8XuwgS0pgvMn36dO3atUuSlJeXp+7duzfm0wAAAkVF\nheRySYWF9b/+9dfS0aPSLbdYz3l56y1p/37pppt8mxMAEFQ8rsxs27ZNzz77rI4eParQ0FBlZWVp\n+vTpmjVrlhwOhxwOh+bMmeOLrAAAX9m7V3r/fes45Lw86dNPrULz6qvSL39Zd/yyZVJkpPT9QzoB\nAPAFj2WmT58+euedd+pcv+WWW7wSCADgB5YskV54wfp1y5ZS797WBv2ePesf37at77IBAPC9Ru2Z\nAQAEqMLCmtWWvDzphhuk+vY93n231KmTVWB695ZatfJ5VAAAPKHMAEBzVVJi7XPp2FE6ckSaPFly\nu2uPiYio/2P79bPeAADwY5QZAGgOjh6VVq2SNm2y9rbk5UlffGG9dvXV1kljFRXS7bdbqy3JyVL/\n/lJcnL25AQC4BJQZAAg0p09bKy6vvGKVln37pLKy2mOioqQRI6zScs89Uvfu0rffskEfANCsUGYA\nwJ+dOWM9u+XcfS6ffCKVl9ceFxkpde0qDRggPfaYlJgohTTq9H0AAAIGZQYA/EVVlXWb2Jo10saN\n0q5dUnFx7TGhoTUni4WGSkOGSD/5yfn3vqDBSkqOy+nMldsdofj4UqWnpygqKtLuWACAC6DMAIBd\nDh+uveKybp11C9m5wsKkkSOl0aOtAnP99RQXL3E6c5WTM0qGYaigwJTTuU7z54+2OxYA4AIoMwDg\nCwcOSCtXSu+9Z9069sUX0ldf1R4TGWltyO/d29rvMm6c9KMf2RI3GLndETK+31NkGIbcbkojAPg7\nygwANLXycmnbNum//kvKzpa++cY6SexccXHSmDG1Txbr2NGevJAkxceXqqDAlGEYMk1TCQllnj8I\nAGArygwAXIrycmnLFmt/y9nbxT77rO7tYtHR1hHJN90kTZxolRdOFvMr6ekpcjrXye2OUEJCmdLS\nBtkdCQDgAWUGABqqqkrasEF66y0pN9c6Zey772qPCQ+3HjaZnGyVly5dpFtvlVrwx62/i4qKZI8M\nAAQY/nYFgPPZv7/2Bv3cXOnkydpjWrWSrrlG+sUvrAJz3XXWpn0AAOB1lBkAkKxVlqws6X/+x3oI\n5cmT1kMmz3XVVdbqzPXXS6NGWRv04+LsyQsAACgzAIJPSFmZ9RyXjRulxYutk8bOnKk9qHNn6a67\nam/Qj4mxJzAAAKgXZQZA83b8uPSXv0gnTlgb9fPydP2OHdYKy1mGIcXGWreL3Xyz9NOfSn372pcZ\nAAA0CGUGQPNRWSn9/e/S229LmzZJBQVSaWntMQ6HTlx/vSKHDbNWXK680nofEmJLZAAA0HiUGQCB\nyTSlvXtrb9DfutVagTlX69bWXpcpU6Tbb5cSE/XFp58qKSnJntwAAKDJUGYABIZt26Q335RycqTP\nP5dOnbJuITvLMKRrr5XatbP2u9x2mzR2rNS2rX2ZAQCAV1FmAPif4uLq/S3KypK2b7duITtXu3bS\nz35Ws0G/Xz+pTRt78gIAAFtQZgDYq6hIWrVK+vJLqbDQKjBffll7TEiI1LGj1LOnNHy4NH689UBK\nAAAQ1BpUZnbu3KnHHntM999/vyZNmqSDBw9qxowZMk1TcXFxysjIUMuWLb2dFUCgO33aeo7Ln/5k\nlZavv5bKy2uPiY6WRo6sveKSkMAGfQAAUIfHMlNWVqa5c+cqJSWl+tqCBQs0ZcoUjRo1Si+//LJW\nr16tCRMmeDUogABTVSV98UXtDfqfflq3vERGSl27SiNGSL/4hdStm7X/BQAAwAOPZSY8PFyLFy9W\nZmZm9bXNmzfr+eeflyQNGzZMS5cupcwAwayqSvroI2nNGumDD6wSc/x47X0uLVpIvXtLffpY12+/\nXbrjDqlVK/tyAwCAgOaxzISEhCgsLKzWtbKysurbymJjY3X48GHvpAPgnw4dqlltyc2V1q+3jko+\nV1iYNGGCdOON1u1i119PcQEAAE3qkg8AMH/4Dcx5uFyuS/1SaALMg38IpHlocfCg2q1fr8jNm2WG\nh6v1zp0K//bbWmOqWrbUmZgYlXbrpu9uvFHHRo7UmY4da3+i7dt9mNqzQJqD5ox58A/Mg/2YA//A\nPASeRpUZh8OhiooKhYWFqbCwUB06dPD4MTygzn4ul4t58AN+PQ/l5da+lt/9Tvr4Y+mbb6SKitpj\nOnSQfvzjmg36/fsrpEMHhUkKkxQt6Qobol8Mv56DIMI8+AfmwX7MgX9gHvzDxRbKRpWZgQMHKjs7\nW3fccYeys7M1ePDgxnwaAHYqL5c++8x6GOXZW8Y++0w6c6b2uOhoqXt36aabpPvvl667jg36AADA\nL3gsM9u2bdOzzz6ro0ePKjQ0VFlZWVqyZIlmzpypFStWqHPnzho7dqwvsgJorMpK6Z//lP76V2uP\ny5491gb9c4WHS/37W6stcXFSUpI0apS1cd9PlJQcl9OZK7c7QvHxpUpPT1FUVKTdsQAAgE08fpfS\np08fvfPOO3WuL1261CuBAFwi05T27699JPLGjdKpU7XHtWolDRxobdJPTrZWXPz8eVFOZ65yckbJ\nMAwVFJhyOtdp/vzRdscCAAA28Z8fuQJonC+/lFassB5GeeyY9O230sGDtcd07mydLnb99dKtt0r3\n3CO1b29P3kvgdkfI+P4WN8Mw5HZH2JwIAADYiTIDBJITJySXy7pd7M03reLywz0u8fHS2LG1Nugr\nOtqevE0sPr5UBQWmDMOQaZpKSCizOxIAALARZQbwV999Z+1z+fbbmtvFPv/cekDlWYZhrbBcc400\nZIj0059aD6VsptLTU+R0rpPbHaGEhDKlpQ2yOxIAALARZQbwB6dPS3/7m/TOO9LmzdLevVJpae0x\nbdpIgwdbqy19+1orMDfdJIWE2JPZBlFRkeyRAQAA1SgzgK+ZpnWa2Lkb9F2uuuXF4ZCuukp6/HFp\n0CCpRw8pNNSezAAAAH6IMgN426efSqtWSTk50s6d6nP6tHUL2VkhIdK119a8v+02a89LJEcOAwAA\nXAhlBmhKx45JW7ZYqy1/+IO0b1/tPS6SKuPi1OLscchnbxlr08amwAAAAIGLMgM01qFD1olihw9L\nu3ZZBWb37tpjQkKkyy6TevaUhg+Xxo9XfkmJkpKS7MkMAADQjFBmgIaoqLA26L/5prXy4nZL5eW1\nx8TESLfcUrPict11UrdudT+Xy+WbzAAAAM0cZQb4oaqqmpWWzZut99u2SadO1R7Xtq1VVu68U/q3\nf5O6drWOSgYAAIBPUGYQ3KqqpNxcac0a6YMPpC+/tE4Vq6ioGdOihdS7t9Sli7W35fbbpR//WGrV\n6pK/fEnJcTmduXK7IxQfX6r09BRFRbHxHwAAoCEoMwguhYU1xyG/+6713jRrj2nbVjp3g36fPk1S\nXOrjdOYqJ2eUDMNQQYEpp3Mdz1EBAABoIMoMmq+vv5ZWrLD2qJw+bRUXt7v2mBYtrA36vXtb+11+\n+lPrYZQ+4nZHyPj+1jTDMOR2R/jsawMAAAQ6ygyah7Iy6aOPpIULpU8+kfbvtwrMuTp2tG4RO7vi\n0r+/FBdnT97vxceXqqDAlGEYMk1TCQlltuYBAAAIJJQZBJ6yspoN+mffPvtMqqysPS4mRureXRo8\nWHrkEenKK/1ug356eoqcznVyuyOUkFCmtLRBdkcCAAAIGJQZ+LczZ6T166W//tVaedmzRzpxovaY\nVq2kG26wVltatpRGjLBuGWvh//97R0VFskcGAACgkfz/uz0ED9O09rScu+KSk1N3xaVVK2nMGOnW\nW60C07OcBXTtAAAgAElEQVSnVWIAAAAQVCgzsM/nn0srV0r/+79WYdm1Szp0qPaYdu2s08X69rXK\nyz33SLGxtsQFAACAf6HMwDeOH7dOFfvjH6V//lM6eNC6hexcCQnS3XfXbNBPSpKio22JCwAAAP9H\nmUHTKy6WNm2yHkB59naxnTtrP8/FMKyTxK65RhoyxHquy7XX2pcZAAAAAadRZWbz5s16/PHHdfXV\nV8s0TfXo0UPPPvtsU2dDICgvl/72N+tt82bpq6+s08bO1aaNdPPN1ib9q6+WEhOllBQpJMSWyAAA\nAGgeGr0yc8MNN2jBggVNmcUvlZQcl9OZK7c7QvHxpUpPT1FUVKTdsexhmtZpYnl5VnE5u+pSUVF7\nnMNhPYTyF7+wbhfr0UMKDbUnMwAAAJqtRpcZ89xbhpoxpzNXOTmjZBiGCgpMOZ3rguco3S1bpNWr\npffft04ZO3FCOnas5vWQEOs5LpWV1gMox4yR7rrLWokBAAAAvKzRZWbPnj165JFHVFJSokcffVSD\nBjXPh/253REyvn/QomEYcrsjbE7kJUeOWOVl40ZpyRLrVLGqqtpjunatOQ45Odk6YczhsCcvAAAA\ngp5hNmKJpbCwUFu3btVtt90mt9ute++9V++9955anOchhS6X65KD2uWll/L1ySf3yDAMmaapfv1W\n69///Tq7Y12SFkeOKGb9ehkVFXLs2CHHjh0K37+/1hgzJERnYmJU2rWrjicn69gtt6giPt6mxAAA\nAAgWSUlJDR7bqJWZjh076rbbbpMkJSQkqH379iosLNTll1/eJKH8yauvdpfT+aHc7gglJJQpLe3u\nwNozU1EhrVol/e1vKv/wQ7U6dEg6dar2mJgYadSomhWXbt1k9OyplpKivn+jxjQdl8sVsL8fmgvm\nwD8wD/6BebAfc+AfmAf/cLGLII0qM++884727dunX/3qVzpy5IiOHj2qjh07NuZT+b2oqMjA2SNT\nWWkdgXx2Y35enrRtW/UG/VZnx7Vta50qdt991j6XLl2so5IBAACAANKoMjN8+HA9+eSTmjhxokzT\nVHp6+nlvMYOXVFVZ+1v+8hfpww+tZ7qcOmUdlXxWy5bWqWLt2knx8dp97bXqNn26FBZmX24AAACg\niTSqgTgcDi1atKips+BCDh6sORJ51Srpiy9qP4RSkjp2lH72s5rbxfr0kcLDq18ucbkoMgAAAGg2\nWE7xR/v2SStWSHv3SoWFVon55pvaY1q0kDp1slZebrlFGjdO6tzZnrzn4Lk8AAAA8BXKjN1KS6V3\n35Vef1365BPpwAHp9OnaYzp2lO64o2bFJSlJiouzJ68HQf1cHgAAAPgUZcaXKiqk7dutW8XObtDf\nvt3auH+umBgpMVEaOVL6+c+l+PiA2aAfNM/lAQAAgO0oM95y5oy0bp309tvSRx9JBQXSyZO197lE\nREg33mjtbZGkO++URoywbiELUPHxpSooMKufy5OQUGZ3JAAAADRTgftdsz8xTenrr2tWWz76yDpp\n7IciIqRJk6wCk5ws9ewZ0MWlPunpKXI6153zXJ5BdkcCAABAM9W8vpP2lR07pJUrpZwcqVUryeWS\nDh+uPaZ1a2uvS79+0ujR0j33WEckN3MB9VweAAAABDTKTEMcPSo99JC11+Xgwbp7XK64wior527Q\nj4qyJysAAAAQJCgzDbFggfVwSsnaiB8XJ117rTR0qHTvvVKXLrbGAwAAAIIRZaYhnnhCuuwy65ku\nAwdKISF2JwIAAACCHmWmIWJipGnT7E4BAAAA4BwsMQAAAAAISJQZAAAAAAGJMgMAAAAgIFFmAAAA\nAAQkygwAAACAgESZAQAAABCQKDMAAAAAAhJlBgAAAEBAoswAAAAACEiUGQAAAAABqUVjP/DFF1/U\ntm3bZBiGZs+erV69ejVlLgAAAAC4oEaVmby8PO3bt09ZWVnas2ePfvOb3ygrK6upswEAAADAeTXq\nNrOPPvpII0eOlCR17dpV3333nU6ePNmkwQAAAADgQhpVZoqKitSuXbvqf46JiVFRUVGThQIAAAAA\nTxq9Z+Zcpml6HONyuZriS+ESMQ/+gXmwH3PgH5gH/8A82I858A/MQ+BpVJnp0KFDrZWYQ4cOKS4u\n7rzjk5KSGvNlAAAAAOC8GnWbWUpKirKzsyVJ27dvV8eOHdW6desmDQYAAAAAF9KolZm+ffuqZ8+e\nmjBhgkJDQ/Xcc881dS4AAAAAuCDDbMiGFwAAAADwM426zQwAAAAA7EaZAQAAABCQKDMAAAAAApLX\ny8yLL76oCRMmaOLEifrss8+8/eVwHhkZGZowYYLGjRun9957z+44QevUqVO65ZZb9NZbb9kdJWi9\n/fbbuvPOO3XPPfcoJyfH7jhBqbS0VI899pjuvfdeTZw4UR988IHdkYLKzp07dcstt+i///u/JUkH\nDx7UlClTNHnyZP3617/W6dOnbU7Y/P1wDr799ls98MADmjJlih588EEdOXLE5oTB4YfzcNbGjRuV\nmJhoU6rg88N5OHPmjJ588kmNGzdODzzwgI4fP37Bj/dqmcnLy9O+ffuUlZWl//iP/9ALL7zgzS+H\n89i0aZN2796trKwsvfbaa5ozZ47dkYLWK6+8oujoaLtjBK3i4mL9/ve/V1ZWlhYvXqx//vOfdkcK\nSn/5y1/UpUsX/elPf9KCBQv4u8GHysrKNHfuXKWkpFRfW7BggaZMmaLly5friiuu0OrVq21M2Pyd\nbw7Gjx+v119/XSNGjNDSpUttTBgc6psHSaqoqFBmZqY6dOhgU7LgUt88rFy5UrGxsVq1apXGjBmj\nLVu2XPBzeLXMfPTRRxo5cqQkqWvXrvruu+908uRJb35J1CM5OVkLFiyQJLVt21ZlZWXiEDvfKygo\n0N69ezVkyBC7owSt3NxcpaSkKCIiQu3bt9fzzz9vd6Sg1K5dOx07dkySVFJSonbt2tmcKHiEh4dr\n8eLFat++ffW1zZs3a9iwYZKkYcOGKTc31654QaG+OUhLS9Po0aMlWb8/SkpK7IoXNOqbB0latGiR\npkyZopYtW9qULLjUNw//8z//ozvuuEOSNG7cuOo/n87Hq2WmqKio1l9SMTExKioq8uaXRD1CQkIU\nEREhSVq1apWGDBkiwzBsThV8MjIyNHPmTLtjBLX9+/errKxM06ZN0+TJk/XRRx/ZHSko3XbbbTp4\n8KBGjRqle++9l98XPhQSEqKwsLBa18rKyqq/cYuNjdXhw4ftiBY06puDiIgIhYSEqKqqSn/+8591\n++2325QueNQ3D3v37tXu3bs1atQofujrI/XNw/79+5WTk6MpU6boySef1HfffXfhz+HNgD/E/xj2\nWr9+vdasWaPU1FS7owSdt956S8nJyercubMkfi/YxTRNFRcX65VXXtGLL76o2bNn2x0pKL399tu6\n7LLLtG7dOi1btowVMj/Cn032qaqq0owZMzRgwAANGDDA7jhBae7cufxwxQ+YpqmuXbvq9ddfV7du\n3bRo0aILjm/hzTAdOnSotRJz6NAhxcXFefNL4jw2btyozMxMLVmyRG3atLE7TtDJycnRN998o3Xr\n1ungwYMKDw/XZZddpoEDB9odLai0b99effv2lWEYSkhIkMPh0NGjR7nNyce2bt2qwYMHS5ISExN1\n8OBBmabJirFNHA6HKioqFBYWpsLCQvYK2GTWrFm66qqr9Oijj9odJSgVFhZq7969+vd//3eZpqnD\nhw9rypQpev311+2OFnTat2+v5ORkSdJNN92khQsXXnC8V1dmUlJSlJ2dLUnavn27OnbsqNatW3vz\nS6IeJ06c0Lx587Ro0SJFRkbaHScovfzyy1q1apVWrFihcePG6ZFHHqHI2CAlJUWbNm2SaZo6duyY\nSktLKTI2+NGPfqRPP/1UknU7QevWrSkyNho4cGD139XZ2dnVRRO+8/bbbyssLEy/+tWv7I4StDp2\n7Kjs7GxlZWVpxYoViouLo8jY5Oabb9b7778vyeoPV1111QXHG6aX15Tnz5+vzZs3KzQ0VM8995x6\n9OjhzS+HeqxcuVILFy7UlVdeWf3Tz4yMDF122WV2RwtKCxcuVHx8vO666y67owSllStXatWqVTIM\nQ4888oiGDh1qd6SgU1paqtmzZ+vIkSOqrKzUE088oRtuuMHuWEFh27ZtevbZZ3X06FGFhoYqKipK\nS5Ys0cyZM1VRUaHOnTvrxRdfVGhoqN1Rm6365qCqqkrh4eFyOBwyDEPdunXTc889Z3fUZq2+eVi+\nfLmioqIkSSNGjODESx84359JL7zwgg4fPiyHw6G5c+de8AePXi8zAAAAAOANPj0AAAAAAACaCmUG\nAAAAQECizAAAAAAISJQZAAAAAAGJMgMAAAAgIFFmAAAAAAQkygwAAACAgESZAQAAABCQKDMAAAAA\nAhJlBgAAAEBAoswAAAAACEiUGQAAAAABiTIDAAAAICBRZgAAAAAEJMoMAAAAgIBEmQEAAAAQkCgz\nAAAAAAISZQYAAABAQKLMAAAAAAhIlBkAAAAAAamFpwHl5eWaOXOmjhw5ooqKCk2bNk3Z2dnKz89X\nTEyMJGnq1KkaMmSI18MCAAAAwFmGaZrmhQasXbtW3377raZOnaoDBw7ogQceUL9+/XTrrbdSYAAA\nAADYxuPKzJgxY6p/feDAAXXq1EmS5KEDAQAAAIBXeVyZOWvChAk6dOiQFi1apGXLlqmoqEgVFRVq\n3769UlNTFR0d7e2sAAAAAFCtwWVGknbu3Kmnn35as2fPVnR0tBITE5WZmanCwkKlpqae9+NcLleT\nhAUAAADQvCUlJTV4rMfbzPLz8xUbG6tOnTopMTFRlZWV6t69u9q1aydJGjFihNLT05s0FLzD5XIx\nD36AebAfc+AfLjgPS5ZIDz0kzZolzZnj22BBht8P9mMO/APz4B8udhHE49HMW7Zs0bJlyyRJRUVF\nKi0tVVpamnbt2iVJysvLU/fu3RsRFQCAepimtGCBFBoqPfKI3WkAAH7M48rMxIkTNXv2bE2aNEmn\nTp1SWlqaWrdurVmzZsnhcMjhcGgOPzUDADSVggLr7Z57pPh4u9MAAPyYxzITHh6ul156qc71NWvW\neCUQACDIde0q7d8vHT9udxIAgJ/zWGYAAPC5qCjrDQCAC/C4ZwYAAAAA/BFlBgAAAEBAoswAAAAA\nCEiUGQCA/aqqpPvuk/76V7uTAAACCAcAAADs99570p/+ZP36zjvtzQIACBiszAAA7LdggfV++nR7\ncwAAAgplBgBgr127pH/8Q0pJkZKS7E4DAAgglBkAgL0WLrTeP/64vTkAAAGHMgMAsE9lpbRunRQf\nL40da3caAECA4QAAAIB9QkOlzz6T9uyRWvBXEgDg4rAyAwCwV1iYdM01dqcAAAQgygwAAACAgESZ\nAQAAABCQKDMAAAAAAhK7LQEAvvfCC4o7flzq1cvaMwMAQCOwMgMA8K0jR6T/+A91XL7cOs0MAIBG\noswAAHzrD3+Qyst1aPx4ygwA4JJQZgAAvnPmjPT730sOh4785Cd2pwEABDjKDADAd/7yF8ntlu6/\nX5WRkXanAQAEOI8HAJSXl2vmzJk6cuSIKioqNG3aNCUmJmrGjBkyTVNxcXHKyMhQy5YtfZEXABDI\n/v536/1jj0knTtibBQAQ8DyuzGzYsEG9evXS66+/rpdfflkvvviiFixYoMmTJ2v58uW64oortHr1\nal9kBQAEumXLJJdL6tHD7iQAgGbAY5kZM2aMpk6dKkk6cOCAOnXqpLy8PA0fPlySNGzYMOXm5no3\nJQCgeTAMqV8/u1MAAJqJBj9nZsKECTp06JBeffVVPfjgg9W3lcXGxurw4cNeCwgAAAAA9TFM0zQb\nOnjnzp2aMWOGjhw5Ur0a8/XXX+uZZ57RG2+8cd6Pc7lcl54UAAAAQLOXlJTU4LEeV2by8/MVGxur\nTp06KTExUVVVVXI4HKqoqFBYWJgKCwvVoUOHJg0F73C5XMyDH2Ae7Mcc+AfmwT8wD/ZjDvxDIM9D\nSclxOZ25crsjFB9fqvT0FEVFBeaJkRe7COJxz8yWLVu0bNkySVJRUZFKS0s1cOBAvfvuu5Kk7Oxs\nDR48uBFRAQBB4a23pPR06cgRu5MAQLPkdOYqJ2eU9u69We+/P1pOZ/DsZ/e4MjNx4kTNnj1bkyZN\n0qlTp5Senq6ePXvq6aef1sqVK9W5c2eNHTvWF1kBAIHGNKUXXrBOMLv3Xik21u5EANDsuN0RMgxD\nkmQYhtzuCJsT+Y7HMhMeHq6XXnqpzvWlS5d6JRAAoBn5+GNpyxbpzjulLl3sTgMAzVJ8fKkKCkwZ\nhiHTNJWQUGZ3JJ9p8GlmAABctAULrPePP25vDgBoxtLTU+R0rpPbHaGEhDKlpQ2yO5LPUGYAAN7x\nzTfSm29KvXpJQ4fanQYAmq2oqEjNnz/a7hi28HgAAAAAjfKPf0iVldL06dbDMgEAaGKszAAAvOPn\nP5cGDJC6dbM7CQCgmaLMAAC8p1cvuxMAAJoxbjMDAAAAEJAoMwAAAAACEreZAQAAwK+UlByX05kr\ntztC8fGlSk9PUVRUpN2x4IdYmQEANJ2vvpIeeUT68ku7kwAIYE5nrnJyRmnv3pv1/vuj5XTm2h0J\nfooyAwBoOgsXSq++Km3aZHcSAAHM7Y6Q8f2R7oZhyO2OsDkR/BVlBgDQNE6ckP7wB6ljR2ncOLvT\nAAhg8fGlMk1TkmSaphISymxOBH/FnhkAQNP405+kkhLp17+WwsPtTgMggKWnp8jpXCe3O0IJCWVK\nSxtkdyT4KcoMAODSVVVJv/2t1LKl9Itf2J0GQICLiorU/Pmj7Y6BAMBtZgCAS/fZZ9KePdKECdJl\nl9mdBgAQJFiZAQBcuj59rJPMzpyxOwkAIIhQZgAATePyy+1OAAAIMtxmBgAAACAgUWYAAAAABCTK\nDAAAAICARJkBADROZaU0bZr0wQd2JwEABKkGHQCQkZGhrVu3qrKyUg8//LA2bNig/Px8xcTESJKm\nTp2qIUOGeDUoAMDP/P3v0qJF1glmN91kdxoAQBDyWGY2bdqk3bt3KysrS8XFxRo7dqwGDBigp556\nigIDAMFswQLr/fTp9uYAAAQtj2UmOTlZvXv3liS1bdtWpaWlqqqqkmmaXg8HAPBT+fnShg3S8OFS\nr152pwEABCmPe2ZCQkIUEREhSVq1apWGDh2qkJAQLV++XPfdd5+efPJJFRcXez0oAMCP/Pa31ntW\nZQAANjLMBi6xrF+/Xq+99pqWLFmi/Px8RUdHKzExUZmZmSosLFRqaup5P9blcjVZYACAvYzTp9Xr\n9ttV1aqV8teskUJD7Y4EAGhGkpKSGjy2QQcAbNy4UZmZmVqyZInatGmjAQMGVL82YsQIpaenN2ko\neIfL5WIe/ADzYD/moAkUFEh79iipb99GfwrmwT8wD/ZjDvwD8+AfLnYRxONtZidOnNC8efO0aNEi\nRUZGSpKmT5+uXbt2SZLy8vLUvXv3