Skip to content

Commit 3555b85

Browse files
authored
Merge pull request #103 from r-spatialecology/main
Update CRAN v1.3.2
2 parents 306ce07 + 3653139 commit 3555b85

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

46 files changed

+678
-111
lines changed

.github/workflows/Deploy-pkgdown.yaml

+7-1
Original file line numberDiff line numberDiff line change
@@ -23,9 +23,15 @@ jobs:
2323

2424
- uses: r-lib/actions/setup-r-dependencies@v1
2525
with:
26-
extra-packages: pkgdown, future, future.apply
26+
extra-packages: pkgdown, future, future.apply, rgbif, rgdal, rnaturalearth, rnaturalearthdata, sf, terra, patchwork
2727
needs: website
2828

29+
- name: Install dependencies
30+
run: |
31+
install.packages(c("remotes"))
32+
remotes::install_github(repo = "ropensci/getCRUCLdata")
33+
shell: Rscript {0}
34+
2935
- name: Deploy package
3036
run: |
3137
git config --local user.name "$GITHUB_ACTOR"

.gitignore

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,4 +6,4 @@
66
inst/doc
77
Rplots.pdf
88
docs
9-
^CRAN-SUBMISSION$
9+
^CRAN-SUBMISSION

DESCRIPTION

+9-2
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,16 @@
11
Type: Package
22
Package: shar
33
Title: Species-Habitat Associations
4-
Version: 1.3.1
4+
Version: 1.3.2
55
Authors@R: c(person("Maximillian H.K.", "Hesselbarth", email = "[email protected]",
66
role = c("aut", "cre"), comment = c(ORCID = "0000-0003-1125-9918")),
77
person("Marco", "Sciaini", email = "[email protected]",
8-
role = "aut", comment = c(ORCID = '0000-0002-3042-5435')))
8+
role = "aut", comment = c(ORCID = "0000-0002-3042-5435")),
9+
person("Zeke", "Marshall", email = "[email protected]",
10+
role = "ctb", comment = c(ORCID = "0000-0001-9260-7827")),
11+
person("Thomas", "Etherington", email = "[email protected]",
12+
role = "ctb", comment = c(ORCID = "0000-0002-3187-075X"))
13+
)
914
Maintainer: Maximillian H.K. Hesselbarth <[email protected]>
1015
Description:
1116
Analyse species-habitat associations in R. Therefore, information about the location
@@ -25,6 +30,7 @@ Imports:
2530
raster,
2631
spatstat.core,
2732
spatstat.geom,
33+
spatstat.random,
2834
stats,
2935
utils
3036
RoxygenNote: 7.1.2
@@ -35,6 +41,7 @@ Suggests:
3541
future.apply,
3642
knitr,
3743
rmarkdown,
44+
spatstat (>= 2.0.0),
3845
testthat (>= 2.1.0)
3946
VignetteBuilder: knitr
4047
Encoding: UTF-8

NEWS.md

+7
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,10 @@
1+
# shar 1.3.2
2+
* Improvements
3+
* Improvement of `classify_habitats()` to be more variable
4+
* Adding breaks argument to `results_habitat_association()`
5+
* Adding `classint_to_vector()` helper function
6+
* Include new `spatstat` package structure
7+
18
# shar 1.3.1
29
* Improvements
310
* Bugfix in `plot.rd_pat()` and `plot.rd_mar()`

R/classify_habitats.R

+33-11
Original file line numberDiff line numberDiff line change
@@ -3,23 +3,29 @@
33
#' @description Classify habitats
44
#'
55
#' @param raster RasterLayer with continuous environmental values.
6-
#' @param classes Integer with number of classes.
7-
#' @param style Character with method of classification. See Details section for
8-
#' more information.
6+
#' @param return_breaks Logical if breaks should be returned as well.
7+
#' @param ... Arguments passed on to \code{classIntervals}.
98
#'
109
#' @details
1110
#' Classifies a RasterLayer from the \code{raster} packages with continuous
12-
#' values into n discrete classes. Consequently, classes are non-overlapping (and left-closed).
13-
#' For more information about the classification method, see \code{\link{classIntervals}} from
14-
#' the \code{classInt} package and/or the provided References.
11+
#' values into n discrete classes. The \code{cut} function used to classify the raster,
12+
#' uses \code{include.lowest = TRUE}.
13+
#'
14+
#' For more information about the classification methods, see \code{classIntervals} from
15+
#' the \code{classInt} package and/or the provided References. The help page of \code{classIntervals}
16+
#' also includes further possible arguments to find breaks (e.g., different styles, number
17+
#' of classes, fixed breaks, etc.).
1518
#'
1619
#' @seealso
1720
#' \code{\link{classIntervals}}
1821
#'
1922
#' @return RasterLayer
2023
#'
2124
#' @examples
22-
#' landscape_classified <- classify_habitats(landscape, classes = 5)
25+
#' landscape_classified <- classify_habitats(landscape, n = 5, style = "fisher")
26+
#'
27+
#' landscape_classified <- classify_habitats(landscape, style = "fixed",
28+
#' fixedBreaks = c(0, 0.25, 0.75, 1.0), return_breaks = TRUE)
2329
#'
2430
#' @aliases classify_habitats
2531
#' @rdname classify_habitats
@@ -39,19 +45,35 @@
3945
#' reduction. Annals of the Association of American Geographers 61, 217–244.
4046