RkQFAASstm2lSygyAAA0BY8rM2vXrlVxcbGeeOIJmaYpwzB0\n9913a9asWXI4HHI4HJozZ44vsgIAAD9RUnJcTmeu3O4IxceXKj09RVFRkXbHAhBkPJaZ8ePHa/z4\n8XWu33XXXV4JBAAA/J/TmaucnFEyDEMFBaacznWaP3+03bEABBmPt5kBAAD8kNsdIcMwJEmGYcjt\njrA5EYBgRJkBADRMRoa0apVUWWl3EviB+PjS6mfOmaaphIQymxMBCEYNOs0MABDkCgul1FTpyiul\ne+6xOw38QHp6ipzOdXK7I5SQUKa0tEF2RwIQhCgzAADPFi+WKiqsh2SGsKgPKSoqkj0yAGzH30gA\ngAurqJBefVWKipLuu8/uNAAAVKPMAAAubNUq6eBBaepUqU0bu9MAAFCNMgMAuLAVKyTDkB591O4k\nAADUwp4ZAMCFrV4tffSR1KWL3UkAAKiFlRkAwIW1bCndfLPdKQAAqIOVGQAAAC8rKTkupzNXbneE\n4uNLlZ6eoqioSLtjAQGPlRkAAAAvczpzlZMzSnv33qz33x8tpzPX7khAs0CZAQAA8DK3O0KGYUiS\nDMOQ2x1hcyKgeaDMAADqeust6fe/l06etDsJ0CzEx5fKNE1JkmmaSkgoszkR0DywZwYAUJtpSmlp\n0vbt0p13Sg6H3YmAgJeeniKnc53c7gglJJQpLW2Q3ZGAZoEyAwCoLSdH+te/pJ/9TIqPtzsN0CxE\nRUVq/vzRdscAmh1uMwMA1Pbb31rvp0+3NwcAAB5QZgAANb76SvrrX6X+/aWBA+1OAwDABVFmAAA1\nVq6UqqqsVZnvT14CAMBfsWcGAFBjxgzphhtYlQEABATKDACghmFIQ4fanQIAgAZpUJnJyMjQ1q1b\nVVlZqYcffli9evXSjBkzZJqm4uLilJGRoZYtW3o7KwAAAABU81hmNm3apN27dysrK0vFxcUaO3as\nBgwYoMmTJ2v06NF6+eWXtXr1ak2YMMEXeQEAAABAUgMOAEhOTtaCBQskSW3btlVpaany8vI0fPhw\nSdKwYcOUm5vr3ZQAAAAA8AMey0xISIgiIiIkSW+++aaGDh2qsrKy6tvKYmNjdfjwYe+mBAB4z5df\nSqmp0rff2p0EAICL0uADANavX6/Vq1dryZIlGjVqVPV10zQb9PEul+vi06HJMQ/+gXmwH3NQIyEj\nQx1WrlSBw6Fjt9zi06/NPPgH5sF+zIF/YB4CT4PKzMaNG5WZmaklS5aoTZs2cjgcqqioUFhYmAoL\nC9WhQwePnyMpKemSw+LSuFwu5sEPMA/2Yw7OUVIirV0rxcery5NPSj48zIV58A/Mg/2YA//APPiH\niy2UHm8zO3HihObNm6dFixYpMjJSkjRw4EBlZ2dLkrKzszV48OBGRAUA2G7pUunECemRR3xaZAAA\naAoeV2bWrl2r4uJiPfHEEzJNU4ZhaO7cufrNb36jFStWqHPnzho7dqwvsgIAmlJlpbRwodSqlfTw\nw3anAQDgonksM+PHj9f48ePrXF+6dKlXAgEAfOSjj6SCAumhh6TYWLvTAABw0Rp8AAAAoJm56Sbp\ns88kh8PuJAAANAplBgCC2XXX2Z0AAIBG83gAAAAAAAD4I8oMAAAAgIBEmQEAAAAQkCgzABBMzpyR\nnn5a2rHD7iQAAFwyygwABJO33pLmzZNeecXuJAAAXDLKDAAEkwULrPePPWZvDgAAmgBlBgCCxdat\n0gcfSLfeKvXoYXcaAAAuGWUGAILF2VWZxx+3NwcAAE2EMgMAweDECWn1amtFZtQou9MAANAkWtgd\nAADgA23aSF98IbndUgg/xwIANA+UGQAIFp07W28AADQT/HgOAAAAQECizAAAAAAISNxmBgDNVEnJ\ncTmduXK7IxQfX6r09BRFRUXaHQsAgCbDygwANFNZD/xWj78yXY+8N1/v54yS05lrdyQAAJoUKzMA\n0Nxs3SpNmqSHd+6UIclRWSLDMOR2R9idDACAJsXKDAA0F263NGCAlJQk7dypypAW+mOHp3RrrwMy\nJSUklNmdEACAJkWZAYBAV1YmZWRIvXtLmzZZz5G5916dPHBA/5o0Uld1/UBDhqxTWtogu5MCANCk\nGnSb2c6dO/XYY4/p/vvv16RJkzRr1izl5+crJiZGkjR16lQNGTLEq0EBAD9w5oy0bJmUni4dOCDF\nxEhPPCGlpkrt2ilK0vz5o+1OCQCA13gsM2VlZZo7d65SUlJqXX/qqacoMABgh6oq6bXXpPnzpS++\nkCIipFmzpKeflqKj7U4HAIDPeLzNLDw8XIsXL1b79u19kQcAcCHz5kmRkdIvfynt3m2937NHmjOH\nIgMACDoeV2ZCQkIUFhZW5/ry5cu1dOlStW/fXqmpqYrmL1EA8J7ly6XHH5eOHrX+OSFBWr1aSk62\nNxcAADYyTNM0GzJw4cKFiomJ0aRJk/Txxx8rOjpaiYmJyszMVGFhoVJTU8/7sS6Xq8kCA0AwCd+3\nT12ffFIRX30lSTodFSX3U0/p2G232RsMAAAvSUpKavDYRj1nZsCAAdW/HjFihNLT05s0FLzD5XIx\nD36AebBfQMzBgQPS889Lf/iDVFkpORyS06mWTz6pLnZnayIBMQ9BgHmwH3PgH5gH/3CxiyCNOpp5\n+vTp2rVrlyQpLy9P3bt3b8ynAQD80LFj1mb+bt2kxYut92++KX33nfTkk3anAwDAr3hcmdm2bZue\nffZZHT16VKGhocrKytL06dM1a9YsORwOORwOzZkzxxdZAaD5OnpUuu8+6YP/396dR1Vd538cf10Q\nGEDEhS2UlNDccxtNJHfRk9Wv5ngwnZ84YzPTNGq/FqeOOaYyk5l2xonGPC6jM7k0qFmOnqlBzcYl\nzAUnNUdLjYwsEERZrwJyf398UgQB9Qp8udzn45x74H7v997vGz+yvO5n2yNdvCi1bm2WXP75z6Um\nTnWiAwDQ6N30N2SPHj20ZcuWG47HxsbWSUEA4FYuXZKefFJau9YsuezrazbAnDrVfA4AAKrF230A\nYIWyMrMvzJtvSiUl5lh0tPT3v0tt21pbGwAALoIwAwD17aOPTM/LiRPmfpcuZunlXr2srQsAABfj\n1AIAAAAnpKZKI0dKI0aYINO9u7R1q3TsGEEGAAAnEGYAoK598YX0+OPSj38sbdtmAs3Bg9KRIxLz\nDwEAcBrDzACgrhw6JE2YYHphHA6pb1/ptdekYcOsrgwAgEaBMAMAtS0tTfrpT6VPPzX3fXykVauk\nuDjJZrO2NlQrNzdfCQkpSk/3VZs2RZozJ0aBgQFWlwUAqAHDzACgthQVSQ89JEVFmSDj4SFNnGj2\njRk7liDTwCUkpGjnzpFKSxukXbtGKSEhxeqSAAA3QZgBgDtVWiotXy516CB98IE5Nnq0lJUlvf22\n9KMfWVsfbkl6uq9sPwROm82m9HT2+QGAho4wAwDOcjikd9+VunY1G19euGCWXP7qK+mf/5RatrS6\nQutTYjQAABSKSURBVNyGNm2K5HA4JEkOh0MREXaLKwIA3AxzZgDAGX/7m/TWW2ZVMk9P6amnpJdf\nlsLDra4MTpozJ0YJCVuVnu6riAi7Zs8eYHVJAICbIMwAwO1Ys0Z65hkpJ8fcf/xx6Q9/MEPM4NIC\nAwO0cOEoq8sAANwGwgwA3IqtW6Vf/lJKTzf3W7WSli6Vxoyxti4AANwYc2YAoCbffScNHy6NGmWC\njL+/9PrrUnY2QQYAAIsRZgCgKhcvSi+9JLVvL+3YYfaK+e1vpbw88xEAAFiOYWYAcD27Xfrzn6XX\nXjOrk7VuLc2ZI/3sZ5KXl9XVAQCA6xBmAECSLl0yyyv/619mf5gWLaQFC8xSy77sNwIAQENEmAHg\n3srKpBdflN58UyopkTw8zPCyF1+Umje3ujoAAFADwgwA9/XHP0qzZ0uFheZ+ly7S6tVS797W1gUA\nAG4JYQaA2/E7flx64QXp44/NgYgIacUKKTbW2sIAAMBtIcwAcB8nT0ozZ6rz+vXm/n33mVAzYYK1\ndQEAAKfc0tLMJ06cUGxsrNauXStJysjIUHx8vCZMmKDnnntOJSUldVokANyRb7+VnnpK6txZWr9e\nhV26SB99JB0+TJABAMCF3TTM2O12zZ8/XzExMdeOJSYmKj4+XmvWrNHdd9+tjRs31mmRAOCUM2ek\n6GipbVtp6VKzZ8y77+rE229Lw4ZZXR0AALhDNw0zPj4+Wrp0qYKCgq4d279/v4YOHSpJGjp0qFJS\nUuquQgC4XTk50kMPSZGR0qefmmOvvip9/rk0Zoxks1lbHwAAqBU3nTPj4eEhb2/vCsfsdru8ftg8\nrlWrVsrKyqqb6gDgdpSWSlOmSH/5i1ly2WaTRo82K5S1bGl1dQAAoJbd8QIADofjls5LTU2900uh\nFtAODQPtUMscDjXfsUOtFy/Wj86ckUNSYffuSps7V8Xh4VJamrldhzZoGGiHhoF2sB5t0DDQDq7H\nqTDj7++v4uJieXt7KzMzUyEhITd9Tp8+fZy5FGpRamoq7dAA0A61bMcOafp06cABydNTevJJ2X79\nazXt3Vvdq3kKbdAw0A4NA+1gPdqgYaAdGobbDZS3tJpZZdHR0UpOTpYkJScna+DAgc68DAA47513\npBEjpOHDTZAZO1Y6ftxM9GfTSwAA3MJNe2YOHz6smTNnKicnR56enkpKStKKFSs0ffp0rVu3TuHh\n4frJT35SH7UCcGdlZcrf84l2zFylmIObFWQ/Z47Hxkrz5km8mwYAgNu5aZjp0aOHtmzZcsPxlStX\n1klBANzcpUtmc8svvpBOnDAfU1Kkr75SgKRHfzityMNPWx+YoMe2LrWyWgAAYKE7XgAAAG5bWZl0\n9Kj08cdmiNjx42Zjy8uXpfx8qfLCIk2aSD4+Om8L0Lee9+rTZrFaHjZLkSF79Jg1XwEAAGgACDMA\n6k5RkVlF7GoPy9WPn39uHqvMy0saOFDq1Enq2LH8Y7t2kqenXnnuX9q1a5RsNpscDociIuz1/iUB\nAICGgzAD4M44HFJ6uvSPf0j79pnA8s030oULZt+Xyry8zGaW+fkmpHTrJt1/v5nM37ZtjZeaMydG\nCQlblZ7uq4gIu2bPHlA3XxMAAHAJhBkAt6agQNq928xpqdzTcvHijefbbFLz5tKYMVLnzuU9Le3a\nmWFjTggMDNDChaPu7OsAAACNBmEGQDmHQ8rOlv77X2nlSunYMdPrcuGCVFJy4/leXlL79tLgwVJW\nlgkt999vlku+5576rx8AALgVwgzgjgoLpZ07TU9L06bSqVPlPS0XLtx4vs0mNWsmhYVJEyZIPXua\nXpbISKd7WQAAAO4Uf4UAjVl2dnlIeftt6csvpZycqntZmjSRoqKkQYPMkLBLl6QuXaRhw6QOHeq/\ndgAAgJsgzACurqjI9LLs2SP95z9SQIBZ5viLL6Tz528832Yz54SFmSFiY8dK0dFmWJiXV/3XDwAA\n4CTCDOAqcnIqTrzftEn6+mupuPjGcz09TS/LgAHlyxsHBEg9epjPAQAAGgHCDGCh3Nx8JSSkKD3d\nV23aFGnO9D4KPPKZtGuX6WU5eVLy9pYyMsyQscpsNjPn5WovS8+e0sMPS337mucBAAA0YoQZwCrF\nxXr7yeWK2l2kR+yp6lGwR83eqCawREVJ/ftX3EgyMlIKD5c8POq/dgAAgAaAMAPUl4ICafVqRWzf\nLuXlSZ98ov+zl+9gb7f56pKnr3zbhZvw0rOnFBMjDRliVhIDAABABYQZoK4UFEhr1kgbN0qHDpk5\nL5JCrj7erZt2e0Zqc95EHQmIUbZnqAYP2camkAAAALeIMAPUluJi6eBB6d//Nrddu6TLl8sf9/GR\n7r1X3/fpo7sWLJCCg3Vfbr7eT0hRs/ST6hpxRLNnD7CqegAAAJdDmAGcVVAgrV0rffCBZLdLn3xi\nlkm+qksXs6rYyJHSE0+Y+5K+S03VXcHBkqTAwAB6YgAAAJxEmAFu1eXLZuPJd9+VUlOvDRu7pls3\nM79lyBCz8eQPgQUAAAB1gzADVKfysLHKPS8+PlKHDqbn5emnpXbtLCoUAADAPRFmgKuKison7BcW\nmn1erg8vXbtKd90l3XefNGmS6YkBAACAZQgzcF8lJdL69dKqVWbY2PnzFR/v2rXisLGQkKpeBQAA\nABYhzMB9lJTcOGyssLD88euHjf3iF9cm7AMAAKBhcirM7N+/X88884w6dOggh8Ohjh07aubMmbVd\nW4OQm5uvhIQUpaf7qk2bIs2ZE6PAwACry8KtKCqS3nnHTNj/5htzuz68dOliNqYMDTWrjTFsDAAA\nwKU43TPTr18/JSYm1mYtDVJCQoq+3Hqvnvp+jsokfbL/7xr9/P+YeRNRUZKHh9Ul4qqSEmn7dikx\n0fTAVB421qVLxWFjoaFWVAkAAIBa4nSYcTgctVlHg5We7qtHclbp4ZxV5kCKpJRV5SeEhUnt20ut\nW0vh4eUfS0qkNm3MO/8tW1pSe6NXUmLmulwdNrZnT8WeF29vM2wsNtYMG6PnBQAAoFFxOsycPn1a\nkydPVm5urqZMmaIBAxrnzuVt2hRpZdhLKvAMVJT9iDr7/Ucdm5WYd/3z8qTSUiklRSorq/5FbDbz\nh3XTptLAgWZieeXwExIiNWEKU42uHzZ26JAJLpU3qRwyxPw7x8cTXgAAABo5m8OJLpbMzEwdOnRI\nDz74oNLT0zVx4kRt27ZNTar5Yzw1NfWOC7VKfn6hli9PU2ZmoEJDc/WrX0UqIMC/4kmlpfLKyZHX\nuXPyys6W97lzar5jh7wzMtQkL08edrtsJSWy1XAdhyR5eKjM21tXmjZVaWCgSoKCdHHQIF1u21Yl\nISEqCQ7WlaZNTThyB6Wl8jtxQnetWCH/o0fV5OLFCv+Gl8LDlTdggAr69FF+794qbdXKslIBAABQ\nO/r06XPL5zoVZiqLi4vTG2+8odatW1f5eGpq6m0V1WidO2d2jc/IkL77Tjp7tvzj9u1Sfr7p6amJ\nn5/pzcnNlXx9TY9O69ZSZKQZUjV8uNS2rVmZq5IG3w4lJabH5fphYwUF5Y97e5shfVeHjXXvblWl\nd6TBt4MboA0aBtqhYaAdrEcbNAy0Q8Nwu+3g1LimLVu26MyZM5o6darOnz+vnJwchTKZ+uZCQsyt\nU6fqzykrk06elI4ckY4fN5PUrw8/V29ZWeb8M2ekAwdufJ2goIpD2b7+Wu28vKR+/cz1u3eXOna0\ndmjbpUvS2rVm2NjBgya4XLpU/njnzmbY2NUA46LhBQAAAHXDqb9khw0bpmnTpmn8+PFyOByaM2dO\ntUPMcJs8PEzI6Nix5vMKCqSjR83tyy+ltDQTctq3Lw8+p05Jhw9fe0orSfrww4qvExFhFiq4fv5O\n69ZSdrYJPT17mkUOakNpqZmwv2yZtHmzucb1WrWSJk0qX22stq4LAACARsmpBOLv768lS5bUdi24\nHU2bStHR5laTvDyzv8qHHypr714FFxVJ339vgkRBgeRwSPv3S1eu1Pw6VxcwGD26Yvhp3Vq66y7T\nE+TnV2FfnrvD85XwqJ+aHjxgho3t3l31sLERI8w+Lz163PE/CwAAANwH3SmNXbNmZlWvbt30TWqq\ngqsag1hWZubzXO3ROX1aeu89KTPTzPEpKJAuXzafr1lT/bU8POTr4aUZai5PxxUFXLmgJm9eF5I6\ndTK9Lv37mx4fwgsAAADuAGEGZmhbWJi59e5tjj377I3n5eebuTqVFy/48ktp1y6psFBepZcVpExJ\n0mWbj3a0G62R8/5XGjyYYWMAAACoVYQZ3LqAAHO7555qT3n+mQ90cnsnedlK9I3PvRo8eKtGPj6q\nHosEAACAuyDMoFbN+f1AJXiaOTODI77W7NmNczNVAAAAWI8wg1oVGBighQvpiQEAAEDd87C6AAAA\nAABwBmEGAAAAgEsizAAAAABwSYQZAAAAAC6JMAMAAADAJRFmAAAAALgkwgwAAAAAl0SYAQAAAOCS\nCDMAAAAAXBJhBgAAAIBLIswAAAAAcEmEGQAAAAAuiTADAAAAwCURZgAAAAC4JMIMAAAAAJfUxNkn\nzps3T4cPH5bNZtOMGTPUvXv32qwLAAAAAGrkVJg5cOCAzpw5o6SkJJ0+fVq/+93vlJSUVNu1AQAA\nAEC1nBpmtnfvXo0YMUKSFBUVpby8PBUWFtZqYQAAAABQE6fCTHZ2tlq2bHntfosWLZSdnV1rRQEA\nAADAzTg9Z+Z6DofjpuekpqbWxqVwh2iHhoF2sB5t0DDQDg0D7WA92qBhoB1cj1NhJiQkpEJPzLlz\n5xQcHFzt+X369HHmMgAAAABQLaeGmcXExCg5OVmSdOzYMYWGhsrPz69WCwMAAACAmjjVM9OrVy91\n7dpV48aNk6enp2bNmlXbdQEAAABAjWyOW5nwAgAAAAANjFPDzAAAAADAaoQZAAAAAC6JMAMAAADA\nJdV5mJk3b57GjRun8ePH6+jRo3V9OVRjwYIFGjdunOLi4rRt2zary3Fbly9fVmxsrDZt2mR1KW5r\n8+bNevTRRzVmzBjt3LnT6nLcUlFRkZ5++mlNnDhR48eP1549e6wuya2cOHFCsbGxWrt2rSQpIyND\n8fHxmjBhgp577jmVlJRYXGHjV7kNvv/+e02aNEnx8fF64okndP78eYsrdA+V2+Gq3bt3q1OnThZV\n5X4qt0NpaammTZumuLg4TZo0Sfn5+TU+v07DzIEDB3TmzBklJSXplVde0dy5c+vycqjGvn37dOrU\nKSUlJWn58uV69dVXrS7JbS1evFjNmze3ugy3dfHiRb311ltKSkrS0qVL9dFHH1ldklt6//33dc89\n92jVqlVKTEzkd0M9stvtmj9/vmJiYq4dS0xMVHx8vNasWaO7775bGzdutLDCxq+6Nhg7dqxWr16t\n4cOHa+XKlRZW6B6qagdJKi4u1rJlyxQSEmJRZe6lqnZYv369WrVqpQ0bNmj06NE6ePBgja9Rp2Fm\n7969GjFihCQpKipKeXl5KiwsrMtLogp9+/ZVYmKiJKlZs2ay2+1iEbv699VXXyktLU2DBw+2uhS3\nlZKSopiYGPn6+iooKEi///3vrS7JLbVs2VIXLlyQJOXm5qply5YWV+Q+fHx8tHTpUgUFBV07tn//\nfg0dOlSSNHToUKWkpFhVnluoqg1mz56tUaNGSTLfH7m5uVaV5zaqagdJWrJkieLj4+Xl5WVRZe6l\nqnb4+OOP9cgjj0iS4uLirv18qk6dhpns7OwKv6RatGih7OzsurwkquDh4SFfX19J0oYNGzR48GDZ\nbDaLq3I/CxYs0PTp060uw62dPXtWdrtdv/nNbzRhwgTt3bvX6pLc0oMPPqiMjAyNHDlSEydO5Pui\nHnl4eMjb27vCMbvdfu0Pt1atWikrK8uK0txGVW3g6+srDw8PlZWV6Z133tHDDz9sUXXuo6p2SEtL\n06lTpzRy5Eje9K0nVbXD2bNntXPnTsXHx2vatGnKy8ur+TXqssDK+I9hre3bt+u9997Tyy+/bHUp\nbmfTpk3q27evwsPDJfG9YBWHw6GLFy9q8eLFmjdvnmbMmGF1SW5p8+bNCgsL09atW/XXv/6VHrIG\nhJ9N1ikrK9MLL7yg/v37q3///laX45bmz5/PmysNgMPhUFRUlFavXq327dtryZIlNZ7fpC6LCQkJ\nqdATc+7cOQUHB9flJVGN3bt3a9myZVqxYoWaNm1qdTluZ+fOnfr222+1detWZWRkyMfHR2FhYYqO\njra6NLcSFBSkXr16yWazKSIiQv7+/srJyWGYUz07dOiQBg4cKEnq1KmTMjIy5HA46DG2iL+/v4qL\ni+Xt7a3MzEzmCljkpZdeUmRkpKZMmWJ1KW4pMzNTaWlpev755+VwOJSVlaX4+HitXr3a6tLcTlBQ\nkPr27StJeuCBB7Ro0aIaz6/TnpmYmBglJydLko4dO6bQ0FD5+fnV5SVRhYKCAr3++utasmSJAgIC\nrC7HLf3pT3/Shg0btG7dOsXFxWny5MkEGQvExMRo3759cjgcunDhgoqKiggyFmjbtq0+++wzSWY4\ngZ+fH0HGQtHR0dd+VycnJ18Lmqg/mzdvlre3t6ZOnWp1KW4rNDRUycnJSkpK0rp16xQcHEyQscig\nQYO0a9cuSSY/REZG1ni+zVHHfcoLFy7U/v375enpqVmzZqljx451eTlUYf369Vq0aJHatWt37d3P\nBQsWKCwszOrS3NKiRYvUpk0bPfbYY1aX4pbWr1+vDRs2yGazafLkyRoyZIjVJbmdoqIizZgxQ+fP\nn9eVK1f07LPPql+/flaX5RYOHz6smTNnKicnR56engoMDNSKFSs0ffp0FRcXKzw8XPPmzZOnp6fV\npTZaVbVBWVmZfHx85O/vL5vNpvbt22vWrFlWl9qoVdUOa9asUWBgoCRp+PDhrHhZD6r7mTR37lxl\nZWXJ399f8+fPr/GNxzoPMwAAAABQF+p1AQAAAAAAqC2EGQAAAAAuiTADAAAAwCURZgAAAAC4JMIM\nAAAAAJdEmAEAAADgkggzAAAAAFzS/wMJGIC0sYvqaQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -859,11 +946,15 @@ "X3 = X**3\n", "X4 = X**4\n", "\n", + "X_is = X[:len(X)/2],X2[:len(X)/2],X3[:len(X)/2],X4[:len(X)/2]\n", + "\n", "simple = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(X[:len(X)/2])).fit().params\n", - "complicated = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(np.column_stack([X[:len(X)/2],X2[:len(X)/2],X3[:len(X)/2],X4[:len(X)/2]]))).fit().params\n", + "complicated = regression.linear_model.OLS(Y[:len(X)/2], sm.add_constant(np.column_stack(X_is))).fit().params\n", "\n", "simple_model = simple[0] + simple[1] * X\n", - "complicated_model = complicated[0] + complicated[1] * X + complicated[2] * X2 + complicated[3] * X3 + complicated[4] * X4 \n", + "complicated_model = (complicated[0] + complicated[1] * X \n", + " + complicated[2] * X2 + complicated[3] * X3 \n", + " + complicated[4] * X4) \n", " \n", "fig, axes = plt.subplots(nrows = 2, ncols = 1)\n", "\n", @@ -887,7 +978,7 @@ }, { "cell_type": "code", - "execution_count": 1081, + "execution_count": 224, "metadata": { "collapsed": false, "scrolled": false @@ -897,7 +988,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAHBCAYAAABkCVTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4lHW2B/DvpPdOSE9IQHpCCSAi0i2oi22tWFbdVXcX\n27rWe12vq6Lucy2s7hXXrogFxIKuiCAKooQESOiEJCQhjTRSSJ+Z+8fJm0mZzEymT+b7eR6eN7zz\nll8YCO+Z8zvnp9JqtVoQERERERE5KQ9HD4CIiIiIiMgQBi1EREREROTUGLQQEREREZFTY9BCRERE\nREROjUELERERERE5NQYtRERERETk1EwKWo4cOYIlS5ZgzZo1PfveffddTJo0Ca2trTYbHBERERER\nkdGgpbW1Fc899xzmzJnTs+/zzz9HY2MjoqOjbTo4IiIiIiIio0GLr68vVq9ejaioqJ59F1xwAVas\nWGHTgREREREREQEmBC0eHh7w8fHps8/f399mAyIiIiIiIuqNhfhEREREROTUvCw5WaVSmXRcTk6O\nJbchIiIiIiI3MX369AH7LApatFottFqt2Td3FTk5OS49fnfA98j58T1yfnyPnBvfH+fH98j58T1y\nfoMlO4wGLbm5ufiv//ov1NXVwdPTEx999BEyMzORnZ2N6upqXH311cjMzMQTTzxh7TETEREREREZ\nD1oyMjLw1Vdf2WMsREREREREA7AQn4iIiIiInBqDFiIiIiIicmoMWoiIiIiIyKkxaCEiIiIiIqfG\noIWIiIiIiJwagxYiIiIiInJqDFqIiIiIiMipMWghIiIiIiKnxqCFiIiIiIicGoMWIiIiIiJyagxa\niIiIiIjIqTFoISIiIlJs3Ag0Nzt6FETUD4MWIiIiIgDIzgYuu0x+EZFTYdBCRERE1N4O/O53gFoN\nPPqoo0dDRP0waCEiIiJ6+mngwAHgzjuBhQsdPRoi6odBCxEREbm3vXuBZ54BkpKA55+Xfa++Ctx9\nt2PHRUQ9GLQQERGRe/vyS5kW9u9/A8HBsu+zz4B//hNoaHDs2IgIAIMWIiIicnd/+xuwbx9w/vm6\nfTNnyjY72zFjIqI+GLQQERERZWT0/b0StOzaZf+xENEADFqIiIiI+lOClqwsx46DiAAwaCEiIiIa\nKD4eiIuTTItW6+jRELk9L0cPgIiIiMjuKiqA2FjDx/zzn0BEhH3GQ0QGMdNCRERE7mX7diA5GfjX\nvwwfd8UVwPz5gEpll2ER0eAYtBAREZH70GiA++8HOjuB6dMdPRoiMhGDFiIiInIfa9dKG+PrrgNm\nzXL0aIjIRAxaiIiIyHS7dgGvveboUZjvgw9k+/TTjh0HEQ0JgxYiIiIy3ZNPAnfdBRQVOXok5jl4\nULqCjRrl6JEQ0RAwaCEiIiLT1dXJ1hUXXdRogKVLgWuuMf2cH34AJk0C3n3XduMiIqMYtBAREZHp\nGhpk++uvjh2HOTw8ZGrbCy+Yfk5IiGRnXPH7JRpGGLQQERGR6U6flq0rZlrMMXky4OsLZGU5eiRE\nbo1BCxEREZlOybTs2QO0tzt2LPbg4wNMnQrk5QGtrY4eDZHbYtBCREREpunsBFpa5OuODiA317Hj\nsZeZM4GuLuCeexw9EiK3xaCFiIiITKNkWTw9ZesuU8Ruuw2YPRtISHD0SIjcFoMWIiIiMo0StJx9\ntmxdqTi9sVHaNf/889DPTU8Hdu4EHn/c+uMiIpMwaCEiIiLTKEFLZiYQHu5amZYDB4C//Q3YsMHR\nIyEiMzBoISIiItMoncPCwoBZs4CCAqC62rFjMtXBg7KdONE61ysqAlatAo4ds871iMggBi1ERERk\nGiXTEhoqQQvgOq2ADxyQrbWClp9/lsL8r7+2zvWIyCAGLURERGQaJWgJC3O9uhYl0zJhgnWuN2eO\nbHfutM71iMggBi1ERERkGmV6WGiotAEGXKeu5eBBIDkZCAqyzvVSUoCYGMm4aLXWuSYRDcrL0QMg\nIiIiF9F7elhEBDBmjEwP02gADyf+HFSjAR55BFCprHdNlUqyLevXA8XFEsQQkc048U8YIiIiciq9\nC/EBmSLW0AAcPeq4MZnCwwO4+25gxQrrXleZImZOG2UiGhIGLURERGSa3pkWQFeMb2yKWF4e8Npr\nthuXo1xwAfDEE8DUqY4eCdGwx6CFiIiITNM/aDG1GP/WW4G77gJKSmw3NkeYMEHWfrFWcT8RDYpB\nCxEREZmmdyE+ICvF+/kZzrTk5gI5OfL1yZO2HR8RDVsMWoiIiMg0DQ2Avz/g4yO/9/YGpk2T6V9n\nzug/5803dV9XVNh+jEQ0LDFoISIiItM0NOiK8BVnny3dufQtMtnWBnzwge73jghaamqAa64BPv7Y\n/vcmIqth0EJERESmOX1aNzVMceGFsn3qqYHrlXz+OVBfr6t9cUTQcuAA8MknwN699r83EVkNgxYi\nIiIyTquVTEv/oGXxYuDii4GtW4GPPur7mjI17L/+S7ZDCVrWrQOWLQOam80fMyCLSgLAxImWXceQ\nZ5+V9sddXba7B5GbY9BCRERExrW1AZ2dA6eHqVTAqlVSkH///boOYydOAN9/Lw/z8+fLvvJy0+5V\nVQX89rfAl1/K4o2DKSkB9u83fC17BC0FBcDOnfA/ftx29yBycyYFLUeOHMGSJUuwZs0aAEBlZSVu\nvPFGLF++HPfddx86OzttOkgiIiJysP6dw3pLTQUeewyorAQef1z2vf22bG+7DQgMBEJCTM+0/PWv\nsl22DLjxRv3HtLdLQJSeDsyeDaxZA3R0DDzu4EEJrMaPN+3e5uheZDIoN9d29yByc0aDltbWVjz3\n3HOYo6z6CuDll1/GjTfeiA8++ABJSUlYb+hTECIiInJ9/ddo6e+vfwXGjAFeeUVaHL/9NhAUJBkT\nAIiNNS1o+fFH4P33ZcHG9etlNXt93n9fWiiPGiUtl5cvB954o+8xWq0ELWlp0vXMVs45BwAQlJdn\nu3sQuTmjQYuvry9Wr16NqKionn1ZWVlYsGABAGDBggXYuXOn7UZIREREjqdkWvpPD1P4+gKvviqd\nxC6+GCgtBa69VgIXQIKW6mqZYmbI//yPZEb+7/8AT8/Bj6uqkuzNjh1Afr4ETcuXDzzu44+BF180\n/v1ZYswYYMQIBDLTQmQzRoMWDw8P+Cj92Lu1trbC29sbABAZGYnq6mrbjI6IiKifovIGbNh2HGqN\n1vjBZD3GMi0AsGSJtBeuqpLf33ab7rXYWNlWVhq+z/r1MtVr1izDxz32mNTIxMVJJuX55yWI6U2l\nAhYtAi65xPC1LKVSAbNnw7ey0vS6HSIaEi9LL6Dt395wEDnKarguytXH7w74Hjk/vkfOzxXeoze+\nO4WTNR0oPFGK+ZNDjJ8wjDjy/QnfuxepAEoaG1FtYBzet9yCiRs3oj0+Hoe9vGSqGIAEDw+MBHB4\n61a0TJpk+GZnndVznqvwvekmaG+/HR3l5VxE08m5ws85GsisoCUwMBAdHR3w8fFBVVUVoqOjjZ4z\nffp0c27lFHJyclx6/O6A75Hz43vk/FzhPSqtasLJmpMAgB8PNGLxnEnIGDPCwaOyD4e/P90PekmT\nJyPJ2DgOHkSAvz+m934+mDoVWLMG48PCgKF+H5WVskjlPfcA3TM9nM706Y5/j8govkfOb7Cg0qyW\nx7Nnz8amTZsAAJs2bcLcuXPNHxkREZGJNmeVAAAum5cGD5UK/7smB/VNbQ4elZswZXqYIjkZ6P+B\npjI9zJwsxDPPSM3Kl18O/VwiGhaMBi25ubm49NJLsXbtWqxevRqXXnop/vznP2PDhg1Yvnw5Ghsb\ncfnll9tjrERE5Ma61Br8kF2K4AAf3LR0PG6+eALqm9rxwju/Qn3vvdJJimxHCVoGK8Q3RglazKn5\nuOsu2b70knn3JiKXZ3R6WEZGBr766qsB+9966y2bDIiIiEif3Ycqcbq5Hb+ZmwpvL09cNi8N+wtq\nsPtQFdb9Wo5rPv0UuO8+Rw9z+DK0TospDGVaamsli3L22frXUxk/HliwAPjhByApSRaUNHccROSS\nLC7EJyIisgdlatiSWckAAJVKhXuT23DPr9X4cPa12F7eAfxja8/x08eNxC2XTIBKpTJ67S61Bv9a\nl4tjJfV99seNCMJDN2bC09Os2dTDy1Cmh+kTFydbfUHL3r3ArbcC//3fwJNP6j//rrskaDl1amCX\nMGeiVgOtrbpWz0RkFfwpTERETq+2oRU5h6swJjEMKbHdD6xdXQi5/248vPF5xDRUok7thbrGNtQ1\ntqGyrgWfbTuOL34qMOn67359CJuzSnCqvqXnGhW1LfhlfwXyS0/b8DtzIcbWaTEmOBgICNAftBR0\nv09paYOff8UVwLPPAllZ0mLYCfkdPy5/Po8/7uihEA07zLQQEZHT25pdCo0WWDIzSbfz//4P2L8f\nYxcswOq3/wTccgvwwtsAgPrGNtzzwja8vfEQxiSGY2Jq5KDX/jm3HJ//WICE6CD87z3nIcBPulPt\nyC3Dc+9lI+94DcalRNjy23MNDQ0SLAQHm3e+SiVTxPTVtJgStHh6Ag89ZN697aQjPh5oaZHAiois\nipkWIiJyalqtFpuzSuDj7YnzpibIzlOn5NPs0FBZhR3QTV8CEB7ih4dumgEAeO693ahv1N9h7OSp\nJrz88R74+XjikZtn9AQsADA5LQoAkHecCygDkD/fkBDAw4JHh9hYee/U6r77TQlaXIDG3x+YOBHY\nswfo6nL0cIiGFQYtRETk1A4W1qKi5gzmpMci0L87qHj0UZmu9Pe/A6NHy75eQQsATEyNxC3dHcae\n/yAbarWmz+tt7V1Y+e5utLarseLqKUiK6VsnERrki5TYEBwuqkNHZ7+HbHd0+rTlxe+xsYBGI4FL\nbwUFMnUsJsay6zuDmTOlpuXQIUePhGhYYdBCREROrX8BPrKygDffBCZPluJsb2/A339A0ALIei6z\nJ8fiQEEt3v3mMJpbOnp+vbouFyWVTbjk3FG6DE4/6WOi0NGlwdHier2vu5WGBsuDlsGK8S+7DPj9\n7522VmVIZkiGj1PEiKyLNS1EROS0Wto6sSO3HLFRgZik1KU8+6xs//lPwKv7v7HQUL1Bi0qlwr3X\nTkVxRSM2bDuODduO93l9bHI4br100qD3zxg9Al/+VIjc49WYPDrKKt+TMRqNFve9+CPGJofjj1dl\n2OWeRmk0QGOj+UX4it5rtUybptv/xBOWXdeZzJgBBAYC9Qx0iayJQQsRETmtHbnl6OhUY9GMRGld\n3NoKbNoEjB0LzJunOzA0FKir03uNAD9vPH772fho81G0tevqDIIDfHDDhePg7TX4pIOJqZHwUAF5\n+TXAhVb7tgw6Vd+CwvIGNLV22OeGpmhqArRa60wPA/R3EBsupkyRANrT09EjIRpWGLQQEZHT2rK7\nBCoVsGB6ouz4/nvpzrRsWd8DQ0KAoqJBrxM/Igh/uX76kO8f6O+N0YlhOFZSj9b2Lvj72v6/zcIy\nyRhV17eirb0Lfna4p1GWrtGicIegxZJGBUQ0KP7LIiIip1Re04xDRXVIHx2F6PAA2fnFF7LtH7SE\nhgIdHUB7u9XHMTktCmqNFoeL9GdyrK2wXDfNrbzmjF3uaZQStFg6PczQApNERAYwaCEiIqe0NbsU\nALBoRvfaLGo18NVXQHQ0MGtW34OVDICeuhZLpY8ZAcB+rY+Lyhp7vj55qsku9zRKWVjSWpkWfWu1\nEBEZwKCFiIicjkajxdbsUvj7emH2pO4H3V27pFXupZcOrBewYdAyISUCXp4q5B6vsfq19Smq0H0P\nZaea7XJPo6w1PSw8HPD17ZtpeeUV4I03LLsuEQ17DFqIiMh5tLcDa9bgwJFyVNe34tyMOF1Nx2BT\nwwCbBi1+vl4YmxyBwpOn0dxi2+L4ppYOVNe3InFkEADgpLMELUqmxdLpYSqVrMXSO2h56ingmWcs\nu64zKi0F/vMfR4+CaNhg0EJERM7j3/8Gli/Hljc2Aug1NQyQoCUgAFi8eOB5NgxaACB9dBQ0WuBA\nYa1Nrq8o6q5nmTE+Bj7enjhZ7SRBi7UyLYBMEauslDbKzc1AVZVugdDh5JZbgKVLbfZ3ksjdMGgh\nIiLn8c03aPH2w89dYYgJ9saEURGy/+hR+XX++bKQZH92CFoAIM/GU8QKu+tZ0hJCET8iEGXVzdBo\ntDa9p0msVYgPSDF+VxdQWwsUFsq+tDTLr+tslEUmc3IcOw6iYYJBCxEROYe2NmDbNuyctADt3n5Y\nWPAzetZHV6aGXXaZ/nNtHLSMTQ6Hj7cn8vJtUIzf2Sl1HXV1PZmWUXGhSIgORnuHGrUNbda/51BZ\nqxAf6FuMX1AgXw/noCU727HjIBomGLQQEZFz2L4daG3FlgXXAAAWfvkG8M038trnn8v6FxdfrP9c\nGwct3l6emDAqAsWVTTjdZOW2yu+9B6xYATz1FIrKG+Dj7Ym4EUGIH6HUtThBBzFrTw8DpK5lOAct\nU6fKdt8+x46DaJhg0EJERM7h229RGToSBxCGyTH+GHmmFrjvPilo/vVX4Nxzgago/efaOGgBdFPE\n9hdYeYrYJ58AADrXb0BpVRNSYoPh6aFCQrQELWXOUNdizelhvYOWOXOAxx7TPeAPJykpQHAwkJvr\n6JEQDQsMWoiIyCmov92EV8//MwBgycLxwB//COTnA5dfDmi1+ruGKewQtGR0r9fy6wErLoxYUwNs\n2QIAKG1VoUutxag4+V7io52og5g1p4f1XmBy9mzpHpaSYvl1nY2HB3DttcB558nfXyKyiJejB0BE\nRITSUqwNS8e+xMmYMWEk5k1NAEY9AaxZoytkdnDQMiYxDHFRgfh1fwXOtHYi0N/b8ot+/rksmjlv\nHgqrZe2Z1PjuoKV7ephTrNXS0AB4eelvgjBU7rTA5OuvO3oERMMGMy1ERGTc6dPAyZM2u3z2+h/w\n8dnXYKRXF+6/bho8PFRARATw97/LARMnGq57sEPQolKpsHBGIjq6NNiRa6UH7u6pYVi9GkXxZwEA\nUmNDAAD+vl6ICvVznpqWsDBZZ8VSvaeHERGZiEELEREZd/PNwJQp0uHLyqrqWvC/J/zg3dWBR5aN\nQVCAj+7FP/wBuPde4NlnDV/EDkELACyYngiVCtiyu8Tyi9XUAFu3SpepsWNRNHYaVFoNkqsKew5J\niA5GTUMbWtu7LL+fJU6fts7UMEDqkry8GLQQ0ZAwaCEiIuN275Z1NX75xaqX7ehU49l3stDs6Ys7\n8z5D2uzJfQ/w8gJefBG45BLDF/L1BXx8bB60RIcHIGP0CBw+UYdySwvkN2yQqWFXXw2tVovCgBGI\nPV0B/8/X9xwS7yzF+EqmxRo8PICRIxm0ENGQsKaFiIgMa27WPWBu3QosWGDWZarrW/HaZ3k43azL\n1pxp7URZ9RksPvA9zh8fbtn0o9BQoLHR/PNNtHBGIvblV2NrdimWXzTe4LGdXWq89tl+nKjoG0yl\nxofhD+vWwxsArroK1fWtONOlwpS6UuCndcDKlYCqVwexU80IstH3Y1RnJ9DSYr1MCyDF+Hv3Anff\nDfzpT8DYsda7NhENS8y0EBGRYceP677u7nQ1VF1qDZ5/ayeyDlWiqLwRJ7p/Vde3YqpHA+7c+jpw\n4YWWjTM01OaZFgCYPSkW/r5e2JpTanS1+je+OIDvdhWjsKyh53suLGvAt7+cwDudicDMmUBKSs+i\nkqlR/rJ2SXebXN1aLQ7MtFhzjRZFbCzQ1QX8859AXZ31ruuMsrOBp58GTp1y9EiIXBozLUREZFh+\nvu7rrCygqUnWnzCmowPYuBHYuhXvl/ngSOo8nHfkJzxQuhmqjRuBpCQ5bsYMABqzMzg9QkOBsjLL\nrmECP18vnJsRh81ZJdhfUNPTCrm/H3JK8c3OE0iJDcE/7p4LPx/5L7e1vQt/eeILfDn1EowLm465\nAArLJUOUOmsi8CaAdeuAKVOQEC1/zmXVzRg3wgpF8Oaw5hotCqUYHxieC0v29s03wN/+JmvRLF3q\n6NGQu9m8GZgwAYiPd/RILMZMCxERGaZkWjIypAZj+3bTzvuf/wGuvBK7v/kVn6XOQ1z7afwpqAKq\n/fslw5CVBVRXS0vjc881LRAyJDQUaG2V6Uw2tmiGBFyDFeQXVzTilU9zEeDnhUduntETsADSFeyR\n/R/Bv6MV/zwTj9Kqpp5My6hLFwABAcCnnwJaLSJD/eDr4+nYDmLWXKNFoQQt/v7ACP1B37CRkSFb\nLjJJ9nb0KHD++cDZZzt6JFbBoIWIiAxTMi133CFbU6eI7dyJmuAovHjN4/D28sBDj1yGgI8/BFat\nkmBl3jzg/vtl4T1Lp4YBdusgBgATRkUgJjIAO/dXoKWtb5DU0taJle9moaNTjXuvnYq4Ef2qUaqr\nkfjtBqwo/BatnRqsfDcL+SX1CAn0QcTIcPk0/tgx4OBBeHioED8iCGXVZ6Bx1AKFtpoeBkjAYo02\nys6MQQs5Sna2bG3Yrt6eGLQQEZFh+fnS8emGG6RL19atxs/RaqHel4vnr3wMTR1a3L5sUs+iiVix\nAvjqK+kM9sEHss/FghaVSoWFmUlo71Bj+75ydHZpun+pserjfSirPoPL54/G7MlxA0/u7ho2d+Fk\n/GZuKkqrmlHT0IbUuFCoVCrgqqvkuE8/BQAkjAhCR6cajS1qm39fetliepiySKWl2TVXkJwMhIQA\neXmOHgm5m127dF83OcF6TxZi0EJERIbl5wMpKfLgdc45wL59ssaIIUVF+Cr1XByOGIU5GXG4aHZK\n39eXLgV27pQHukmTgPR0y8dpx6AFABZmJgIAXvl0H6546KvuXxvxc145JqZG4ualejqLNTUBL70k\nX191FW65ZCLGp0QAAEYpQd3FF8tD/Zo1gEbT00GsptFBa7XYYnrY5O7W1rNnW++azkqlkr/fR4/K\n9EUie7ngAmDaNODnn3UfFLgwFuITEdHgGhuBqir5zw8AFi0CfvgB2LZNlxHQZ+9e5CbJtJg7Lpss\nGYT+Jk+WTlnt7daZImTnoGVkRACWXzgOBwpr++wPC/bFrZdMhKdnv88F1WrguuuAw4cl25ScDG8A\nD92UiQ/+cwRLZnY3JggKAq65BnjnHWDLFsRHS/BT02j7Wh29bDE9bMoUmQI3apT1runM7rgDuPJK\n+TtAZC8XXyy/hgkGLURENDilCH/MGNkuXCjbrVuNBi0F0WmI8lMhPMRv8OM8PaXw3BrsHLQAwDVL\nxuIaUw9+6CHg66+lMPaFF3p2R4b6455rp/Y99s47JWh57TUkrHoLAFDr6EyLNaeHAbq/U+5g+XJH\nj4DI5XF6GBERDU4pwlceMDMzJRNgpBi/Pu8I6oMikJYYbuMB9uKAoMVkb74J/O//AuPGAR9/LPU8\nhsycKdmIL75AXJe0Q3bY9DBbZFqIiIaIQQsREQ2uf9Di7S1dv44dM9iRpuCkfDqfNsqO7WydNWjZ\ntk0yJxER0oDAlIyFSiXnqNXwe+8djAj3d3zQYu1MCxHREDBoISKiwfUPWgDdFLEfftB/TmUlCrwl\nw9LTMcwenDFo6eiQ+hQAWL8eGD3a9HOvv166a73+OuKjAtHUqh7QXtkubFGIT0T256i26VbCoIWI\niAaXny9TmVJSdPuUoGWwKWJ796IwOhUAkJZgx0/nQ0Jk60xBy8GDwKlTwC23APPnD+3c4GCphTh5\nEkkt0q1tZ16F1YdoFKeHEbmWujrgkkuADz+U32/YACQkAJ984thxWYhBCxERDS4/Xzo89a7BSE8H\nIiOlGF/fJ3d796IgOhUh3kBkqIEifGtzxkzL3r2yzcw07/zuBT0v/nEtfL1VeG1DHoorGq00OBM1\nNEizBG9v+953uNm5U7JnP/3k6JHQcJeVJU0/Dh+W34eEAGVlLr/AKYMWIiLS7/RpWY+l/5QmDw9g\nwQKgtFTXXayX5n0HUBUWg9TYYP2tjm1FCVoa7fxQb8iePbKdNs288zMygNmzEffVJ7hyjBbtHWqs\nfDfLvtPETp9mlsUaamuBtWuBjRsdPRIa7rKyZDtzpmwzpP08gxYiIhqe9NWzKJQpYps2DXipqFjW\nLUlLG2mrkennrJkWT0/dYormuOsuQKvF/B2f4/L5o1FWfQarPt4Hrb3mpzc0MGixhsWLgREjgH//\n27kCaxp+du2S7axZso2KAuLjZWFgF8aghYiI9DMUtCxbJhmXd9/tu7+hAQVdMiUsLd7O3ab8/WUa\nm7MELWq1fLI5YQLgZ8E0uauuAiIiEPXFF7h5cRompkbi57xyfPFTofXGOhitVv482TnMcv7+wD33\nSObq9dcdPRoarrRaCVpSUoDoaN3+KVOA8nLJnrsoBi1ERKSfoaAlLk5WWs7O7vvp3b59KOgpwrfz\np/MqlWQEnCVoyc8HzpwBpk41fqwh/v7A8uXwrq+H5y878eCNmQgL9sU7Gw/iUFGtdcY6mNZWoLOT\nmRZr+eMfZZ2jF14A2tsdPRoajgoLZSqiMjVMkZEhPyOPHnXMuKyAQQsREemn1KsMtnL57bfL9s03\ndfu6i/D9PbSIiQy07fj0caagRSnCtzRoAYBzz5VtTg4iQvzw4I2ZUGu0eP8/hy2/tiFco8W6wsNl\n/Z2ODuDQIUePhoajxERp+vDQQ333P/AA0NQEzJnjmHFZAYMWIiLSLz9fOkYlJel/felSIDYW+OAD\n+UQeQNvePJRFxGPUiAB4eNixCF/hTEGLpUX4vSndx3JyAACT06IwMTUSBwtrUXO61fLrD6a+XrYM\nWqznsceA4mLrBLNE/fn4ALNnD/y5Ex4OBDrggyQrYtBCRET65ecDqal92x335uUl64+cPi3rAAAo\nLqiExsMTaaPtXISvCA2VKVldDlo9vjcl0zJliuXXSklBV0iITMfrdt7UeGi1wPZ9ZZZffzBVVbLt\nPTeeLBMW5vIPj0SOwKCFiIgGqquTX4NNDVPceqts33gDaG1FwRnJrqQmhNt4gINwlrbHWq0ELWlp\nukUvLaFSoWXcOKCgoGeF+jnpcfD0UOGnvSctv/5glKBlpIOCUCKibgxaiIhoIENF+L2NHi0rvf/w\nA/DFFyh3N3XwAAAgAElEQVSMSgHggCJ8hbO0PS4pkaDPGlPDup2ZMEG+6J52FhrkiylnjcDxkw0o\nq2622n36YNBCRE6CQQsREQ1katAC6AryH3wQBdGp8FZpkTgy2HZjM8RZghZrFuF3axk3Tr7ormsB\ngPOmJgAAftpjPNtSWXsGL67dgxMVg2eh9h07hVc+3Yczrd2LVzJosb3aWmmPTWQPDQ3AqVOOHoVZ\nGLQQEdFAQwlarrgCCAtDV1k5TkQlIzncB16eDvrvxdmCFitmWlrGj5cvetW1nD0pBj5eHvhxb5nB\nxSY7OtVY+e5ubM0uxd/f2oXmlo4Bx5TXNOOZd3Zj06/FePnjvXI95eGGQYttnDghCwDee69MKSSy\nxMqVUoe4e7f+13fvlpqqZ5+177isxKz/VbRaLR5//HFce+21uOmmm1BUVGTtcRERkSMNJWjpXkek\nNCIBXV7eSEtz4AOuswQtSucwK2ZaOuLipANQr0xLgJ83ZkyMQVl1MwrLBv+e3/rqIArLGjAyIgCn\n6lrwwto90Gh0D8kdnWo89142Wtu7MDIiAL/sr8DnPxYw02JrYWFAQADwyivywElkiWPHgKKiwbv9\njRsna7Xk5tp3XFZiVtCyZcsWNDc346OPPsJTTz2FZ100YiMiokEUFUm744QE046/7TYURKcBAFKT\nImw4MCOUondHBy1798oCnNbsuqVSSevjXsX4ADBvajwA4Ke9+ruI/Zxbjq9/LkJSTDBW/WU+ppw1\nArsPVWHd1vyeY5SgZsnMJPxjxVxEhPjina8P4UCrj7RQtUYzARooLAz49ltpK/7YY8Dbbzt6ROTK\nCgvl50Rysv7Xg4OlOci+fS6Z2TMraDlx4gTS09MBAElJSSgtLTWYliYiIhdTXQ2MGAF4epp2/JQp\nKLzqZgBAWrwDV093hkzLqVNAWZlVp4b1mD5dtkomB8D0cSMR4OeFn/ae7JM9AaSOZdUne+Hr44mH\nbsxEgJ83HrhhOqJC/bDm28PIPVbdJ6j5w+WTER7ihwdvnAEAeP6sZahPGi0PQmQbcXHApk1ARATw\n+98DGzc6ekTkqgoLZXFJH5/Bj5kyRZqElJbab1xWYlbQMmbMGGzfvh0ajQaFhYWoqKhAvbIAFRER\nub7qaiAqakinFIwYBQ8VkBzrwE/l7d3y+OOPgS++6LvPBkX4PZSgpVddi4+3J86ZHIeahjYcPlHX\ns7+zS43n3s9GS1sX7roiHUkx8r6EBvnioZtnwMNDhec/yO4Jah6+aQb8fGRNnompkbhl6XjU+4fi\nufPugFqtsf73Qjrjxkmw4uPTZ/ofkcna2uTDktRUw8fNkA8kkJVl+zFZ2SArhhk2b9485OTk4IYb\nbsDUqVMRHR3NTAsR0XDR0SEP/SNGmHyKWqNFUXkjEkYG9zz4OoQ9My2trcDNN8tClt99ByxcKPtt\nUITfIzNTtv0ebM9Lj8H3u0vwyKs7oPLozopotdBogYWZiVg0I6nP8eOSI3DrpZPw+uf7AQD3Xjt1\nQMe3y6ZF4/CLb+KXMbNxxUNfGcy2+Hp74sk7ZmNcsgOnBrq62bOBQ4eAlBRHj4RcUUmJTPkyFrTM\nmgWMGiVBjotRaS2MNrq6unDeeedh586dgx6Tw08NiIhchnd1NdIvugh1S5agyMTi4Iq6Dqz+9hSm\npgZg2dmOe3D1KyzExKuvRvUVV6Dk0Udteq+gnByMveMOAEBXaCgOv/8+OuLiMOrhhxHx/ffY/9VX\n6IiNte5NtVpkLF6MruBgHPz8857dIVu24ustpShNHIPW0aN79kcGe2FpZhh8vAZOrNBqtfjxQBM8\nPYC5Ewdmx3xLSjDq2uV4+aYncTJtwqBD0mi0KKvtxKRkf1w1J9LCb5CIzOXR3AyPjg50RRj4GazV\nusR0z+lKVrkXsz4OO3LkCD744AM89dRT+PbbbzFz5kyzbu4qcnJyXHr87oDvkfPje+T8et6jvDwA\nQMRZZyHCxPfsi58KAJzC/FnjMH16og1HaURMDABghI8PRtj679s338j2ssvg9fnnmPz448DPP0sb\n2/BwTL74Yqs+HOTk5GB6ZiYwcya8Nm/G9NRU6SYGAA88gHu3bZNMU329yfdVEjd6tbYCHS14NKoG\nePiiQQ/TarX44/NbcbSsBWeNn4zgAAPz6Yc5/pxzfnyPTFBcDHh5AfHxDrn9YMkOs2paxo4dC7Va\njauvvhpr167FI488YtHgiIjIidTUyHYI08P2H5dzJqU5+JN2e04P++kn2f7738Af/iAdeW64ATh+\nXKaG2erTzP7F+Pv3A9u2ydcNDTJNxBpMbHesUqmwZGYyOrs02JZjfJFLInJiarVMUTQ2zcwBzApa\nVCoVVq5ciU8++QRr1qzBSPZvJyIaPqqrZWtiIb5Go8XBwlqMjAhAdHiADQdmgsBA6Xhm66ClsxPY\nuROYOFH+nFatkpoEZcqWLYrwFf3rWl55RbazZsnWWmswDGGNlgWZCfD0UGFzVjFrXImsQeOg5he/\n/irbjg6nq3tx0JLFRETktIaYaTlR0Yjm1k5MThtatzGbUKlkTRFbBy179gAtLcB558nvfX2B9esB\npYbFlkGLkmnJyZHWpe+/L5+MPvyw7O+e3mexU6dka0LQEh7shxkTRqKovBEFBha5JBOcOAG8/jpw\n9KijR0KONHYscOGF9r/v11/LdvJkoL3d/vc3gEELERH1pQQtJmZa9hfI8ZNHO0kRdmio7YOWH3+U\nrRK0ABKwfP01cNttwKWX2u7eycmypkd2NvDWW1J78qc/6bqVOSDTAgBLZsmCdpt3FVvn/u7q11+B\nO+6QRSfJPdXUyDRTDxMf07XaoWdFcnLkA4/+vv5aPoT55RfddFsnwaCFiIj6GuL0sAPdQcukVCfI\ntAD2CVqUepa5c/vunzoVeOMNWXnaVlQqmSJWWAi8+CLg7w/ceqssKhcWZv2gJTrapMOnj41GRIgv\nftxzEu2dauuMwR11L95ttYwZuR6lXq2yEti1y/jxNTW6nwOmuv9+4JZbgObmvvtfeAF46SWZautk\nGLQQEVFfQ5geptFocaCgFtERAYiOcHA9iyI0FGhqkoJSW1CrgR07gLQ0h3XX6ZkiVl4OLF8umReV\nCsjIkE9oz5yx/B5VVVIfFGlaBs3T0wOLZiThTFsXfskrt/z+7uqss2SRSQYt7ksJWvbulQ8mjCks\nlK3STdAUM2dK3Uz/Tl2LFgF33mn6deyIQQsREfWlZFpMeFgtrlTqWZxkahigm9LQ1GSb6+/fL5mc\nefNsc31T9G7ZumKF7uuMDJkqsn+/5fc4dUoCV1OnqABYPFMWsdycZaUOZu7Iy0saPBw4YLvAm5yb\nErQAQG2t8eOVoGUoHb+Uxh2mZHKcBIMWIiLqq6ZGitl9jK+3obQ6dooifIWt2x4rU8N617PY28yZ\nEkwsWCAFs4qMDNlaY4pYVZXJ9SyKuKggTEqLRN7xGlTWWiHb467S06VG4fhxR4+EHOHECfnQKCBA\nmm0YU1Qk26EELcoaiwxaiIjIZdXUmNw57EChfAo4yZmClpDu1d2Hc9CSmAhs2QJ8+GHf/dYKWlpb\nJVNlxpIGS2ZKQf73zLaY7/LLgUcflYdWcj+7dgFHjkjgYkrQYk6mJTFRFuPNytL/elYWcM89TjVN\nkUELERHpaLUyPcyEInypZ6lBdLg/RjpLPQtg20yLVitBS0KCtBl2pPnz5aGjt4kTpQ7F0qBliEX4\nvZ2THosAPy9s2V0CtYZrtphl2TLg6aflwZLcj0olP4MjIkwLWhoaJPOanDy0e9x1l3Q77Ooa2H3s\n6FFZf2rHjqGN3YYYtBARkU5TkyycaELQUlzZiKaWTufKsgC6oKWx0frXPnJEgrrzzrPdiveW8POT\n9R3y8ixbnG6I7Y77DMHHC3OnxKOmoQ37j1ebPwYid3f++cDSpfJhiSGffirNN/z8hnb9xx8HnnhC\nPuiYMEHupZg0SbbWqI+zEgYtRESkoxThmzA9rGd9Fmcqwgdsm2lxhqlhxmRkSBtTZZ67OYawsKQ+\nCzMlQ7Alu9T8MRC5u+efB9auNe0DkqEGLL0dPCg/L3qvyzJ+vAQzBw6Yf10rY9BCREQ6Q1hY8kCB\nE9azAAxaTK1raW4G7r1XHoz6syDTAgDjUyIQGxWInXkVaGnrNOsaRGQnGzfK9uKLdfv8/IAxYyTT\nYizTYycMWoiISMfENVqU9VlGOFs9C2C7oEWrBX78UQK6ceOse21rMiVoycsDZswAXn5Zaif6P5RY\nGLSoVCosykxER6caO3K5ZguRSdragEOH7N/q+uuvJZtz4YV990+aJD9HT56073gGwaCFiIh0lOlh\nRjItJVVNaGrpwOS0KKicrbbDVkHLiRNAWZnz1rMoDAUtWi2werWs0XDkiASnjY1ASb9OXxYU4isW\nZCZCpQK2coqYefLzpXvTV185eiRkL7t3SzONRx6x3z3r6oCdO4HZswf+3L/rLmDNmr7TxhyIQQsR\nEemYOD3saLF0tJkwKsLWIxo6WwUtytzuzEzrXtfaYmIkGOkftLS0ANdeK6tdBwQAX34p08OAgW1N\nLcy0AEB0eADSR0fhYGEtKmq4ZsuQNTdL96ZvvnH0SMhelEUlp0wx/ZyKCsuajuTmStOOOXMGvrZw\nIXD99bo28g7GoIWIiHRMnB5WcFICgrSEMFuPaOhsFbQoayGkpVn3utamUkm25cSJvn8Gd98NfPKJ\nPJzs2wdceqksYggMDFqUQnwT1+sZzMLMJADMtphFKYR2onUyyMaUoGXaNNmeOiWdwQz9HVixQn7m\nVVaad8/ZsyU4/tvfzDvfVDU18rNTXw2diRi0EBGRjonTwwrLGuDpoUJyTLAdBjVEtgpazFl12lGU\nKWJKu9JPPwXefBOYOlUWpVTW/5g8ue9xiqoqWdjO29uiYZwzORb+vp7Yml0CDddsGRqlffX+/Za1\nrybXkZMDBAZKATwg9S1XXw2sWzf4OYWFgL+/+VlRPz8JfAIDzTvfVL/8ImNtbTX7EgxaiIhIx4Tp\nYWq1BkXlDUiKCYa3l6edBjYEQUGSbbBVpsWVgpbcXKC4GPj972VK2Nq1gK+v7rikJJn6oW96mAVT\nwxR+vl6Ykx6PU/WtOFBYY/H13E5GhqydVFzs6JGQrbW0AIcPy9Qwz+6fq5Hd7eQHW2BSqwUKCuRn\nkjPX2QFSNwMA55xj9iUYtBARkU51tfyHGTb4tK+T1c3o6NIgLd4Jp4YBsjJ0SIhtgpbQUCA83LrX\ntQUlaNmzB1i+XP4sVq2ST+57U6lkitjRo7oVsTs75SHJgiL83hbN6F6zZTeniA3ZYNP3aPipqQHO\nPbdvO/WI7prBwYKW+nqpZ3GFD1J++UV+3syaZfYlGLQQEZFOTY1kWQx8aldYJsFAarxzdJTRKzJS\nV5dhDVqtBC2u8IkmIC2Zvb2Bd98FduwAfvtb4NZb9R87ebJMPzp0SH5v4cKS/U0YFYmREQHYmVeO\nusY2q1zTbSxbJt2bLHjQIxeRlCQt1Z95RrdPCVpqa/WfY4/s77ZtwOLF0hbZXJ2dQFaW/KyxoKif\nQQsREekoQYsBuiJ8Jw5axo6VKU719da5XlWVzMUeNco617M1Hx9gwgRZ7yEpSdocDxZsKZ/mK3Ut\nVg5aPDxUuHz+aLR1qPH8+9noUrM+w2Tjx0v3ppgYR4+EHMHfX2pOBsu0NDfLzySlBsYWOjulDm7X\nLvOvcfiw/Py0YGoYwKCFiIgUXV3ykG+kY1RhWQNUKmBUnBMHLRMnyvbgQetcz5XqWRTnnitT/T74\nwPCUtv5TkKzQ7ri/peekYE56HA4W1uK9bw5b7bpEw9711wNLluh/bf58+dn0pz/Z7v6TJsm2f7OO\noUhPl2xRXZ18KGbmYpUMWoiICADgpdSAGMi0aLVaFJadRlxUIPx9vew0MjMoQYuytoqlXKlzmOIf\n/5Ai3blzDR+nPJTYMGhRqVS4+5opiB8RiA3bjmNnXrnVrk00rL35Zt8pY/YWEyPTbS0JWgCZ6hYZ\nKcGLmevKMGghIiIAgJcylcpApqWqrgVn2rqctwhfwUyLTC1JTjZ+XEgIkJKieyhRghYrFeIrAvy8\n8cjNM+Hr44mXPtqLsupmq16fiGxApZIPNgoLdT8bzBXc3SKfQQsREVnC6/Rp+cJApqXAFYrwAann\nANw7aBmK9HR5IFF+AVbNtCiSY0Pw56sy0NrehZXvZKGtvcvq9yByOatXA59/7rzr8Zx/vjQjycqy\n7DpKEX5Tk1mnM2ghIiIAJgYtJ+UYpy7CB2ShtFGjrBu0qFSmZS5cUe9FJq1ciN/f/OmJWHpOCoor\nm/DJlmM2ucew8uKLwAUXWK+pBDmXzk7gwQeB++933s6EDz8MfP89cOmlll2HmRYiIrKGnqDFwPQw\nXbtjJ58eBsgUsVOndAtmWqKwEEhIkK5cw1HvYnwbZloUt/1mEoL8vbE5q4TdxIw5dAj47jvLp+aQ\nc9qxQx7iL7lkaEFLS4t09Bqss5g1eXgAixaZd25hoYwVYKaFiIisw5RMS2FZA6LC/BES6AIP79aq\na2lvB8rKhu/UMKBv2+OqKnm48POz2e18vD0xf3oCTje1I/swH8YNUj5EqK527DjINjZulO0ll+h/\nPT8feOcd3RRVxf79wNlnA08/bdPhGaXVGn79mmukPq6zU9aLqqqSjmhmYNBCREQAjActdY1tqG9q\nR5qz17MorNVBrLhY/mMezkHL6NGAr68u02LlInx9zp8lU+027yqx+b1cGoOW4e3rr2U667x5+l/f\ntg343e+AnTv77i8ulq0jp6xu3y7jHiybfeYMsHevTD/19pbvMzra7Iw1gxYiIgIAeBvpHqZMDXO5\noMXSTMtwL8IHAC8v+fM6eFAejm04NUwxKi4UoxNCkX2kCnWNbTa/n8tS/j1aY5ojOZf8fODoUVmH\nxddX/zEREbLtPw3MGYKW9eslcFmwAKisHPh6drYscGvhopIKBi1ERATAeKZFV4TvAvUsgKwmrlIx\naDFVerpMhdNo7BK0AMDimcnQaLTYml1ql/u5JOXfIzMtw09MjCz+evfdgx8zWNBy4oRsHRm0vPAC\nsGKFZLPnzRu4aKSSHWLQQkRE1uRVXw8EBQ1ay+Ay7Y4V/v5AWpoELcbmXRviLkGL0kEMsFvQMm9a\nAny8PPB9VjG0lrxHw1lmJvDVV2bXAZATCw4GbrhBMhWDceZMi4cH8PLLwEMPAceOSXCyY4fudSVo\nmT3bOrezylWIiMjleTU0GC3CDwn0QWSo7Qq0rW7iRFmBWWnjaw4laBk1yjpjclZKMT5gt6AlyN8b\n56THoaz6DA4V2aELkiuKipIi7eH+94/0GyxoSU6WgDbMwZlvlQpYuVJ+VVTIdDBFdDQwcyYQF2eV\nWzFoISIiQKuV6WGDBC3NLR2oqmtBWnwoVM66loA+1qhrKSoCAgLsUpzuUL2DFjt+r0tmJQEAvttV\nbLd7ErmMyEjJxpx7bt/9r74K7N7tHGu7qFSylktRUd+GAm++KW2ZFRqNTIm78EKzbsOghYiIgDNn\n4NHePngRfrmLTQ1TWNpBTKuVTEtqqnM8HNhSdLQuWLFTpgUAJqVGYWREAH7OK0dLW6fd7kvkEgIC\npO7lzjsdPRLjEhIMv+7hATQ3m535ZtBCRES6zkSDZFp6Ooe5ShG+wtJMS12dLPw23OtZFEq2xY5B\ni4eHCktmJqG9Q43t+8rsdl8ih9FogDY37ZgXHGz24pJeVh4KERG5IqUz0aCdw1ys3bFi7FjA09P8\noMVdivAVl1wi6yqMH2/X2y6akYQPNx3BR98dxd5jui5ZI8MDcMOF4+Dj7WnX8RDZVG4uMHeu1IGs\nWOHo0dhXSAigdKocIgYtRESky7QMMj2spLIJvj6eiIkMtOOgrMDPTxZOVDqIDXWKl7sFLXffDdxz\nj91vGxXmj3PS47Ajtxw1ueV9Xmtu7cSKq6fYfUxO5amngG+/BTZtkgX6yLUdOiQLL3q44YSn4GCg\n1LwW5wxaiIjI4PQwrVaLitpmxEYGwsPDBes6Jk6UBdwqKobexaaoSLbu0rnJgXU7D96YiTsu7+j5\nvVqjwZNv7sJ3u4oxPiUci2c6sLWrox07Bvz8s2REGbRYz5tvAk8+CfzlL8Af/yiLrNrDkSOyHTvW\nvPNzcqQ2ZNasQVvUO62QEKC1FejqGvKftxuGeERENICB6WENzR1obVcjNspFH5YsqWtxt0yLA6lU\nKoQF+/b8igz1xyM3z0Cgvzf+b31eT12VW1IyoFxg0rpSU4GSEskuTpsG/PSTfe579Khsx40z7fhd\nu4B//UvatwMyrWz+fLOnWTnUunVSJ+g59CmfDFqIiMjg9LCKmjMAgFhXmxqmsKSDmBK0pKRYbThk\nupjIQNx//TR0dGmw8t0sNLe6aXcx5d+l8u+UrGPBAulkddttwP790q739tstW4zWFEeOSMYsPt60\n49etA/70J6CgQH5fXAz4+rpmG/aICJkiZkZWl0ELEREZnB5WUdsMAIhx1UzLpEmyNTfTEhsrbUfJ\nIWZOiMFvF41BZW0LXlq7BxqNjR8onZHy75KZFusbMQJ44w3g119l+uh770kAM5imJssyHFqt1HSM\nHWv6g3v/BSaLi4GkJLeriWFNCxER6R6G9GRayrszLXGummkZM0bmTg81aOnslKkjZ59tm3GRyW64\nYByOFtdj18FK3PjEtxbXVsVEBOCpu+bA11W6knF6mO3NmiXTtvz8DNdaLFsG1NdLlz1zqFTyIVH/\nFe4N6R20tLTI34OMDPPu78IYtBAREVBTA62HB1RhA9dhqaxpAQDXrWnx8QHOOks69igdxBob5dPU\nhAQgMVH/J5alpYBazXoWJ+Dp6YG/Ls/Ei2v3oKquxaJrtbR14khxPX7JK8f86YlWGqGNzZkDbNli\n91bUbicoyPDrGg3www/yM8USnp6DdmrUSwlaamt1nbeS3a8xBYMWIiICqqvRFRICbz3FkRW1zfDy\nVCEyzN8BA7OSiRMlaHn8cenCtH27dK8BAH9/CWrGjgWWLgWWL5eHCnfrHObkwoJ98T9/mG3xdcpr\nmnHHyi3YnFXiOkFLVBSwcKGjR0FKwHDllfa9b//pYZdfDsy2/N+Cq3GvyXBERKRfTQ26wsP1vlRR\ncwYjIwLh6YrtjhVKXctTT8knpVOmAPfeC1x7rXTwyc8HPvkEuOUWYOpU4Lvv2DlsmIqLCsKktEjk\nHa/paTJBLqa+XhZl/Ne/zL/G1q3ArbcCu3ebfs6xY7I96yzz72uO1FTg97+Xn01jxwKffSbNA1zR\nunVAaCjw9ttDPpWZFiIid6dWA3V16EpKGvBSc0sHmlo6MTY5wgEDs6Lbb5dPKadOBS68EBg5su/r\nGo105lm5EnjnHeCCC3SfbjJoGXaWzEzGgYJabNldguUXccqVy/H2Bl55BTj/fFlfxRy7d8uD8xVX\nmH6OvqBFrQbWr5cauBtuMG8sxowaBbz+um2ubW+enjI9t2HoLcyZaSEicnd1dYBWiy499SwVtd3t\njl21nkURFwe89BJw880DAxZAalrGjAHeeksKbJcs0U3FSEuz71jJ5s5Jj0WAnxe27C6B2h27kbm6\noCD5UKGkxPxrKFO9EvtNEdRqZSHa9vaB55SXy7Z30OLhAdx1F/C3v5l23/Jy27dUdmYhIbJtahry\nqQxaiIjcXXe7Y71Bi6uv0WKOjAyZHrZ5M/DRRxLw0LDi5+OF86YmoKahDXuPnnL0cMgcycnS+tfc\nAGCwoOXRR+XffHb2wHOeflqyBL07d6lUQGamZGqNdQRrbJS1WZYtM2/Mw0FwsGwbG4d8KoMWIiJ3\nd0oe2oZ1psUcixcD11zj6FGQjSyZKdMhN2cVO3gkJnrwQVm1vdNNF9hUaLXyKzkZaG01f8HN0lJp\nwtG/lk+ZDqpMBesvOFimp/U2Y4Zs9QU6vR09Klt3bu5h70xLS0sLVqxYgZtuugnXXXcdduzYYc5l\niIjIGVRVAQA69S0sWePGQQsNa2MSw5ASG4Ksg5VoaNYzFcjZnDghUxdra40fe/758ms4+v57meK5\ndav8vtjMoPPkScmy9F/gccwY2ebnm36tzEzZmhq0jB1r+rV76+qS2pZdu8w73xnYO9OyYcMGpKam\n4r333sPLL7+Mp59+2pzLEBGRM6isBAB0RkYOeKmi5gw8VEB0OFeEp+FFpVJhycwkdKm1+CHnpKOH\nY5ypC0yq1TK1sfvf9bCTlyd/BnfcAaxZA6SkmHedN94Anntu4H6lXmUoQYuSaTHWiezIEdmOG2f6\ntRXffCMdD++4A1i1aujnO4vYWAm83313yKeaFbRERESgvr4eANDQ0ICICBfvKkNE5M6UoEVPpqWy\n9gxGhAfA24uziWn4mT89EV6eHticVQytsxdHmxq0KLUa6em2HY+j7N8v29tuA66/XtawMcdvfgNc\ndtnA/bGxQGDg0IKW+HjggQdkPIZYkmlZvRp49VX52pUXlvTwkCYK/afYmXKqOfe76KKLUFlZifPP\nPx833XQTHn74YXMuQ0REzqA7aOnql2lpa+9CXWO7exXhk1sJCfTB2ZNiUFLZhGMl9Va9tkajRc6R\nKrS1d1nngsrDubEaDuVhe/Ro69zX2eTlAX5+tvv+VCoJ+Pz8+u6vqQHOGFjX5x//AH77W+PXHjnS\nvOYevRMErhy0WMCsdVq+/PJLxMTE4PXXX8eRI0fw3//93/j0008NnpOTk2PWAJ2Fq4/fHfA9cn58\nj5zT6KNHEQqgMyKiz3tUWd8BAPDStvC9cxJ8H6wvJbwDOwCs/WYPLp2pf4HVoVDeoy25Ddh+sAkL\n0kMwb1KIxdcNb2pCKoCSnBxUG2jDHbV1K5IBFHl6om64/X3p6sLUgwfRmpaGI/v2mX0Zo/+OVq2S\nAKPXcUlPP40RGzbgwLp1aDd3StpDD0lDhT17hnxqQmcnlGbt+R0daBxu760JzApa9uzZg7lz5wIA\nxn6N6UgAACAASURBVI0bh8rKSmi1Wqj6FzP1Mn36dPNG6ARycnJcevzugO+R8+N75MRaW4GAAGgC\nAvq8R7/sLwdwCunjUzB9+jD91NaF8N+QbUyZqsV/9n6HIyfb8cjtU+Dr7Wn2tZT3KOtQJbYflDqZ\nulYf67xvycnAwoVIGj0aSXrqz3p8+CEAYNSSJRg13P6+FBQAGg0Czz7b7D9Ts/8d1dUBKhUmXXzx\nwCyMPYzXLYI6ZskS8+piXMRgQaVZQUtycjL27duHJUuWoKysDAEBAQYDFiIicmKVlUBMzIAuOuwc\nRu7A00OFhZmJ+HRLPnYdqMB5UxMsul5l7Rm88OEe+Hh5IMDfG0eL66FWa+DpaWFdWFSUafUbF10E\n+PrKQ21LCxAwjJpopKUBzc3yy96OHZPA0REBC6CbHubhASQlOWYMDmbWv6BrrrkGZWVluPHGG/HX\nv/4Vf//73609LiIisge1WtZpiYkZ8FK5Oy4sSW5pYaYsMLglu9Si63SqtVj57m6cae3EXVemY9bE\nGLR1qFFUMfT2rmZbvBh45hkpMo+LG36rr/v6Akqm6eWXpbWzvlqTri5dt67+HnoIuO46oKPDtHs2\nNQEVFbrOYo4wbZp0D/v1V9cPRK+4AvDxGfKaQ2ZlWgICAvDSSy+ZcyoRETmT2loJXPQELZXdC0uO\njHTx/yCJjEiIDsbY5HDsO3oKtQ2tiAz1N+s6/8k+jcKyM1gyMwmLZyZDpVJh06/FOFRUi9EJAxdv\ntanISKChQTKpsbH2vbe9HDgg7Z1LSvpMnwIgq9c/8QTw3XfAkiV9X/v2W6Cw0PQOVkpzA2UNl8Gs\nWyetfF991frZkFmz5NdwoNVKwNLU1LfBgBHsYUlE5M6UtRz0BC0VNWcQGeoHPx+zPt8icimLMhOh\n0cLsNVu2ZpdgT8EZpMaH4o4rpN3whFGSEThcVGe1cZpMeYgfLNvgzDZvli5hxihdtPQtMJmRIdtt\n2wa+NtjCkr2VlgI7d8rXp0/L8cZaFRcWAhs3AllZA1/LypLgioCQ7sYUQ1xgkkELEZE7GyRo6exS\no/p0K2I4NYzcxNwp8fD28sDW7JIhr9mi1mjxwbdH4O2lwiM3z+gp5o+JDEBYsC8OFdXZfx0YpVD7\n8GH73tdSnZ0y5SsjQ2pyDFGCFn3BwOzZsu3XZUzV1iZF9YmJhq995ZXAggWSiV64UO7x5z8bPicz\nU7bZ2QNfW7YMmD/f8PnuIjhYtk1NQzqNQQsRkTsbJGipqmuBVgvEsQif3ERQgA9mTYxBaVUz8ktP\nD+nc3PxqVNe3YlKyf59AX6VSYcKoCNQ1tuFUfavlg7zzTmDCBNPqVFw109K7yF5ZTBGQbEf/hTWV\nKVj6Mi0jRwKpqVIDotH07PZRfuYlGGm4cNZZUvPSOyAy1nRK6Uq2e3ff/co0PXMWlRyOmGkhIqIh\nGyRoYecwckeLZshD8Pe7hzaN5/ssOX5a6sB/L+NTZIrYoaJaC0cHKQY/fFge4PV56y0p1q6qkgdk\nT8/Bj3VW4eFAfT0QFgY8+6w88APSyjk6Gli7VnesoUwLAJxzjmRVjh3r2eVz6pR8YSzTotSvKPUs\npggNlWAnJ6dPoISjR2U7jNsUDwkzLURENGRGghZODyN3MvWsEQgP9sX2vWXo6FSbdE7jmQ78sr8C\nCdFBSIjyGfD6hFFSaGyVuhal5XFNjf7Xv/xSOmp5eABBQdJV6733LL+vvYWFySKMdXXACy/Ivv37\nZdu74D4hAVi/HnjsMf3XmT1bArdDh3p2tYwbB2zaJN3DDDEnaAGAGTMk0Dp+XLdPyXYx0yLuu0+m\n/l1wwZBOY9BCROTOqqpk2z9oqWWmhdyPp6cHFkxPRHNrJ7IOVZp0zrY9pehSa7Cku1tYf6nxofD1\n8bROpmXECNn2nyalyM+XqTdKcOPra/k9HeXuu4GlS4F58+T3eXkSgPQOWry8pH1u/wxGeblM7brx\nRsk0XXFFz0vqkBCpmTEWQCjtjXtlaUzywANSwK9kgQAgN1e2zLQIPz/A39/4dLt+2BKGiMidKZmW\n6GhZr6VbBddoITe1cEYiPtt2HP/8ZB/e2aj7hD4syBf3XDsViSODe/ZptVps3lXSs0BlwbGGAdfz\n8vTAWYnhOFBYg+aWDgQFDMzGmEwJRvQFLRqNrBg/adKQHwadUmAg8PXX8rVGI5mWceNMC8SuuELa\nIZ8+LYGNOcaMAaZOlfOzs+XeQUHGz5syZeC+O+4AVq0CJk40bywEgJkWIiL3VlkpffL7PQiUV59B\naJAPAv1NXMeAaJhIjgnBwsxEBPh5Q63Ryi+1BkdL6vHse7vR1tHVc2zByQacqGjEzIkxCAse/GF6\nwqgIaLXAkeJ6ywanZFr0TQ8rKwPa24HRoy27hzMqLpb6h/R048eq1ZKVSUszP2ABpD5lzx4JAmfM\nAD76yPxrjR4N7N2re//ILMy0EBG5s8pKve2Oq+rOYHz3GhNE7ua+66YN2Lf6szxs/LkIr2/Yj7uv\nmQoA+C5LulYtmWl4IcHx3XUth4pqkTl+pPkDu+QSyTj0nnqkMHUBRGe3YYNkfufM0e2rrZVpYVOn\nGj//+HGgtVW3ToullOlhlvy5enhI8EMWYdBCROSu2tul0LXfdIbymjPQaIGEaBOmQhC5iVt/MxGH\ni+uwOasEk0dH4Zz0OPy05yQiQvwwbWy0wXPHJUdApQIOWVqMHxkpv/SZMAF4//2BD8f19TL10xWK\nwLVaqUMZM0YyE4rMzD7F9AYp9SPWDlqUGheyHq12SFMZOT2MiMhdKTUs/TItJ0/JOgnxIxi0ECm8\nvTzx4I2Z8Pf1wr/W5eLT74/hTFsXFs1IhKen4cepQH9vJMeEIL+kHp1dGoPHmi0mBli+vO+HEFqt\nrFVy+eW6fUVF8iDe0SF1H61WWD/GWurqpONZkuHMVR+5ucDcucC//qX7PdD3z6GhQdoQNzVh/A03\nAE8+afr1jx2TWpZ+PyfJApWVQECA8Q5u/TBoISJyV4O0Oy7rDlqYaSHqKy4qCCuunoK2DjU+/l4+\ngV9sZGqYYsKoCHR0aVBQZsd1U1QqKSDPz5eV5gHgmWck67JoETB5stRtOAtlvRV9098G4+UF7Nih\nC1YAyUb1zrTMni2r2hcXI+DoUan/MYVGI9PNzjpreDQ3cBZBQRIsc50WIiIyySBBy8lT8h9JPIMW\nogHmTonHReekAAAmpUUiLsq0fydKjdj+44OssWIr48cDXV1AYaFkHD78EEhJAX73O3n94EH7jscQ\nJWgZSqZFObZY6ovw9NPSXU3ptAYAs2bJ6uubNsnvExJMu/bp0/LzsXebZbJcYKAEgY2NQzqNNS1E\nRO5qsExLdTO8PD0wMjzAAYMicn63/2YSgvy9cU56nMnnTBsbDS9PD/yQcxJXLRyjd00Xm1DWBjl8\nGNiyRRb1+8MfdJ24DhywzzhMoQQeQ8m0BAcD4eG6gAcYmBU55xzgnXeATz6R3ycmmnbt8HDgL3+R\nrBRZj0ol7xszLUREZBI9QYtWq8XJU82IjQo0Ok+fyF35eHvipqUTMDohzORzQgJ9cPakGJRWNeFo\niQWtj6+/Xtr5trebdrySJTh8GHjtNZlOdeutsl+lcq6gJSUFuPLKoWc2kpMl4NFq9b8+e7Zss7Jk\na2rQolIBf/4zMy22EBw85EwL/0ciInJXStAyUteC9XRTO1rauljPQmQDS2ZJBmHzrhIjRxoQFydT\nvVav1u3btQu44ALgyy8HHj9+vG6dkP37pSh/5EiZojNqlHMFLb/5DbBu3dDbAycnSwaptlb/6xMm\nACEhut+bOj2MbCckBGhuHtIpDFqIiNyVnkzLSRbhE9lMxpgRiArzx/Z9J9Ha3mX8BH0eflg+pf77\n33WfVOflAd99p/+hffRoKcR/8UXgkUeAu+/WvXbeebJKe0uLeWNxFitXSm1O2CCZLw8PCdbmzcPR\n116TYI0cKydH93+QiRi0EBG5q8pKwNOzz7oPJ6sZtBDZiqeHCotnJKG1XY2fc8sHvN7RqcbR4jpo\nB5vmBEiB+UMPATU1wD/+IfuOH5etoQUQ4+Olc9i55+r2vf028MMP0n7WlY0fL9mU774Djh7Vf8w7\n7wDbtqE5MxPw8bHr8EgPf38JJoeAQQsRkbuqrJSVpz09e3b1dA7jGi1ENrF4ZhJUKmBzVnGf/RqN\nFivf3Y0HVm3HFz8VGr7IvfcCsbHACy8A/8/efcdHVWaPH//MTHqvBFIhdBJCQghFinR7XUVFwd5d\n61p/u+rq7tfu2nBd1grq2kVUUCBUQUkIAUIvgXQgvZCemd8fTyaFtMlkkpkk5/16zevCzL13njAw\n3HOf55yTk9MYtAwb1k2j7gWqq+Hyy2HxYmuPRHQTCVqEEKI/MhhU0NJGj5agAe7WGJUQfV6Ajwvj\nhvmz/3hBw00CgBWbjrLjwCkAPvppH/tS28jPAJWP8o9/wK23qlmDI0dU74sm+Wn9zsGDqhdN0/4s\nok+RoEUIIfqjsjK1jr1Fj5YyvNwdcXO2t9LAhOj75k1SvUXWJaiE/APHC/hk1QF8PBx5YnEcAC8v\nT6SwpLLtk9xyC7z1Fvj4qJmWYcNsrwFiSQnMnAlffNHxvkePqupmhw+b917G5pIStPRZErQIIUR/\ndErd0W0atNTUGThdWC75LEJ0s8mRg3Bztid+RwaFpZW8/OkOMBj4yw0TmDoukBsvHE1BSRWvfJpE\nXZ2+/ZMZDLBlC7zzTs8MvjNWr4ZNm+Cuuxq/c9qyeTPcfbfqbm+OXbvUVoKW3kOvVw8TSdAihBD9\nUSuVwwpKazEYJJ9FiO7mYK9j5vhgikqreOztLeQVVXDdeaMYO1R1cb9i5jAmRw4k5Vgey1cfaP9k\nWi3ExsLUqeYNJi0Nvvyy7XLBXbFundqeOaOCkvYYm0N2prFkU6+/rrbGppnCtv3rX6pn0C+/mHyI\nXTcORwghhK1qJWjJK6kBIFjyWYTodvMmhfHT1uOczC9n3HA/rp4zouE1jUbDg9eO56E3NvHthqMU\nllbh6NBYMGNokBfnTTbz4v5sy5bB00/Dzz/DhRda5pxG8fHg6an6yIwc2f6+afWFCUJDzXuvDz5Q\ngU/TfizCdjk5qVnC0tKO960nQYsQQvRHrQYtqm+ELA8TovuFB3kyZogPpwrKeWRhLDpt83wUV2d7\nnrwxjieW/Mb6HRktjo8a5scgP9euD8TYyHHvXssGLdXVqlmkVttxwAKNMy2mdqs/2y23mHecsA73\n+ptjxl5DJpCgRQgh+qNWgpZ8CVqE6FHP3XkOdXV6XJxaL3wxJNCTD/46n4Liiobndh46zQcr9xGf\nmM4NF4zu+iCaBi2W5OAAb7xh+v7p6ar6mZOTZcchbJNxRkyCFiGEEO1qY3mYvZ0Wf+9e3mhOiF7C\n0V4H9rp293Fztm9WzW+Ajwv/W3OI+MR0rjtvVIsZmk4LD1eBwr59XTtPV91wA9TVWXcMoucYZ1o6\nsTxMEvGFEKI/OitoMRgM5JXUEujn2vWLICFEt3FysGNGTDB5xZUkHzrd9RPqdKqb/P79PRc0pKS0\nfO6ZZ+C553rm/YX1GWdaystNPkSCFiGE6I9OngRn54a7XQUllVTXGgiSpWFC2Lx5E1Wy+tqENMuc\n8OqrVaPKTlxAmu2ZZ1SFr4MHu/+9hO2KiVHNQF9+2eRDJGgRQoj+6ORJNctS34wuK7cMkMphQvQG\nw0O8GDzIg4R9Jykuq+r6CZ94QvV5ce/kv/+6OlUBqjMiItT2vfc6d5zoW7RaVfK4M4d001CEEELY\nKr1eNXprks+SeVoFLdKjRQjbp9FomDsxlNo6AxuSMq0ziLIyiIuDuXPVHfOmnnwS/v731pebXX65\n+u755JOemdkRfYYELUII0d8UFEBtbbOgJeu0caZFghYheoOZ44Ox02lYm5CGobOzHZbw6KOQnAzr\n1zdf4lNTo2ZtPv9c5cuczcEBbrsNiorgiy96bryi15OgRQgh+ptWKodlStAiRK/i6ebIpMhBpJ8s\n5XB6Yc+++YEDanlXRAQEBqpZFWPJ5MRENQszZ07bx99xh1oe9O676vcffKA6pNfWdv/YRa8lJY+F\nEKK/aS1oyS3DzVnbZr8IIYTtmT8xjK27s1mbkM7IMJ+ee+PRo2HNGhgwALKz1WzLsGHqtfh4tW0v\naAkJgdtvV99BtbWwZAkcOgQPPtj9Yxe2w2BQTUgdHU3aXYIWIYTob4xBS0AAAFU1deQWlhPmb9p/\nHEII2zBuhD9+Xs5sTs7itksjcXLswmXdkSPw8cdw4YUwdWrH+8+bVz+IcXDBBY3Px8erAh+zZrV/\nfNNE/LQ0CA1tKAwi+omYGMjMhLw8k3aX5WFCCNHfnDXTkp1bhsEAfh5yH0uI3kSn1TAnLoSKqlpW\n/36iayfLzIT/+z/47jvzz1FeDr//DuPHg4+JMz9lZSrPLizM/PcVvZOzM5SUmLy7BC1CCNHfnBW0\nGPNZfCVoEaLXueicIXi6ObBs1X4OphWYf6LJk1WS/MaN5p/DyQkSElR+iqnS09U2NNT89xW9k4eH\nKtxQZVrZbglahBCivzl1Sm3rl4cZe7T4eUg+ixC9jbeHE49ePwG93sBLnySa37fF2VkFLsnJqrKX\nObRatVxs+nTTj5Ggpf/y9VXb1FSTdpegRQgh+pvC+kpD9f9hZJ4yBi0y0yJEbzRuhD8Lzx9FXnEl\nr36WRJ3ezBLIM2eq5OgtW1q+9uyzcP31jTc9LCU8HJ5/vv3EfdE3XXSR2n75pUm7S9AihBD9TUmJ\nSnh1dQUgK7cUBzstni6t9FQQQvQKV88ewYTRAew6nMv/1hw07yQzZ6rt2UvEDAZYtgx+/BG8vLoy\nzJZGjIC//hWmTLHseYXtu+wy9fep0LSS3XJbTQgh+puSEnB3B60Wg8FAVm4Zgf5uaLVSuUeI3kqr\n1fDIwvE88K9NfLn2MJ6ujgzwdm5zf41WQ2S4b/My55Mnq8aQ8+c33zklBY4fh2uuMbk8rRAdcnOD\nnByVC2UCCVqEEKK/KSlRCZBAQUklFVV1BElTSSF6PTcXB55cHMdj72xh6YqUDvefOT6YR66PbXzC\n2RnuvbfljitWqO3ll1topELUMzFgAQlahBCi/yktVU3haMxnCfZ3A8qtOCghhCUMC/Hi5fumsze1\n/d4XP/12nK17srnzyijcnDsowvH992Bvr3q4CGElErQIIUR/U1ICQ4cCkFlfOSx4gAQtQvQVw0K8\nGBbSfu5JTa2eZasOsGVXFhdMGdz2jrm5cOCASpSvn6EVwhokEV8IIfqTqiqorm64+Mg8XQogy8OE\n6GdmxYag0cD6xPT2d/T3V4HLkiU9MzAh2iBBixBC9CfG7sMNQYuaaQnyl6BFiP7Ez8uZccP9OZhW\n2HDzohmDAfR69Wt3d1WaWIjuEh8PixdDRUWbu0jQIoQQ/clZQUtWbhm+nk7NKwgJIfqFOXGqoeP6\nHRnNX/jmGwgKgp9/tsKoRL+0bh0sX97u3zkJWoQQoj9pErRUVtWSW1ghsyxC9FOTIwfi4mTHhh0Z\nzRtS+vqqUrRn92sRorssXKi2n33W5i4StAghRH/SJGjJzjsDGJPwhRD9jZODHdPGBZFXXEnK0dzG\nFyZPBgcHCVpEzxk7Vj1WrWpzF7OClm+++YZFixaxePFiFi1axPjx480eoxBCiB7UJGiRJHwhxJy4\nEADiE5ssEXN2hqgo2LkTsrKsNDLR7yxcCLW1bb5sVtBy1VVXsXz5cpYtW8b999/PFVdcYfb4hBBC\n9KDS+oRbDw+yThvLHbtbcUBCCGsaPdiHQX6ubEvJobyypvEFY+L9PfdYZ2Ci/7njDsjMbPPlLi8P\nW7JkCffIX2ghhOgdms20NG0sKYTojzQaDXMmhFBdU8dvu7MbX3jtNXXn+913rTc40b/4+MCgQW2+\n3KWgJSUlhUGDBuHr69uV0wghhOgpxqDF3Z3M3DIc7HX4eTlbd0xCCKuaNaG+Z0vTKmLBwSopOijI\negMTogm7rhz89ddfc+WVV5q0b1JSUlfeyup6+/j7A/mMbJ98RtYXeOgQg4AD2TlknByAj7sdyck7\nG16Xz8i2yedj+3rrZxTi58C+1Hx++z0RZ4e+Xaept35G/V2XgpaEhASefvppk/aNjY3tyltZVVJS\nUq8ef38gn5Htk8/IRri6AuAXEUPNwUxGDB7Q8LnIZ2Tb5POxfb35Mzqcd5DP1xxC5xZM7Ni2l+j0\ndr35M+ov2goqzQ6lT58+jaurK3Z2XYp7hBBC9KT65WGZNaqZpPRoEUIARA33B2BP09LHQtgQs4OW\n3NxcyWURQojepj5oyarUANKjRQihjAj1xsFeR8rRPGsPRYhWmR20REREsHTpUkuORQghRHczzrSU\nqFr40qNFCAFgb6clYogPaSdLKSyttPZwhGihb2daCSGEaK60FJycyMqvAGR5mBCi0dhhfgDsPZpv\n5ZEI0ZIELUII0Z+UlNT3aCnFz9MJZ0fJSxRCKOPq81p2S16LsEEStAghRH9SUkKFly95xZUED3C3\n9miEEDZkaJAnLk527JG8FmGDJGgRQoj+pKSErIDBgOSzCCGa0+m0RIb7kZN3htzCCmsPR4hmJGgR\nQoj+oq4OysrI8g0BpHKYEKKlqOEqryXlmCwRE7ZFghYhhOgvysoAyPQcCEgSvhCipaj6ZPzdR2SJ\nmLAtErQIIUR/UV/uON11AIDktAghWggb6IGHqwN7juZhMBisPRwhGkjQIoQQ/UVJCQZgv6M/vp5O\n+Hk5WXtEQggbo9VqGDvUj7yiCnLyz1h7OEI0kKBFCCH6i9JSMn2CKdI4Ehnuh0ajsfaIhBA2yJjX\nskeWiAkbIkGLEEL0FyUlpARHAjB2mK+VByOEsFXGvBYpfSxsiQQtQgjRX5SUkBJSH7QM9bPyYIQQ\ntirI3w0fDydSJK9F2BAJWoQQop8wFJewNzgCHzs9g/xcrT0cIYSN0mg0RA33o6isivSTpW3ut/tw\nLgfTCnpwZKI/k6BFCCH6icyCCopcvYn01kg+ixCiXeNHqiqDy1YdQK9vOdty8EQBTy/dxlPvbuVY\nZlFPD0/0QxK0CCFEP7G3/rpibIBUDRNCtG9GTDDjhvuRsP8k32440uy1iqpaXv98JwagplbPC58k\nUlZebZ2Bin5DghYhhOgn9lY6ADA21NPKIxFC2DqdVsOjN0zA19OJT1cfYM/R3IbXPli5l5z8M1w5\ncxjXzB3BqYJy/vW/5FZnZISwFAlahBCiHzAYDKToPfApKyAwyNvawxFC9AKebo48sTgOjUbDK8uT\nyC+uIGHfSX79I40hgR5cf/4orjtvFNHD/VudkRHCkiRoEUKIfiArt4xCrRORmXvReMpMixDCNKMG\n+3DrpZEUlVXxwseJvP3VLuzttDyyMBZ7Ox06rYa/3BCLX/2MzO7DuR2fVAgzSNAihBD9QMqxfAAi\nM/aCh4eVRyOE6E0unjaEGdFBHEovpKisisUXjiFsUOP3iKebI4/fGIdWq+GVz3ZQXFZlxdGKvkqC\nFiGE6Af2HlNN4sZm7wcXFyuPRgjRm2g0Gu5bEM2YIT5MGxfIpdPDW+wzKsyHq+eMoLismuRDp60w\nStHXSdAihBB9nMFgYO+xPLyrSgmqLQUpdyyE6CRnRztevHcajy9WMyqtiRqmmtamZpf05NBEPyFB\nixBC9HHZeWcoKKki8vQRNLI0TAhhpo76Ow0JVPlyx7OKe2I4op+RoEUIIfq4hqVhmZLPIoToPq7O\n9gT4uHA8pxiDQcofC8vq30HLwYMQFgY//2ztkQghRLdJOVqfhH90hwQtQohuFR7kSXFZNQUlldYe\niuhj+nfQ8s47kJ6utkIIYUm//w6nu5iMWlEBhw93eSh7U/PwcnMgODddghYhRLdqWCImeS3Cwvpv\n0FJZCZ99pn69bh0UFlp3PEKIvuP4cZg2DW67rWvneeIJiIiArCyzT1FQUkl+cSWjBrmiAQlahBDd\nKjxQfcekSl6LsLCeD1pqatQdSGuvdfzhBygqAn9/qK2FlSutOx4hRN/x88+g18Pq1V27IfLzz+r7\n6eBBs09xLLMIgHAvO/WEBC1CiG7UONMiQYuwrJ4NWmprYcECOOcc+Mc/evStW/jww+bbb74x/dja\nWsuPRwjRd6xapba1tfD99+adIyMDjh1Tv05PN3soxrudQ13qbxRJ0CKE6Eb+3s64OttL0CIsrueC\nFoMB7roLVqxQv3/+edi/37LvYWowkZ4Oa9eq4Onii2HcOFizBopN+AeWmQnBwTBrlvq1EEI0VVEB\nGzbAoEHq9199Zd55Nm5s/HVamtnDOWYMWuzrO1RL0CKE6EYajYbwQE+y885QUSU3eYXl9FzQ8tRT\n8MEHEBurcklqauCWW6CuzjLn//JL9Z/xp592vO8nn6gg6pZb1O+vugqqq+Gnnzo+9qGH4NQpdUER\nHW3aMUKI/mPjRpUzt2gRxMWpnLm8vM6fZ8OGxl93YablWFYxXm6O+FSXqifc3c0+lxBCmGJIkAcG\nA6TlSDK+sJyeC1pefBFGjFDLJhYuhGuvhe3b4e23LXP+775TdzgXL4aPP257P70ePvoIXFzUUjVQ\nQQt0vERszRq1z5Qp8O67UFYGl1yiApnqaov8GEKIXs64NOyCC9R3TF2deUvENm5snBUxM2gpLa/m\ndEE54UGeaErrgxaZaRFCdLPw+ryWVFkiJiyo54KWwED49VcYMED9/q23wNcX/t//g9TUrp3bYICt\nW8HLC7y94eabYenS1vfdtElV9rn66sY7jqNGqQo9q1eD8T/2s1VVwX33gVarApa771ZB18iR8MYb\ncP/9XfsZhBC9n8GgghZ3d5g6VX3PgJoJ7oy0NPU9NXu2KhZiZtBizGcJD/KEkvo7nhK0CCG6mZQ9\nFt2h54KWNWtg8ODG3/v7q8ClvBxuv71r1cTS01VJ0Fmz1JIKf3+4805YsqTlvh99pLbGpWFGf3PG\nCAAAIABJREFUV12lAhPjXdKzvfoqHDmiApfoaPXcuHGQlAShofC//6njhRD915Ej6ibM/Plgb6+a\n106erL6XOtOzxZjPMnOm+n5JTzfrO7IhCT9YghYhRM8JCXDHTqfhuJQ9FhbUc0FLRETL5667TiXC\nr1+v8l3M9dtvajttGkRFqf/wAwJUgHHXXWp2pa5OJdp/8w0MGwbTpzc/RztLxByys+Gf/4SBA+G5\n55q/6Oqqji0pUWvXhRD9V9OlYUbXXKOWpX77rennMeazzJqlAp+qKsjN7fRwjmXKTIsQoufZ22kJ\nCXDneE4JdXort7gQfYZ1m0tqNPDee+Dk1PqsiKm2blXbqVPVdswYFaiEhsJ//qPuVg4cqPJPKirU\n8jGNpvk5IiLUUq9Vq+DMmWYvhbz6qjru1VfB07Pl+//pT2rbmYsSIUTf01rQYrwh0pkqYhs3quWz\nkZHqewzMqiCWml2Ei5MdA31cG5e+StAihOgBQwI9qa6pIzu3zNpDEX2EdYMWgKAgGD0aDh1SdyPN\nsXWrCnxiYhqfGzlSLdX45Re1VEyngy1bwM5OJeufTaNRFxfl5SppNjFR5cXcdBNemzerwGfhwtbf\nf/JklbPzww+qKpoZ8osr2JyciV7uSAjRO5WVqZsl0dHq+8AoOFjNAm/aBDk5HZ/n+HEVoJx7rsqh\nMwYtncxrqayqJfN0GUMCPdFqNTLTIoToUeFB6ibvibPyWtJOlpB08JQ1hiR6OesHLaCqilVUmNf3\npKgIUlJg0iRwcGj+moMDnHeems3JylLBzZYt6iKiNcY7oosWwcSJKtj55BNqvL3VTNDZszNGWi1c\neSUUFDTvrdAJS1ek8MqnSXy74YhZxwshrGzDBlVFsOksi9GCBSonxZTZ2Kb5LGB20HIipwSDAYbW\nXzhI0CKE6EmtVRA7XVjOk0u28vf3/+B0Qbm1hiZ6KdsIWkaOVNvDhzt/7B9/qIsB49Kwtuh0qpnk\n5Mlt7zNunJpNOeccuPdelWeTnEzKqlVqyVl7jAGPGUvESs5Uk7DvJACfrj7AnqOdX7suhLAy49Kw\nCy9s+dpVV6mbHqZUEWuazwJmBy3HMouA+iR8aAxapE+LEKIHDAlUN0iMQUtNbR0vLUuktLwagwE2\nJGVYc3iiF7KtoOXQoc4fa8xnmTat6+PQaFTjy61b4Z13VIWx6GgM9vYdHzttmirn/P33nW6YuTk5\nk9o6AzNigtBoNLyyPIn84gozfwghRI8zljr28mr9xsigQTBjhioasmJF++fZuBH8/BpvlISFqW1n\ng5aGcsde6omSEnB2VktkhRCim7m5OODv7dxQQeyDlfs4nF7E1KhAHOx1xO/IwNCVyrGi3+n9Qctv\nv6lgY8oUy46ps3Q6uPxyVdbUWM3MRPE7MtBqNdx2aSS3XhpJUVkVLy3bQW2dmTk+QoiedeCACirm\nz287KHj5ZVVt8JprVM+q1qSmQkaGWhqmrf969vcHR8dOBy2p2cU42GkJGeCmnigpkaVhQogeFR7o\nSWFpFSs2HePnrccJG+jOg9fGcM7YQeTkneHAiQJrD1H0IrYRtAwfrradDVpqalSDx4gIdYfT2jqz\nROzmm2HWLNJ+WMvRjCLGjxyAt4cTF08bwozoIA6cKOCjn/Z173iFEJaRkKC2xjyU1kycCD/+qIKR\nyy9XiflnOzufBdRNmdDQTlUPq6nVk5ZTQtggD3S6+q95CVqEED3M2GTyg5V7cXa048mbJuLkaMec\nuBAA4hNliZgwnW0ELR4eavlEZ4OW5GSVwG+JpWGWMHMmeHuroKW9Smh798LHH8PGjax/7TMA5npV\nAqDRaLhvQTQhAW6s3JzKb7uzun/cQoiu2b1bbY2NZ9syaxZ8951aQnrxxeqmC6hlYUVFsHp1435N\nhYaqPi0Vpi0bzThVSm2doaF6DyBBixCix4UHNX7nPHhtDEH+auZ37DB//Lyc+W13FpXVtc2O0esN\n/G/NITbuNKM4k+jTbCNoAbVELD3d5P+UgZb9WazN3l7dQc3ObrwYac1//wtA3d+fY0P0fNwqS5l4\n7Tx1bEmJuhtx40ScHHS89WUyGadKe+gHEEKYZdcuNSMydmzH+15wAXzxhfqumzcPRo1SyfHGGx4D\nBqgy8E0Zk/EzTLsr2ZiEXz8DXVenyrlL0CKE6EGjB/vi4erANXNHcE5UYyl4nVbDrNhgyitr+WPv\nyWbHfLvhCJ//epB/fZ7ErsOne3rIwobZVtBiMMDRo6YfY2tBCzQ2mvzmm9Zfr6yE5cshIIDkK2+h\n0N6VGaP9sJ88SfV5ufxyqKwkJMCd+xfEUFFVxwufJFJRVdv6+YQQllddbfq+BoOaaRk6FNzcTDvm\nyith2TK1VCw/Xy2RvfhiuPtu+PTTluXVO1lBLLU+8bWh3LE0lhRCWIGXuyOf/v18brhgdIvX5sSp\n77X4xMbvtd1Hcvl09QG83B3RajW88mkSeUVSmEgothO0jBihtqYuETMYVMJ7YCAMHtxtw+q0uXPV\nhcG336oxnu3bb6GwEG66ifid2QDMuXSSWst+xRWq3On110NdHdNjgrhkejgZp0p55+tdUmVDiJ7w\n1VcqYb692dKmMjPVv+mOloadbeFCdVxurlrq+uOP8O67avblbJ2sIHYsqxitVkPYoPogRXq0CCGs\nRNNGj7sgfzdGhXmz+0gueUUV5BdX8MqnO9BqNfy/mydy26WRlJyp5qVlidTUSmEiYUtBS2criKWm\nwqlTapalraaP1uDoqGZL0tLgf/9r+Xr90rCyRTfzx96ThAS4MTzES1Uc+vxzlRfz3Xdwzz1gMHDz\nxRGMCvNmc3IWq7Ye79mfRYj+aOlSqK1t+LfaoV271HbcuM6/l6nfXZ2YaanTGzieXUzIADcc7XXq\nSQlahBA2aE5cKAYDrE1I56VlOyguq+aWSyIZFebDhVOHMCMmiINphVKYSAC2GLSY2mDSFpeGGT3z\njOqH8OCDUNCknN/hw6pi0KxZbCl2oLZOz5wJoY13IZyc1BKxmBh14fS3v2Fvp+XxxXF4uDrw/sq9\nHEqT8oBCdJvc3MYKXt98A1VVHR9jTMI3J2gxlTFoMaGCWE5eGZXVdS2T8EEaSwohbMq06CAc7LR8\nseYgB04UMCM6iIunDQHqCxNdHU1IgDs/bkllS7IUJurvbKfL2ODBKpHd1JkWYy8UW6kc1lR4ODz7\nLDz+ODz6KHzwgXq+/s5t7a23s/r3E2g1MDM2uPmxHh6qgtDUqfDPf0J+Pn5PPcVjN0zg6aXbePyd\n33Aw3j0FXJ3tefCaGMaN8O+Zn02IvuyHH1TSur+/CmBWr1Yzp+3piaAluP57opWZli/XHuK7jUcb\nVqPW6dUvGpLwQWZahBA2yc3ZnsmRg9i8K4uQADfuWxDdbDmZKkwUxyNvbuKtr5IZPcQHPy9nK45Y\nWJPtzLTY2alE1kOHWs8FaUqvV3dDXV2790KhKx56SI3tww/VWKur4ZNPwNeXT5xHczy7hHPHB+Pr\n2co/voAAWLtWBT/vvQfh4Yx78XHumz6QIYEeDPJzbXgUlVby0vIdnC4s7/EfUYg+x1hA47331Pbz\nzzs+ZtcuVfkrJKT7xuXsrKqKnRW0GAwGVv9+gtpafcN3QvAANyLCfZkSOahxRwlahBA26qo5wxk/\nagBP3jgRZ8eW99JDAty58aIIKqvriN/RuSa7om8xO2hZuXIll112GX/605/Y1FqTNHOMHKl6FeTm\ntr/fsmVw5Ahcemnb3aetzd5ezaxoNHDnnSq5NzeXrYsfZsXWNIIHuHHXlVFtHz9kiOqy/dFHMGwY\nfPQR866Ywr82/os3vY/z5sJRvPnwTO64fCyl5cZEtbqe+/mE6GsKCiA+HmJjVVGMUaNUcnxpOyXH\ny8rg2DF1g6K7c+tCQ1XJ4yY9oHLyzpBfXElcxEDefHhmw+PFe6cxwMel8VgJWoQQNmpIoCd/v30K\nIQFtL1+dFRuMg72O+MQMKUrUj5kVtBQVFbFkyRK++OIL/vOf/xAfH2+Z0ZiS11JUpJZdubjASy9Z\n5n27S1wc3H+/+nluv51M70DedIjEyUHHkzfG4eJk3/7xDg5w002wb5+qOjZ+PKxcCbfcoppxTpjA\n+es+ZWZ0IIfTi/hgpQmJahUVcO+9kJhokR9RiD5j5UqVgH/VVSoAWbhQlShfsaLtY1JS1MxwT8z4\nhoWpHJsmN3V2H80DYNwwv/aPlZLHQohezMXJnnPGDiIn7wwHTkhub39lVtCybds2pk6dirOzM35+\nfjz33HOWGY0pFcSeeQZOn4a//rV7l2NYyvPPQ3AwlbUGXrjm71TUGLjv6mhCB3bi4kGrVX0dEhPV\n7Mtrr8GcObBnD5pnnubeE2sIG+jOz1uPd9xBdvlyVVbVUp+ZEH2FcWmYsdfSddepbXtLxIz5LJ0t\nd2yOViqI7TmiApio4R3ktMlMixCil5sTp6751u8wrcmu6HvMClqysrKoqKjg7rvv5oYbbuD333+3\nzGg66tWyZw+8845qxPbww5Z5zw4YDAZKK7qw7MrdHcN//sM7591Huos/F08bwrnjgzs+rjUajVqy\n8vDDsG4d5OSAhwdO/17CkwtjcHa0452vd5F2sqTtc/znP2q7bh2cOWPeOIToa4qLYc0aNWMyfLh6\nbtgwNVu6dq26UdKarpQ77qyzgha93kDKsTx8PZ0I9HNt/1gJWoQQvdzYYf74eTqxZVcWVTWyHL4/\nMitoMRgMFBUV8e677/LCCy/w1FNPWWY07c20GAxw331qPfdbb6l+KN3MYDDw9le7eH1FDscyi8w+\nzy9eo9k0cjojw7y55ZJIyw3Q1xduuw1ycgjauIoHro2hqrqOt7/c1fr+O3bAzp2g06llL2vWWG4s\nQvRmP/4INTVw9dXNn1+4UFUT+/rr1o/bvVvl1Y0Z0/1jPKvscfqpUorLqoka5tdm87YGErQIIXo5\nnVbDrAkhlFfW8kdKjrWHI6zArCx2Pz8/YmJi0Gg0hISE4OrqSkFBAT4+Pm0ek5SU1PGJDQbGeXhQ\nu3s3+87a3/uXXwjfsoWic8/lmL8/mHK+Lko6eoa1CYUALP9xB5dM9O70OXIKq3n/19M4O2i5MNqR\nPbuTLTpGh3PPJfKNNyj/v//D6ZORDA904lB6Iavi/yDAq3nOTOg//4k/kHX77QS99x55H35ImvFC\nqA8w6e+YsCpb/YyGvv8+XsDeUaOoajJGu9GjidJoOLN0KYcmT25+UF0d0bt3UzV4MAf27u32Mbqc\nOcNo4NSOHWQmJfHHQZWn4mF/psM/1yFpafgAu48fp7aknZlYbPczEop8PrZPPqPuE+BcA8D38Xtx\nM5wy+zzyGfVOZgUtU6dO5amnnuL222+nqKiI8vLydgMWgNjYWNNOPmYMdjt2EDtuXGNlsJISuOQS\ncHLC6+OPiR082Jxhd8rRzCJ++WoLbs72YKjjQGYVT9w6DicH0//IyitrWPqvTdTp4dFFccSNGWj5\ngcbGwmWX4fr998RWVVE5dywvLkvkZLk7F86JaNyvpEQtcxk8mKC334YffsDv99/xa/rn3IslJSWZ\n/ndMWIXNfkalpfDHHxAZSaQxn6Wp2bNxi48n1tdX9ZMyOnwYKipwmTy5Z36u+hy+gMpKAmJjWb17\nO1DMpXMmNK8U1hqd6u00bto0VcSkDTb7GQlAPp/eQD6j7rcuZTOH0gsJGzrGrJ4t8hnZvraCSrOW\nhwUEBHDeeeexYMEC7rzzTp5++ukuDa6ZESNUBZ/jxxufe+QRlb/x5JPNLxq6SWl5NS98kkhtnZ5H\nro9l/FBXyitr2bbH9OlIg8HAkm92k513hitmDuuegMXowQfV9o03mBgRgJuzPRuSMqirayyNymef\nqRyW229XQcqll0J+Pmzb1n3jEqI3+PlnVZXrqqtaf92YkL98efPne6KpZFP+/uDkBOnp1OkN7D2W\nx0Bfl44DFlA3LXQ61e9FCCF6sdlxoRgMsCFJEvL7G7P7tCxYsICvv/6ar776ipkzZ1puRGfntfzy\nC7z/vroweOIJy71PG/R6A69/vpPTBeUsmDuCCaMDiB6qklzXJqSZfJ4129PYnJzFyDBvFl84uruG\nq0yfDjEx8N132Gdlcu74YIpKq0g+XF8a1WBQCfh2dqpcMsBll6ntypXdOzYhbJ2xalhbQctVV4GP\njyqx3rS5Y08HLRqNymtJTyc1q4gzlbVEDeugaphRSYnKZ+nuXjJCCNHNpkcHYW+nlZ4t/ZDZQUu3\nGTmS0+5+JO3OUD1ZbrtNNWr85BPVt6SbfbP+CDsOnCJ6hD/XzR8FgI+bHVHD/Nh7LJ/svLIWx+w+\nksuPW1IbHt9tOMrS71Nwc7bnsRsmYKfr5j9mjQYeeEAVKViyhNkT1DKSdYn1F1gJCeoC67LLYGD9\njM/s2eDmBj/8oIIaIfojvV4tmxw6tO1kek9PeP11NVN5992N/156snKYUWgo5Oay54Ca9Y3qqD+L\nUWmpJOELIfoEN2d7pkQOIiu3jMPphdYejuhBNhm0vHne/TxbEMiGx16DrCx4+ukeuTAoLqvif2sO\n4uvpxF+uj0WnbbwrOW+iSlhfl5De7Jjte3P463vbWLoipeHx0U/7qK7V8+C1MaYt3bCEa6+FAQPg\nv/9luLcdIQHubN97krLy6sYyx3fc0bi/oyOcfz4cPap6vwjRHx0/rmYhJk1qfxZi8WKYOxdWrYIv\nv1TP7d6tmrwOGNAzY4WGCmJ79mUDnQhajDMtQgjRB8yu79my9qxrMtG32VzQcsonkD2hUQC84zSW\ntOnn98iyMIBNyZnU1hm4YuYwPN2al1SeEhWIq5Md8YnpDbkiRaVVvP31LuzttDxwTQxP3BjX8Hjz\n4ZlMihzUI+MGVBByzz1QVITmjTeYG+lHbZ2ezduOwhdfQHi4uuhq6tJL1faHH3punELYkp071TYm\npv39NBoV/Ds7w/33w5EjkJnZs7MsAKGh1Gjt2JdzhpAAd7w9nDo+prBQPQb14PeREEJ0o+gRAxp6\ntlRW11p7OKKH2FzQsn6vysOYemgr1faOvDDnz5TX9szypfjEDHRaDefGtGz+6Giv49zxwRSUVLHz\n0OmGHi7FZdXceNEY5k4MZWpUYMMjPMizR8bczF13qSV0Tz/NzAUz0er1rP98HVRUqAR87Vkf90UX\nqeRcCVpEf5VcX4J8/PiO9w0Ph+eeg9xcuOIK9Vx0dPeNrTVhYRweOJyqOhhn6ixLQoLaTpzYfeMS\nQogepNNqmBMXWl8kKdvawxE9xKaCFoPBwPod6Tjqa7h/zdtc4VJAVkkNb36Z3O3JVsezi0nNKmbC\n6AC83FtvXDlvYhigpiPXbE8nYf9Joob5ccm08G4dm8kCAlSTvIcewmfmOcTkHuKQdxgZYaPh5ptb\n7u/jo5L4t29X1dmE6G+MQYupwceDD6oAZ98+9XsrzLTsCR0LwFgJWoQQ/djc+mX7a7bLErH+wqaC\nlv3HCziZX845Ya64PPkYN/7tBiLCfdm2J4cfNqd263uv36FK582pXyfZmqHBngwJ9CBh30ne/yEF\nV2d7Hrx2PFqtDVXkmT9fJQ3/9BNz/rIIgPVvfqECmtYYq4j9+GPn3uf4cThxwvxxCmFtBoNaHhYW\npgJ4U9jZwX//29D3xCpBS0gUGoOByKEmBi3bt6vtpEndNy4hhOhhA31diRrmx77UfLJzWxZJEn2P\nTXUVjK+vdjXnogkw/AJ0wGOLJvDA6xv5+Kd9HDiRj6adZFkvN0eumz+yRT5KR2rr9GxMysTdxYEJ\no9vup6LRaJg3MYylK1Koq67jL9dH4+9tu30PJkUMxNXZnvW7clh4UST2dq3EqJddBg89pJaINU3U\nb6KuTs9nvx5kUsRARvo5qiUyr7+uLvTS01U+jRC9TU4OnD4Nl1/euePGj4dXX4XNm1VfqR5UFTCI\ng4NGMqQiFw9XE6opGgwqaBk8uGcLBgghRA+YNzGUPUfzWJeYzuILm1eATMsp4Zc/TrDogtG4ONlb\naYTCkmxmpqWyupbfdmfj7+3M2CZ3EH08nHh80QQc7HVs25PD1t3ZbT5+3nqcVz9Lok7fuaVkOw+d\npqisinPHB7V+Yd/EzNhgvNwcmT0hhHPHt8x9sSUO9jrmTAihoKSSj3/a1/pOQ4bA2LGwbp1aq9+K\nP/ad5Ov4I7z/yW8QGQkvv6xeOH0aVqzoptEL0c06k89ytgcfhO++a5xx6SEJx4qotbMnJmuvaQec\nOAF5ebI0TAjRJ7VWJAmgrKKG5z/czk+/HZcKY32Izcy0/JGSQ0VVLZdOD2+x3CpyqB/Lnj2Pyqq6\nNo83YOCtL3ex48ApvlhziOvPH2XyezfM8EwI7XBfdxcHPn56vm0tCWvHDReMJvnwaVZuSWXUYB+m\nRwe13On221VFpHffhWeeafHyuj9OAHCw2EBWWR1Bjz8O11yjLvY++ED9WojextTKYTZk7XbV4HZO\nwo+g/1fL4hpnk6VhQog+zFgkadW2EyQdOs3EMQMxGAy89WUypwrKAdWq4tLp4e2u1BG9g83MtMQn\nqpwSY2PEszk52OHl7tjmw9vdiYcXjmeAjwtfrD3EjgOnTHrfkjPVJOw7SdhAd4YGm1bxS6fT9pq/\n/M6Odjx540ScHXW8/VUyGadKW+50883g7Q3vvKMqjTWRX1zBzkOncaipAiD+1eXw4ovqQm/qVNWY\nT3JbRG9knGnpJUHL6cJydh3JZVRVLiGnjsMpE77jJGgRQvRxxiJJxj56P289zu8pOUSE+zI5ciAn\ncko4klFkzSEKC7GJoCW3sILdR3MZPdiHQH83s8/j7uLAk4vjsLfT8vrnSZyuj7Lbs6W+N8ucuNBe\nE4h0VkiAO39eEENFVR0vfJJARdVZNc3d3FSn77w8WL682Uvr1u9Hj4Ybd36Ls4OODWmVjcvvbrtN\nbT/6qAd+CiEsLDlZ5XkEBlp7JCaJT8zAYIB5jvUdoNNNWPKQkKCWsPWSwEwIITqraZGkHQdO8cHK\nfXi4OvDoDbGcN3kwIE0o+wqbCFo2JKn/jNur3GWqYSFe3HnFWErLa3hhWSI1tW0vKQNYtyMDrVbD\nTBvPT+mq6dFBXDo9nIxTZbzz9a6WJaTvu0/1eHntNdCrdaF6vYF1mw7hWFPJ3OtmMT0mmLziSlKO\n1ue+XH01uLuroKWu/T9nIWxKQYGaIYyJUY0jbZxeb2BdYjpODjqmhdQ3lOwoaKmpUUvgoqLAxaX7\nBymEEFZgLJJUpzfw/Ifbqa3T8/DC8fh6OhMzUjWh3JycKU0o+4Aey2lZ9Owvbb5WVl6Dg52WaeNa\nybcww/xJYRw4UUB8YgaLn/0Vu7aS6w1QVFbFhNEBpnWW7uVuujiCIxlFbE7OYveR3GYzS8NDvHjs\n+sU4ffQ+/PwzXHIJ+37ewkmdK7NPJePyr78xO62INdvTiE/MIHrEAHB1hWuvVSVg166F88+34k8n\nRCfs2qW2vWQGYs/RXE4XlDM3LhQXp/r/eNPSOjhoD1RWShK+EKLPmxkbzIc/7qO2Ts9Vs4cTO0q1\neTA2ofxy3WG27clpkYLw82+pbNiZyd9vn4Krs1QYs3U9NtPi6mTf5iPAx4Vr5o202F8YjUbDXVdG\nMW1cIJ5ujm2/t7M9gwd5cNXs4RZ5X1tnb6fl8cUTiB7uj5uzQ8Ofg51WQ+L+U3w4ZaHa8dVXQa9n\nzZebAZi/YAbodIwZ4sMgX1e2peRQXlmj9jUuEfvgAyv8REKYqSuVw6zAuLRh3qRQCK0vGNLRTIux\nqaTkswgh+jh3Fweumz+SWbHB3HBWISZjE8q1Cc1v9Ow+ksvSFSkcSitk657sHhurMF+PzbS898Sc\nnnorQCXuP744rkffszfw9XTm+bvOafZcdU0dj7y5mdUHS4i5+i6mfP0eZX9+iG2+UwmsLWXM5ZcC\nKhicExfCp78c5Lfd2cyfFAZxcaoM8g8/qJLJ/v7W+LGE6JxeVDmsrLya31NyCPJ3Y/RgH/Cof6Gj\noEWS8IUQ/ciCua33zTI2odxzNI/sPNWEMr+4glc+3aFWnBgMbE7OVNc0wqbZRE6LsC4Hex2P3hCL\ng52Wt8PPJ8/Nl82/HabazpG5M0c1W0Y2K1ZNrRrLRKPRqNmWmpoWSfxC2KzkZJWPFR5u7ZF0aOPO\nTGpq9cyfVF8sxMdH5aiYErS4u8PIkT0zUCGEsFHz6mdb1iWkU6c38NKyHRSXVXPLpRGMCvMm5Wge\nBSWVVh6l6IgELQKA0IEe3HZZJKU18PrVf2XN2HloMTBnTmSz/Qb4uBA1zI/9xwsa7lhwww0qif+D\nD1QHbiFs2ZkzcOiQmmXpqM+JDVi7PR2tVtNwwwCNRi0Ray+npagIDh5UM6E93ABTCCFsTWMTygx+\n3VnMgRMFTI8O4pJp4cyICUZvgN92ZVl7mKIDtv8/tugx508ZzOTIgaR4D+FYwFAmjBqATysFCubE\nqTsWP289TnZuGdl6R7KvWkR2diHZ8dvUc7llnMw/07JKmej70tPhySdVErgt2rNHVcjrBUvDjmUW\nkZpdTNzZxULCwlQFtLKy1g/csUNtZWmYEEI0NKEsKKkk4XAZIQFu/HlBNBqNhmnRgWg1sDlZghZb\n12M5LcL2aTQa/rwghiMZG8gvrmTelCGt7nfO2EG8952OlZtTWbk5VT058BK45RJYnQer4xv2nTJ2\nEE8sjkOrtf2yssJCXnwR/v1vVWr3uuusPZqWelFTSWOztBZrrY3J+BkZMHp0ywON+SxSOUwIIQDV\nhHLVthPY22nqm26rS2Bvdyeihvuz63AuJ/PPMNDX1cojFW2RoEU04+HqwNO3TibxwEnixgxsdR8n\nRzseuHY8Ow+ebnzyzBn43+cQNhjmzQPgaGYRv6fk8M36I20myIk+aN06td2+3baDFhuvHFZTW8em\n5Ey83B2JHTWg+YvGoCUtrf2gRWZahBACUE0o77h8LFWlOYQEuDd77dyYIHYdzmVTciYuKTf5AAAg\nAElEQVTXzJU8QFslQYtoITzIk/Agz3b3mRoVyNSoszqJ/3UB7NfAfx8FoLisigdf38hnvxxgZKg3\n40ZIZbE+Ly0NjhxRv/7jD+uOpS07d4KjI4wa1fG+VpSw/xSl5TVcfu5QdLqzVvK2V/bYYFDljkNC\nYNCg7h+oEEL0AhqNhkumh5OUVNjitcljA1nyzR42J2dJ0GLDJKdFWM7EiZCVpR6Ap5sjj9+oloa9\n8tkO8ooqOn/O/Hy11KhWOtn2CsZZFlAzGlVV1htLa2pqYO9eGDsW7G27kdj6xAygMYesmbD65WKt\nBS3p6XDqlCwNE0IIE7k52xM3JoD0k6WcyCmx9nBEGyRoEZYTV98XJzGx4alRYT7cemkkxWXVvLQs\nkZpavennMxjgppvgnnvgp58sO1bRPYxBy6xZUF0Nu3dbdzxnW7FCjcvGl4YVllay4+AphgZ7MniQ\nR8sdmi4PO5ssDRNCiE6bERMEwObkTCuPRLRFghZhOcY7u02CFoCLpg5hRkwQB9MK+finfaaf74cf\nqPplDbtDoqhL2WvBgYpuoddDfDwEBqpgE2xridjx43D77arHyQMPWHs07dq0MxO93sCcCa3MsgAE\nBanSx63NtEjQIoQQnRY3ZiDOjjo2JGWyZntawyM+MZ2y8uo2j6uprSNh30nq6jpxU1aYRXJahOVM\nmKC2CQnNntZoNNx3dTTHs4tZuSWVUWE+TK+/o9GmsjL0f76fly96lIShcSzI2Meibhq2sJA9eyA3\nF268ESZPVs8ZL6CtrboarrkGiovh449hzBhrj6hNBoOB+MQM7HSahjt/LTg4qOCwraBFp4PY2O4d\nqBBC9CGO9jqmjA1k/Y4M3v5qV7PXwgM9eeX+6TjYN+97ZTAYePurXWxIyuSuK6O4aGrrVVeFZchM\ni7AcLy8YMULNtOib33FwdrSrLzGo4+2vk8k4Vdr+uZ59lm8HTSRhqFpy9rXbaJIPnW7/GGFdxqVh\nc+fC8OHg7W07My2PPqr+Xt50kwqqbFhqVjEnckqIGzMQTzfHtncMDYXMTKira3yupgaSkiAyElyl\nbKcQQnTGbZdF8sj1sTx03fiGx9RxgaRmF/PBypYrPn75I40NSWo52brEVm4iCYuSoEVY1sSJ6m72\n0aMtXgoJcOfPC2KoqKrjhU8SqKhqI7l+9252f7OOT6ddj5+HI8+kfI5Or+e1z5LILzYjmV/0DGPQ\nMmeOWro0aRKkpqrZF2v67jt46y01u/LOO9YdiwnW76hPwJ8Q0v6OoaGqQEVOTuNze/aopp7GmS4h\nhBAmc3dxYOb4YGZPCGl4PHhtDGED3Vm17QS/7W5sQHkko5Cl36fg7uLAyDBvjmYUkXZSkvi7kwQt\nwrKMeS1nLREzmh4dxKXTw8k4VcY7X+/CYDA030GvJ//+v/DKBQ+h1Wp5/KaJTBjoyM2bP6b4TDWv\nfbaTOr2h1XMLK6qqgs2bISKiscyuMaeijb8LPSI1FW65ReWxfP21zc8+1NTq2bgzE083B2JHB7S/\nc2sVxCSfRQghLMrJwY7HF8fh6KDjrS93kZN3hpIz1bz4SSJ1ej1/uSGWK84dBjRWfRTdQ4IWYVnG\nCmLtXKjedHEEowf7sDk5i59/3qUutDZvhnXrqH3mWV4aNIdiFy9uuWwso8J8YMwYLkn+icm+kHIs\njy/WHOqhH0aYbNs2qKhoaCwKNN7tt+YSsX/8Q838LVli03ksRjsOnKLkTDXnjg/G7uzeLGdrrVeL\nBC1CCGFxIQHu3POnKCqqanlpeSKvfZ7E6cIKrps/ivEjBzAxIgA3Z3s27syQhPxuJIn4wrKio8HO\nrkUFsabs7bQ8vngCD7y4lg/WpXL40BY09TMuuR7+HAgZzYyRPlw8rT6hbcwYNMADHCLVO5ov1x0i\nJ+8MOp2m4Zx2daWMH29Ao9G0eL/yyhq+WX+EuRNDCfRzs+iPK+o1zWcxMs66WTMZf+9elbS+qHeU\ncVi/QwUgc1vrzXK21soe//EHeHjYfONMIYTobWZPCCXlaH5D7sr4UQO4Zu4IAOztdMyICWLVthMk\nH85lQkcz5cIsMtMiLMvJCcaNU40Fq9suEehrb+DR9UvQ6uvYMGYW6yNmsz5iNikhYwn3ceC+G6c0\nBiD1d8jdDu7l8cVxODnYsSk5k/U7Mhoea5KL+W5DyzwagKUrUvg6/gifrj5o8R9X1Fu3TgWrM2Y0\nPufjowozbN/eojBDjzAY4PBhGDZMVdOycXV6A8mHcwkJcGNIoGfHB5w901JYqH7eiRNBK1/tQghh\naXdeOZahwZ4E+bvyyMJYtNrGG6XGRsDxkpDfbWSmRVheXJyqYJSS0nbZ1WefZVzCGpbNGE/Zk39r\n9pKfpxO6pktjhgwBR0fYv58Rod58/PR8SstrGl6urKrlySWbWLZKvT52mF/Da9v2ZBNfv8b095Qc\nSs5U4+HqYLmfVaiL5R074JxzwN29+WuTJsHy5XDICkv6cnPV0rBZs3r+vc2QdbqUquo6RoR6m3bA\n2TktxiWZsjRMCCG6hZODHa/dPwMDtFjCOzzEi5AAN7bvO0lZeTVuLnKtYWlyO05YXgfJ+CQlwWuv\nwdChuP79bwT4uDR76M5ey6/TqeUuBw6AXo+Lk32z/cMGeXD1NF80Gg0vf7qDgpJKAApKKnnn6904\n2Gk5b3IYtXV6Nu2UTrcWt2GDmklpms9iZM1+LYcPq+3w4T3/3mZIzSoGYGiQl2kHeHqqINEYtBj/\njKVymBBCdBudTttqzqFGo2HOhFBqavVs2ZXVypGiqyRoEZZnDFpay2upqYHbblMXuUuXqqpOphgz\nBsrLW2+mB4T6O3LzJREUlVbx0rJEamr1vPVlMqXl1dx8SQQ3nD8anVbD2oS0lhXLRNe0ls9iZLzr\n31EyfmUlHDtm2XEdOaK2I0ZY9rzd5Fh90BIeZMLSMFBlpUNDG3NajH/GMtMihBBWMTM2GK2GhhUe\nwrIkaBGWN2qUKi3b2kzLa6/Brl2qDO3s2aaf01j5af/+Nne5dHo4U8cFsv94AY+9vZmkg6eJGeHP\nhecMwcvdkYkRAzmeXcKxzOJO/kCiXb//Ds7OjZXjmoqKUnlOHc20PPccjByp+oxYinGmpZcELalZ\nxWg0MCTQw/SDwsLUErjiYvXvbcgQ8PfvvkEKIYRok6+nM9EjB3AovbDjJtqi0yRoEZan08GECSrA\nKG3yj/bgQXj2WQgIgFdf7dw5TQhaNBoN9y+IJsjfjaOZxbg52/PAtTENiXLzJqokuTUJaW2eQ3SS\nwaBmSIYNA3v7lq/b26u8pj170Fa00xh040bV2X3ZMsuNrRcFLQaDgWNZxQT6ueLi1MqfY1uMyfgb\nNkB+viwNE0IIKzM2Bn5iyW/c9s+1DY//9++tVNXUWXl0vZsELaJ7TJyoLmh37oTdu+HWW1U55Koq\n1ZXc28RkYyMTghYAFyd7nropjohwXx65PhZfT+eG18aPHICPhyObd2a2/OIwGCBL1qB2Wl6eCkzD\nw9veZ9IklYt04EDrr9fWqtk3gP/9TwUvlnD4sMr5CLD90pOnCso5U1FDuKn5LEbGoOWrr9RWloYJ\nIYRVTY4cRORQXxzsddTpDdTpDZRX1rDnaB6/78m29vB6NakeJrqHcanQdddBTo769bBh8Nhj8Kc/\ndf58Q4equ/YdBC0AoQM9ePHeaS2e1+m0zIkL5ev4I2zbk82s2JDGF//5T3j6aXXxHBXV+fH1V6mp\najt0aNv71N/9d01Jaf31Q4dUY0qA7GzYtKlzSwdbo9ernJaICJX7YeNSO5vPYmSsIPbjj2orQYsQ\nQliVg72OF+5pfg2SnVfGnS/EszYhnZlNrz1Ep8hMi+gekyerXhE5Oaqq1E8/qYvT22837yLS3l4t\n89m/X82KmGlu/RKxdQlNEvorKuCNN9R5N2ww+9z9kjF5vqOZFtoJWpKS1Pbqq9X2s8+6Pq6MDDWr\n1wuWhkHTymGdDFqMMy1lZerfSHS0hUcmhBCiqwL93Igc6sueo3nk5J2x9nB6LQlaRPcICYHfflNB\nxpo1cNFFXW94N2aMWorUhWVcrX5xfP65ygeA1iueibaZMtMSEgJDhuC+Y4daCnY2Y9Dy4INq32++\nUdXEuqKvVw4zMgYtADExquiBEEIImzNvopoZl+aT5pOgRXSfKVNg9GjLnc/EvJaOGL84Vm07Tn5R\nOfnvfUi+hz/lnj6qSaIwnSkzLRoNnHcedmVlrVeUS0pSxRtiYtRywpISNTPXFb0oCR8gNasIP08n\nPN0cO3dgYKD6swNZGiaEEDbsnKhBuDjZEZ+YTp1eWi+YQ4IW0XtYKGgxfnGs2HSMm55fy00zHuOm\n2/7Lopv/w85KZ1U+VpgmNVUFJYMHt7/f/Plq++uvzZ+vq4PkZPXZOjvD9der57u6RKwXBS2FJZUU\nlFQxNLiTSfgAdnYQFKR+LUGLEELYLCcHO2bEBJNXXEnyodPWHk6vJEGL6D0sFLQ4Odhx39XRnBsT\nzLmlxzj3wCZmhDii1+p49cKHOf2bLBEz2bFjakmXg0P7+82ejUGnaxm0HDqkmoaOH69+HxUFY8fC\nqlVQWGj+uIxBy/Dh5p+jh5i9NMzIuERMyh0LIYRNM7ZeWCutF8wiQYvoPYYPV0thuhi0AEyPDuIv\nU7z4y/t/4S/5W3n0gfO4I9xAqbMHL23Oo6ZWaql3qKJC5Re1l89i5OlJ2dixKmeooKDx+Z071TY2\ntvG566+H6mqV22Kuw4dVk0UvM2YvepjZSfhGjz0GTz3V/hI9IYQQVjc8xIvBgzxI2HeS4rIqaw+n\n15GgRfQejo6qbHIXK4g1ePttdZ4HHgCNhvMvGs/sfes5XOvM+z/s7fr5+7oTJ9TWxIvlksmTVSni\n+PjGJ41J+E2DluuuU9tPPzVvXNXVamy9YGkYwLGsIoDO92gxuuQSVbK7F5R2FkKI/kyj0TBvYii1\ndQY2JGVaezi9jgQtoncZM0YtGzp1qmvnKSmBDz+EQYPgqqsA0ISFcffubxlcnM2qbSfYmJRhgQH3\nYcYkfFNmWoCSKVPUL5ouEUtKUlXlmpbqDQ2FGTNg82ZIN6PKyvHjKlemlwQtqVnFuLs44Ocllb+E\nEKKvmxkbgp1Oy9qENAyWuAHbj0jQInoXC+W18PHHqnzyvfc25mNoNDjFRPHEt//A2UHHO9/sJi2n\npGvv05eZUu64ifJRo8DHRwUtBoOadUlOVhXmXFya73zDDWr77393flw2moRfcqaaw+nN83TKKmo4\nmV/O0GBPNDJTIoQQfZ6HqwOTIgeSfrKUHzansjk5s+FxurDc2sOzaRK0iN7FEkHLwYPw3HNqudkd\ndzR/LS6OoKJsHhyloaq6jhc+SaSiqpXeIsK0csdN6XSq0WhmJhw4oIKLsrLGJPymrr4aBg6EF19U\nj86w0ST8t75M5pE3N5Ow72TDc8e7ms8ihBCi15k/SbVe+GDlXl75NKnh8cBrGzmZL80n2yJBi+hd\nIiLU1twmkBkZqvxufj4sWaKStZuKiwPgnPSdXDojnKzcMv797W6Zwm1NJ2daADjvPLX99dfWk/CN\nvLzU8rDQUHjySfUw9TOwwZmW/OIKEverYOWNL3Y23E3rcuUwIYQQvU7MCH+evDGOe/4U1fC4cuYw\nyipqeHFZItU1UgyoNWYFLQkJCUyZMoXFixezaNEi/vGPf1h6XEK0buxYVWL3++9VqdzOyM9XF80Z\nGfDCC3DrrS33mTBBbRMTuemiCIaHeLEhKVM62Lbm2DEVXHh7m36MsV/LmjWtJ+E3NXw4bNmiti++\nCPfdp5aUdcQYtAwbZvq4ull8YgZ6A0QN86O0vIZXlu+gtk7fkIRvVo8WIYQQvZJGo+GcqEAuOGdI\nw+PmSyKYNzGUY5nFLF2RYu0h2iSzZ1omTpzIsmXLWL58OX/9618tOSYh2qbVwqJFKh/lhx9MP66s\nDC68UC1LevhhePzx1vcbOBCCgyExEXudhscWTcDVyY5/f5dC2knJb2mg16uE987MsoBqhBgZCZs2\nwdatquJV0yT8s4WGqsAlKgrefRfuvrvj9zhyRB3n7Ny5sXUTg8HAuoR0HOx1PHXTRGbEBHEwrZBP\nVx8gNasYZ0cdg3xdrT1MIYQQVnbnlVGEB3ry6x9prEuQm6VnMztokeUywmoWL1bbZctM27+6Gv70\nJ0hIUMe+8kr75WEnTICTJyE7m4G+rjxwbQzVNXW8tGwHlZLfouTkQGWleb1B5s9XPV62b4dRo8DN\nrf39AwJg40a1NHDp0vYripWVqd4xNrQ0bG9qPjn5Z5gaNQhXZ3vuvWocgX6ufLvhKBmnShkS6IlW\nK0n4QgjR3zna63jypjhcne3597e7OZ5dbO0h2RQ7cw88duwY99xzD8XFxdx7772cc845lhyXEG0b\nORImTVJLjLKzITCw7X1ra2HhQrXvxRfD+++r2Zr2xMXBihUqbyYoiCljA7l42hB++u04z77/B6ED\n3Rt2dXaw49IZ4fh6tn5XP/N0Kau3naCmrv1lTRFDfDl3fHDjE6dOqYt1W9XJcsfNnHcevP66+nVb\nS8PO5u2t+unccQd8/jk88UTr+x09qrbdnIR/8EQBG5IyaHrrxtFexyXTwhng07wS2trtqvPxvPrE\nSxcnex5fHMdf3tpMTa1e8lmEEEI0GOjrysPXjef5D7fzjw+3Ezu6c9cCbf1fZHQ0o4h1ienom0w+\nONrruGr2cDzdHLs09qYKSyqJ35HB+ZPDcHNxsMg5zQpawsLCuO+++7jgggvIyMhg8eLFrF27Fju7\ntk+XZFy/3kv19vH3Nf4zZxK6fTuZL7/MqUWLgFY+I72esOefx+/HHykdP54jTzyBYc+eDs/t7unJ\nCCBn5UqyQ0IAiA4ysMvPgX2p+exLzW+2/++707hl/gDsdc3vlpdX6fnPL6coPtNxQt3qbSdISztO\nRKgLHtu2Mfz++zn20ksUzZnT4bHW4Lt+PYOBNJ2OvE7820hKSkLj6kq0oyPaqioy/P05beLxumHD\niLK3p+q//2X/3LmtzpZ5r11LOJDh7Gzyec3x319PkZVf0+L5bbvSuP28AOzt1Ngqq/Vs2ZWDj5sd\nVYUnSEpKa9j3vPEe/JRQhKumxKa+X2xpLKIl+Xxsn3xGts/WPyMdcG6kO5v2qhufnbVtdzq3n9fy\nuqSwrJb//HKKyuqWq6VKinKZEeFh5oj/f3v3HR5VlT5w/DuTSSYdUgjphRpCSCAxQbqEIlWigrvS\n1N2VVSyADV3XldVdXXUR+7qysqAQ8LeKiIWFUERdqalAgIQkpBBSII2QnpnfH5cEQgrJpMwQ38/z\n8MzzzL1z59y8zMx97znvOY3V6fT8O7qA7IvV/BSTyoLbnDtlRIFBSUvfvn2ZPn06AF5eXjg7O5OX\nl4eHh0eLrwlt6x1VExQTE3NTt79H8vWFN9/Ec88ePNesISY2tnGM9HpYvhy+/hrCwrDbvZsQ+zZ+\nGP384NFHcTt3DrdrjnnLofc4dy4THn0Meit3x7/Yd4a9R7M4mqHh0XlXazP0ej1//fdhSi7XMTdi\nIBNDPZu8Tb2iS1X8Zd0hvjlSQsSY4XjmbgWg/44d8Mwzbf+bdKdt2wDwiYjAp42fjUafo9tug507\n8YqMxKs9n63Zs7HaupVQjab5WpgdOwDwmjSpfcdth8sVNZzf/B0DvXqz/NcjGp7/6oc0dh3KIOGc\nBb+/K0hpzoGz1NblMGv8QG65pfGQtdBQmD+7Glsrc5NZo0W+60ybxMf0SYxM380So9BQWFRYTlV1\n+4alb9ufSvThTBJztCyJHNbwfHVNHc+89yOV1Xp+NyeQEYOU2VMrqmp56p0fuVhu0Wl/l39/fYLs\ni9VYac1Iza0ipdCW+bf7t/n1LSWVBiUtX3/9NRkZGTz66KNcvHiRwsJC+pryUBbR8zg5wezZsHUr\nxMc33f7ii/DOO0rR944d0NaEBZQFEPv3h6NHr06z+8c/YvbKK3gDfPGpMsxs5kyWzg3mbE4pOw9m\n4O/jyORwbwC2/5jGoRO5BA1wZuH0IZi1cofB2xUenTecv2+K4dUNR1h9MhlLUOo40tIMqxvpavXT\nHRvatlWrlEUl2zusdOFCJeYbNzaftKSkKI9dWNNyIv0iOj2EDHbB2/Xq/6sldw7jVEYh3/wvnRGD\nXQgf6kr0oQzUKoi4xavZY9l1Upe5EEKInqdvC0O8WqP8FhXx9Y9pjBjUh7AAVwA+2naM1OwSJod5\nM2d846Hdvm72nEwvpKa2DnONWYfafCQpl63fn8Gjjw0vLRnNcx/8xJbo0wz2cSDUv2O5gkGF+BER\nERw/fpx7772XRx55hFWrVrU6NEyILtFcQb5eD3/4A7z8spJ47NqlJDjtFRYGhYVK7cYTT8ArryhT\n6L74ovL8rFnw29+irbisFM1ZahqK5pIzi1j/zQl622l5akFoqwlLvQkhnswa40dm7iXetwi4Wiux\nfn37294dUlNBo1GmnzbErbfCmjXKMdpjxgxlmuWoKKhrZthdcrJyTF9fw9rVBokpFwAIGujc6Hmt\nuRlPL7wFc42at7bEEXsqn5SsYkL8+7ZY8ySEEEJ0JksLDU8vDG34LSosrWTPkUx2HszAz92eh+4O\navKaoAHOVNfqOJVR1KH3LiiqYM3mWMw1alYuDsPF0Zpn7wvDTK1m9aYY8gvbuVTFdQxKWmxsbPjw\nww/ZvHkzW7ZsYdy4cR1qhBAGmT5dSUiiopSC+5oaeOABZQ2WgQNh925wczPs2PXrtcydC2+9BQEB\nymKHq1YpPTDDh8O6dRAUhOuFbFbcG0J1rY5X1x/htU+PUqfT89T8UBzsLdv8lr+5I5DBXr343iOE\nHTMfBDs7JWlp7uLc2NLSlMTArGN3ZNpNq4V77lFmL9u3r+n25GSl96cLb6IkninAXKPG38exyTZf\nN3t+M3sol8qreXndIQCmjvTusrYIIYQQ1/Nz78X9swIovVzNX/99iA++SMTGUsNz94WjNW/6ux00\nQLkJV39TzhC1dTre2HiUS+U1PDgnED93ZRj9QC8Hltw5jEvlysKZNbWGX9NI94i4eVlYKDODvfsu\nDnv3wksvwXffKb0k337bdLX79ggLUx4TEpQEZdeuq8cbNkyZrvfFF5VFD194gZH/93/MjRjI53uV\n4Um/mjKI4EHte39zjZqVo3qzLDmLtYOmM8TLHr8PV8PevTBliuHn0tkuXYKCAggJMc77L1yoTH28\ncSNMnnz1+f/+V+kFGzu2y966pKyK9JxSggY4Y9HMFz/AzDF+xJ0u4HBSLr1ttQ1d80IIIUR3mT22\nH3GnCzh6Mg+ApxeG4+bc/JpgQ/s7o1YpN+UW0LT25H8JOWyJPt3qcidVNXXkXixn3HAPpo3ybbRt\n2q0+nDpbyN6jWXzy3Ul+e0egQedk8DotQpiEK0PE/F54QUlYbr9ducjvSMICygW5g4MyjKm541lY\nKEPGhg+HL76As2dZOM2f20I9mTDCk3untr3g7Fp9MlN4bNf71KrUfD30SqKybl3HzqWz1dezGDLd\ncWcYM0bp5fniCyi/0tUcGwvz5ik9MS1Nh9wJjqcqM8ddPzTsWiqVisd/NZzBPg7MmzwQjZl8zQoh\nhOheKpWK5b8eQYCfIw/MCuDWwJZHnthamdPfszenM4qarEen1+vZ+N+TZOSWUlha2eK/yxU1BA1w\n5tF5wU0ml1GpVDx8dxAOdlpluQAD13qUnhZxcwsNhSFDUJ08CYsWwccfg7l5x49rawtnz4KNTctD\noFQqePJJ5X3ffhuzNWt4cn4HZ95ISmJk6mFcLOGnnBoeDAzG6ssvlR4Ex6bDkYyifo0WY00QoFbD\nggXw17/C9u1KYjlzJly+DJ9/DqNGddlbJ5wpACB4QOtJcS9bLX9/fHyXtUMIIYS4kV62Wl57tG0l\nHEEDnEnJKiYpvZAQf5eG55Mzi8jOL2NssDsrF4cZ3BZLCw3BA/vwfWw2WXmXGk1k01ZyC1Dc3FQq\n+Owz0l96San/6IyEpZ69/Y1rNu65R1nc8l//gpJOWLn25EnU6Jkc7EpFVR0/zVsKVVWweXPHj91Z\nOrKwZGdZsEB5/Mc/YNo0yM2Ft9+Gu+7q0rc9duYCVlozBnj17tL3EUIIIbpT0EDlZlzilZtz9fYc\nzQJgUljH6zMD+yujFI6lXrzBns2TpEXc/IYNo3DGjBuvdN8VLCzg8cehrAzWru348ZKSwMaGSZMD\nUakg2ra/kjj9+9/tP1ZeHhw7ptTlxMYqEwicP9/xNnZ0uuPOMGSI0sv2ww9w+jQ8/TQ89liXvuXF\nkgqy88sI8HOSIV9CCCF6lABfRzRmKhLPXC3Gr66p44e4czjYaRvWdemIYQOU2VyPpRpW8C+/vEJ0\n1JIlyjCyd95RZjAzVG2tMvvVkCG4ONowfGAfTp4rIytyPsTEKMnHFTqdvvUxoZmZynTEQUFK3U1o\nqDK5QECAMoyqI4w9PKxe/ZTX996rTIjQxY5d+SIPusHQMCGEEOJmY6nVMMjbgdTsYsoqlGuZw0m5\nXK6oYWKoF2adcLPOzckGR3tLTqReNKiuRZIWITrKwQF+8xvIylJqKgyVnq4MBRsyBIApI30A2D3m\nbmX7ld6Wyqpannx7P3/4x/+ormlh6sDoaCWBmjpV6YFYvhzGjYPiYvjpJ8PbCEpPi4uLUvdjTEuX\nKpMvbNjQLb1s9XefWivCF0IIIW5WQQP6oNPDiSs9IXuOKEPDIsIMXJPtOiqVimH9nSkuqyI7v6zd\nr5ekRYjOsGyZUl/z5pvKApeGOHlSeQwIAODWQFfsrM3ZW2xBrVMf2LYNgHVfn+BMdgnHUy/y0bZj\nzR9r/37l8c03lR6gNWvgT39SnouONqx9oPQGZWQYt56lnkajrNXTmXVMrUg4cwFbK/OGueeFEEKI\nnqT+plzimQsUllYSeyqPAV698TGgaL4lHRkiJkmLEJ2hf3+4806lbuTHH5XnSnDN/gMAABroSURB\nVEvhxImryciNJCUpj1d6Wsw1ZtwW6kVxWTVHJs+DjAyOHDjNjgNn8XG1o597L3YezGDPkcymx/rh\nB2XhzSvHApT1SywtO5a0ZGUpiYuxh4Z1s9yLl8kvLGfYAGfM1Kobv0AIIYS4yfj7OGChUZN45gLf\nx2Sj08PkWzqnl6VeQzH+GUlahDCeJ55QHiMjoVcv5V9gIAwd2rbE5bqeFoAp4cpsHdE+Iymxsued\n7afQmKl5ckEoz94Xho2lhg8+TyA955qZyzIylH/jxzceNmVpqQwRS0xUivQNsX698hgUZNjrb1JX\n61lkaJgQQoieyVxjRoCfE2fPl/Ltz+lozNSMG+HZqe/h7myDo72W42ntr2uRpEWIzjJ6NMyZowwP\n8/GBGTOUxS71evjmmxu/PilJmY3Mz6/hKT/3Xgzw6k1MbS9en/kUxdWwaPoQ/Nx74eZsw4p7Q6iu\n1fHqhiNcvlI41zA0bHwz64TUryC/Z0/zbdi69WpP0fVOn1YK3j094eGHb3w+PUiiJC1CCCF+AeqH\niOUXlhM+tC/2NhadenyVSkVgf2eKL7W/rkUWlxSis6hUDXUnDfLywNUVdu1SpuVtiV6v9LQMHqzU\nalxjarg3H2QVk+gdRODlHOZMuKNh28hAN+ZGDOTzvSmsjorh9pE+8PNp6BeG2YBwgmvrMNdcs9bM\nlCmwcqUyRGz+/MZtSEkh94GHyXDtD396AYKHA2Bvo2WIr4OSqFRXKzUydnYG/Ym6W2V1LQVFFXj1\nbbm9haWVpGQWtXqchJQCettpWz2OEEIIcbO79uZcZ6zN0pxh/Z35Ie4cx1MvNPldTTvX8pp3krQI\n0ZX69lWmHP7xRygvB2vr5vfLylKmIr5maFi9cSM8+df2E2jKy1ix4y3MVA812r5wmj/JmUUcScrj\nSFIe2IRDZDjsKyAw8wB/+f3oq1MVBgeDszPs3q0kSqqr9Rmp72/gmfvfpVqjhdhqiD3csO3VAZcJ\n3LcPZs9Whr/dBGpq6/jDB/8jJauYF347kvAA1yb75BWWs+zN76/2UrViwghPVCqpZxFCCNFzDfDs\njY2VOeYaNSGDXbrkPQL71xfjX2T66KujS3YcOMsHnyewan7zQ9IkaRGiq91+O8THK8Xx06Y1v891\nRfjXsrUy5y+/H43Fn57HJTNZmRr5mkJ4MzM1zz8Qzv7YbKouFMGf/wwBAcSMmU18SgGf7jjJ/bOG\nKjur1TBpEnz2mTLcy98fgLL8Qv522Ztqey33uNVgt2Uj2NpQ/LulfBF3geidCQRaW8O77zZKdEzZ\n2q+Ok5JVDMCbUbG8tWICrk42DdtranW8/qkyrG72uH64OFi1eCy1SsWYYPcub7MQQghhTGZmal5a\nMgpzjbrLFlL26GOLg52W46kX0Ov1qFQqkjOL+OjLY9hZtzwcTZIWIbra1Knw2muwc2fLSUszRfjX\nGuLnCCGDYCNw+HCT2busLc2VuxVbDkHsdvj1WKbcF8aKt/bzxb4z+Ps6cmugm7Lz5MlK0hIdDf7+\n6HR61ry7i1z7vvxKm8fCp5aAdT488gi6c0f4acaL/Ow1godeWIWVj08n/VG61r6YLHb8fBZfN3um\njfLlw62J/O2TI7z+6DgszJXhcp98l0RyZjETQz15cE6g9KIIIYQQwCBvhy49fv16LT/En+NcQRn2\nNlr+9skR6nQ6nloYir4sq9nXSSG+EF1tzBhlWNiuXS3v00pPS4PwcOXx8OGW97mmCN/Gypzn7gvD\nwtyMtzbHknPhSsHblCnK4+7dAHyxN4XD5VYMz0zk3seu1MssXQrPP4/6TAqTDn9NpYUVP9829wYn\nahrOni/lvf8kYG2p4bn7w5g5xo+pI31IzS5pWNfm0PHzbNufiqeLLQ/fHSwJixBCCNGN6oeIJZ65\nwOqoGAqKKrh3qn+rQ9IkaRGiq2m1cNttSmKS1fzdA06eBDMzGDiw5eOMGKHsc6OkxcYGQkIAZfax\nR+YGcbmylr9tOEJVTZ0ys9nAgbBvHwknz7Nxx0mcL13gKesMzNyuqft4+WV46CEmph8EYE9sTjtP\nvPuVV9bw6vrDVNfUsfzXIbg72wLw+zuH0c9DWdfms+jTvLUlDguNmpWLw7DSSoezEEII0Z3q12v5\n5LuTxJ7KJ8TfhV9NHtTqayRpEaI73H678tjcwo56vZLQ9O+vJDgtsbZW1n2JjVUWeLxefr6S/Iwe\n3WiV+IhbvJk2ypf0nFJe/vggH28/zsfTlvLxiLt549MjqPQ6Vn7zBr0e/X3j46lU8I9/4Jp+ksD+\nThxLvUDuxcsGnHxTOQVlfPtTGnW69s3R3hq9Xs87n8WTc+Eyd08cwKhhbg3bLMzNeO6+MGyszNn4\n31OUVdSw5M4gfN06b5VfIYQQQrSNp4stve20XK6ooY+DFU/OD0V9g8WbJWkRojtMnao87tzZdFt+\nPhQVtVjP0kh4OFRUwIkTTbfVr68yYUKTTQ/OCWSwtwMJKRfYtj+VbeZ+bLslkpIqPb/b9y/8fRwg\nLKz597SyYtItyrSH+2Kyb9zGNvhwayIffnmMrftSOuV4AClZxfwvMYcAP0cWTW86zM7VyYYn5oeg\nVquYGOrJ1JFdM5WjEEIIIVqnUqkIG9IXC42aZxeHtWk9GBkXIUR3GDwYvL2VOpK6OmWYV7221LPU\nCw+HtWuVIWLBwY23tbKopIW5GX97dCxnc0rRo4dLZTBpErYVl3AryYVNm1p929FBbnz4ZSJ7j2by\n6ymDOlQDkl9YTnxKAQBRO08RMtiF/p69DT5evT1HMgGYN2nQ1SmerxMe4MonL96OvY2F1LEIIYQQ\nRvTw3UEsnhFAb7tWRplcQ3pahOgOKpXS21JYCDExjbfdYOawRlorxv/hB2V4Wf0+19GYqRng1ZuB\nXg4MDPBioI+jkrC4usLc1ovsrS3NGRPkTu7FcpLSC2/czlbsOZqFXg+3hXhSW6dndVSsUmvTATW1\ndfwQdw4HOy0jBvVpdd9etlpJWIQQQggjM9eYtTlhAUlahOg+9XUt188i1p6eloAAsLJqmrQUFUFi\nItx6a+t1Mdeqn0XsoYfA4sbdspPCvICrPRqG0On07D6SiaWFGUvnBjNrjB9ZeZf45Lskg48JcPhE\nHmUVNdwW6tViL4sQQgghbl7y6y5Ed5k0SVnc8dq6lsLCq7UoVxZ6bJVGA6GhcPw4XL6mKL5+hftm\n6llatGyZshDlE0+0affAfs64OFjxU8I5KquamQigDRLPFJBfWM644R5YaTXcNysAjz62bP8hjfjk\nfIOOCbDnqJJITbrFy+BjCCGEEMJ0SdIiRHdxcFCGbh04ACUlsHGjkqgkJsL06cpUxW0RHg46nTKL\nmE4H77wDixYp22bMaHt7nJ3hT38CO7s27a5Wq5h4ixcVVXX8EH+uxf2S0i/y2idHyC8qb7It+pCS\nXEwJVxaptLTQ8OSCEMzUKt7aEkfp5eoWj/v53hTWf3MC3XUzjhWVVhJzKp8Bnr3wkdnAhBBCiB5J\nkhYhutPUqUohfliYkmiUlcFrr8FXX7X9GPU1K199pSQ7y5Ypice2bTByZNe0+4op4T5YaNSs236c\n8xeaTn9cWFrJK+sP81NCDn/bcISa2qu1KuVVOg4cP4+niy3+vldX2x3o5cC9tw/mYkklq6NimiQl\nAN/HZLHh2yS+2HeGrd+fabwtNhudTs+kMJkNTAghhOipJGkRojvV17WkpMDMmUo9yzPPNFpX5Ybq\nk5bVq5X6mOnT4dgxmDOn89t7nb6O1jx8d3DjxSqvqNPpWb0phpKyajxdbEnJKmbtV8cbth87W05N\nrY4p4T5NCuHnRQwixN+F2FP5fLY7udG27PxLvP95AlZaDY72lnz6XRKJZ5TZx/R6PXuOZKIxUzF+\nhGcXnrkQQgghjEmSFiG60623wuuvw5dfwtdfg69v+4/h66v8s7SE99+Hb79VZgDrJpPDvbn9Vh/S\nckr459bEhuc/iz5N4pkL3BroypoVE/B1s2fHz2fZF5MFQFzaZczUKibe0jS5UKtVPDk/lD4OVmze\ndYrYU0p9S1VNHa99cpTK6joemzec5+4LQ6VS8canMVwsqSD1XAkZuZcIC3Bt0xzvQgghhLg5SdIi\nRHdSq+HppyEyUpkG2RAqlVK8n5YGS5cafpwOWBI5jP6evYg+nMmuQxkkJBewJfo0Lg5WLPvVCCwt\nNDx3fxjWlhre+08Ce49mkltUQ1hAXxzsLJs9pr2NBc8uDsNMrebvm2LILypn7bZjnD1fyvRRvowb\n4YG/ryO/uWMoxWVVvPbJUXYdygCkAF8IIYTo6SRpEeJm5OkJbm5Ge3sLczOeXRyGrZU5H25N5I1N\nR1GrVDyz6BZsrZUeD3dnW5b/OoTqmjrWbI4DYMpIn1aPO8jbgSWRgVwqr+bZ939i58EM/Nzt+d2c\nwIZ9Zo/tx7jhHpw8W8iOn8/Sy9aC0CF9u+5khRBCCGF0krQIIQzi6mTDE/NDqKnVUVJWzf2zAhjs\n49hon1HD3LjrtgEA2FqpCR3scsPjThvly8RQTwqKKrDSmrFycRgW5mYN21UqFY/dMxxPF1sAbgvx\nQiNrswghhBA9msbYDRBC3LzCAlxZ9qvh5BdVMGd8/2b3WTxjCHU6PRa6ojYt/KhSqVg6NxgbS3PC\nh7ri0ce2yT5WWg1//M1Ituw6TeSE5t9XCCGEED2HJC1CiA6ZHN76kC8zMzW/mxNITExMm49paaHh\n93cFtbqPRx9bnlwQ2uZjCiGEEOLmJWMqhBBCCCGEECZNkhYhhBBCCCGESZOkRQghhBBCCGHSJGkR\nQgghhBBCmDRJWoQQQgghhBAmTZIWIYQQQgghhEmTpEUIIYQQQghh0iRpEUIIIYQQQpg0SVqEEEII\nIYQQJk2SFiGEEEIIIYRJk6RFCCGEEEIIYdIkaRFCCCGEEEKYNElahBBCCCGEECZNkhYhhBBCCCGE\nSZOkRQghhBBCCGHSJGkRQgghhBBCmLQOJS1VVVVMmTKFbdu2dVZ7hBBCCCGEEKKRDiUtH3zwAb17\n9+6stgghhBBCCCFEEwYnLWlpaaSnpzNhwoTObI8QQgghhBBCNGJw0vL666/z7LPPdmZbhBBCCCGE\nEKIJg5KWbdu2ERYWhru7OwB6vb5TGyWEEEIIIYQQ9VR6AzKOFStWkJ2djVqtJjc3F61Wy5///GdG\njRrV7P4xMTEdbqgQQgghhBCi5wsNDW3ynEFJy7Xee+89PD09iYyM7MhhhBBCCCGEEKJZsk6LEEII\nIYQQwqR1uKdFCCGEEEIIIbqS9LQIIYQQQgghTJokLUIIIYQQQgiTJkmLEEIIIYQQwqRJ0iKEEEII\nIYQwaZK0iJtGWVmZsZsgbiAvLw8AnU5n5JaI1sj8K0KInkyuF0yfIdcLv/ikpbS0lHfffZf9+/dT\nWFgIyA+6qSktLWX16tWsX7+e6upqYzdHNOPSpUusWbOGefPmkZubi1r9i/9qMTklJSWsW7eOtLQ0\nysvLAfmuMyWlpaWcPXvW2M0QrZDrBdMn1wumryPXC7/oK4s9e/bwyCOPUFFRwYEDB/j73/8OgEql\nMnLLRL2oqCgeeOAB7OzsWLJkCRYWFsZukrjOZ599xsMPPwzAPffcg1qtlh9yE3PgwAGWLl1KQUEB\nO3bs4NVXXwXku85U1NbW8sADD/DRRx9x7tw5YzdHNGPv3r1yvWDiNm/eLNcLJq6j1wu/yKSlrq4O\ngJycHCIjI3nmmWeYPHky/fr1a9hHLrqMr7CwkPj4eMLDwxu+gEpLSxu2yxAk4ztz5gz5+fm88cYb\nrFixgsTERKqrq+WH3ETUf9fl5eURFhbGypUreeSRR4iJiWHXrl2AfI5MQU5ODlZWVmg0GpKSkuQO\nsQk6f/68XC+YsPPnz5OYmCjXCybs+PHjXLhwoUPXC2arVq1a1XVNNC3Jycl89NFHpKenM2TIEHJz\ncxk1ahTV1dUsX74cc3Nz8vLyCAoKkosuI7k2RiNGjMDa2pr8/HwuXLjAhg0b2L9/P4cOHWL8+PES\nIyNJTk7mn//8J2fPnmX06NGMHj0aOzs7ALKystBoNPj6+hq3kb9w9Z+jtLQ0hgwZQkJCAmq1Gnd3\nd2xtbUlJSeE///kPixYtks+REWRmZvL999/j7+8PKD0t48ePByA2NhYfHx8cHR2N2cRfvOtjlJ6e\nzujRo6mrq2PZsmVyvWACMjMz2bdvH/7+/tjZ2aFSqcjPz6eoqIj169fL9YIJuDZGLi4uhIeHd+h6\noccnLXq9HpVKRXp6OqtWrWL8+PEkJCQQFxfH+PHj8fLy4sKFCzg7OzN79mzWrl1LTk4O4eHh6HQ6\n+Y/eDVqKUXx8PH5+fhQXF7N161amTZvGokWL+OSTTyRG3ay5GCUmJnLw4EHc3d1xcnKitraWvXv3\n4u/vj7u7u8Smm7UUo6SkJFxcXMjIyODnn38mLi4Od3d3srKyKC8vZ/jw4Q2vFV3n2r/xH//4R37+\n+We8vLzw8vLCzMwMJycnfHx82LdvHzqdDg8PDywtLamrq5MasW7SXIw8PDzw9vZm8ODB2NraUlBQ\nINcLRnR9jA4cONAQI2tra5KTk/nqq6/kesGImotR/XddfY+XTqdrSGbac73Q478Ja2pqAEhNTcXR\n0ZE777yT559/Hq1W21BM5+Xlxdy5c/Hz82PVqlXs3LmTqqoq+aHoJi3FyMLCgtTUVIYMGcLjjz/O\nzJkz6d27Ny+99BLfffedxKgbNRej5557Djs7O3788Ufy8/PRaDR4eHiwYcMGAIlNN2vpcwRw+fJl\nZs6cyahRo7CxsWHx4sU8+OCD5OTkyA95N6mPT1paGlqtlsjISLZt24Zer0er1VJXV4eVlRURERHE\nx8c3DG2RYS3dp7kYbd++vdFFmFwvGFdrMXJ1dWXixIksWbKEWbNmyfWCkbT2XadWq9HpdJiZmeHp\n6dnu64Ue29Ny8OBBXnvtNeLi4rCzs2PgwIENWZ2rqytqtZrjx49jbm6OXq+nsLAQR0dHjh07hl6v\nZ+LEicY+hR7vRjFSqVScOHECd3d3JkyYQEVFBRYWFpw4cQK1Ws2ECROMfQo9Xls+RydOnECr1eLr\n68uAAQOIjo7G3d0dV1dXuYPfDdryOUpISMDDw4OIiAj8/f3RarXs2LEDFxcXhg8fbuxT6NHq4xMf\nH4+NjQ1Dhw5l8ODB9OvXj7i4OAoLCwkICECn06FWq/Hz8+PkyZPs3r2b1atXY2lpSWBgoLFPo0dr\na4xqa2tJS0uT6wUjuFGMLl68yNChQ3FycmLAgAFyvWAE7f2u69evH7t3727X9UKPTFry8/N58cUX\nue+++3BycmLPnj1kZ2fj7+/PqVOnCA0NxdPTk/j4eNRqNZWVlXz++eds2bKF+Ph4IiMj8fb2NvZp\n9GhtjVFcXBzV1dVYWFiwbt06Pv74YxITE4mMjMTLy8vYp9GjtedzVFlZSXBwMOXl5WRnZ1NYWMiI\nESMkYelibY1RQkICFRUVuLm58emnn/L2229z/vx55syZg5ubm7FPo8e6Nj6Ojo7s3r2boqIiRo0a\nhbm5OWq1ml27dhESEoK9vT0A1dXVvPXWW+Tk5PDEE09wxx13GPkserb2xujgwYNs376dqKgouV7o\nJm2JUXR0NCEhIdjZ2ZGYmMimTZv46KOP5Hqhmxj6XXf27FmKiorafL3QY5KWuro63n//fVJSUkhL\nS8Pb25u77roLHx8fHBwciIqKYujQoeTl5TV0S1VXVxMVFcVTTz3FmDFj6NOnD48//rh8AXURQ2O0\nZcsWlixZQnBwMM7OzqxYsUK+gLqIITGqqalh06ZNzJ07F0tLS7y9vRk3bpyxT6XHMjRGUVFRLF68\nmJEjR+Lq6sqyZcskYekCrcWnd+/erFu3joiICOzt7dFqtWRlZZGfn09QUBCpqakNvcuvvvpqoxmq\nROcxJEa5ubkEBwejUqmYMWMGffv2leuFLmRIjPLy8ggODubSpUuMHTuWvn37snz5crle6CId+a5L\nT0+nb9+++Pr6tut6oUcM8MvLy2P58uVcunQJrVbLyy+/zPbt26moqECr1RIcHExYWBixsbEMGzaM\n9957j5qaGkpLSxk2bBiVlZVYWVk1zN4iOp+hMSopKSEoKIiqqip69erF5MmTjX0qPZahMSouLiYk\nJISqqioAuRDuQh2J0fDhw6msrARgzJgxRj6TnulG8QkNDWXYsGF8/PHHAHh4eDBjxgw2btzI2LFj\nOXbsGOPGjWPBggVGPpOey9AYRUVFMXbsWGJjY7GxsZEbM13I0Bht2rSJsWPHEhcXh6OjI5MmTTLy\nmfRcHf2uO3r0aEMdUnv0iJ6W7OxsoqOjWbNmDUOHDiUjI4OjR49y8eLFhrGmvXr1IiEhgQULFpCT\nk8P27ds5ePAgDz/8MC4uLkY+g55PYmT6JEamT2Jk2m4UH71ej5OTEwcOHCAoKIiysjIee+wx3Nzc\nePnll5kwYYIUC3exjsYoIiLC2KfQ40mMTF9nxMiQ4eOaLjiXbufk5MRDDz2ETqdDp9Ph7e3N2rVr\nWblyJcePHycwMBBbW1s0Gg3W1tYsW7aMy5cvN4yrE11PYmT6JEamT2Jk2toaH0tLS5ydnSkpKeGh\nhx5i1qxZxm76L4bEyPRJjEyfsWLUI3pabGxs8Pb2RqVSodPpeO+997j//vuxtbVl8+bNuLi4cPTo\nUdLS0oiIiECr1aLVao3d7F8UiZHpkxiZPomRaWtrfFJTU5k4cSK9evVi0KBBxm72L4rEyPRJjEyf\nsWLUI3parpWcnAwoQyQWLlyIlZUVBw8epKCggFWrVmFtbW3kFgqJkemTGJk+iZFpu1F8bGxsjNxC\nITEyfRIj09edMepxSUteXh4zZ85smH4tKCiI5cuXy9SrJkRiZPokRqZPYmTaJD6mT2Jk+iRGpq87\nY9Tjkpbi4mJeeeUVdu/ezZ133sns2bON3SRxHYmR6ZMYmT6JkWmT+Jg+iZHpkxiZvu6MkUqv1+u7\n7OhGcPjwYZKSkpg/fz4WFhbGbo5ohsTI9EmMTJ/EyLRJfEyfxMj0SYxMX3fGqMclLXq9XroNTZzE\nyPRJjEyfxMi0SXxMn8TI9EmMTF93xqjHJS1CCCGEEEKInkVWsRJCCCGEEEKYNElahBBCCCGEECZN\nkhYhhBBCCCGESZOkRQghhBBCCGHSJGkRQgghhBBCmDRJWoQQQgghhBAm7f8Bt33iRK3VoFEAAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -906,13 +997,17 @@ ], "source": [ "Y = pd.Series(unemployment)\n", - "X_train = pd.DataFrame([qqq[:e], inflation[:e], iwm[:e], fx[:e], gold[:e]], columns = Y[:e].index, index = X_str).T\n", - "X_test = pd.DataFrame([qqq[e:], inflation[e:], iwm[e:], fx[e:], gold[e:]], columns = Y[e:].index, index = X_str).T\n", + "X_train = pd.DataFrame([qqq[:e], inflation[:e], iwm[:e], fx[:e],\n", + " gold[:e]], columns = Y[:e].index, index = X_str).T\n", + "\n", + "X_test = pd.DataFrame([qqq[e:], inflation[e:], iwm[e:], fx[e:],\n", + " gold[e:]], columns = Y[e:].index, index = X_str).T\n", "\n", "\n", "thetas = regression.linear_model.OLS(Y.loc[:e], sm.add_constant(X_train)).fit().params\n", "model_insample = (thetas[0] + thetas[1] * X_train['qqq'] + thetas[2] * X_train['inflation']\n", " + thetas[3] * X_train['iwm'] + thetas[5] * X_train['gold'])\n", + "\n", "model_outsample = (thetas[0] + thetas[1] * X_test['qqq'] + thetas[2] * X_test['inflation']\n", " + thetas[3] * X_test['iwm'] + thetas[5] * X_test['gold'])\n", "\n", @@ -930,7 +1025,7 @@ }, { "cell_type": "code", - "execution_count": 967, + "execution_count": 225, "metadata": { "collapsed": false, "scrolled": false @@ -960,7 +1055,8 @@ "X = [qqq[e:], inflation[e:], iwm[e:], fx[e:], gold[e:]]\n", "\n", "# Our step AIC algorithm selected all predictors except for fx_rate\n", - "predictors = pd.DataFrame(data = [qqq[e:], inflation[e:], iwm[e:], gold[e:]], index = ['qqq', 'inflation', 'iwm', 'gold']).T\n", + "predictors = pd.DataFrame(data = [qqq[e:], inflation[e:], iwm[e:], gold[e:]], \n", + " index = ['qqq', 'inflation', 'iwm', 'gold']).T\n", "\n", "# Setting partition dates to the first day of every year 2002-2012\n", "cutoff_dates = pd.date_range(start = '2012-01-01', end = '2017-01-01', freq = '6MS')\n", @@ -975,11 +1071,14 @@ " testing_data = predictors.loc[cutoff_dates[i]:cutoff_dates[i+1]]\n", " \n", " # Fitting model within the training set\n", - " fitted_theta = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], sm.add_constant(training_data)).fit().params\n", + " thetas = regression.linear_model.OLS(Y[cutoff_dates[0]:cutoff_dates[i]], \n", + " sm.add_constant(training_data)).fit().params\n", " \n", " # Testing performance within the testing set\n", - " testing_model = (fitted_theta[0] + fitted_theta[1] * testing_data['qqq'] + fitted_theta[2] * testing_data['inflation']\n", - " + fitted_theta[3] * testing_data['iwm'] + fitted_theta[4] * testing_data['gold'])\n", + " testing_model = (thetas[0] + thetas[1] * testing_data['qqq'] \n", + " + thetas[2] * testing_data['inflation']\n", + " + thetas[3] * testing_data['iwm'] \n", + " + thetas[4] * testing_data['gold'])\n", " \n", " # Caluclate Mean Squared Error for the model runnning on the testing set\n", " errors = Y[cutoff_dates[i]:cutoff_dates[i+1]]-testing_model\n", diff --git a/notebooks/lectures/Model_Validation/preview.html b/notebooks/lectures/Model_Validation/preview.html index fe4efcca..9ebdf81f 100644 --- a/notebooks/lectures/Model_Validation/preview.html +++ b/notebooks/lectures/Model_Validation/preview.html @@ -1,6 +1,6 @@ - Model Validation Lecture + Model Validation Lecture V2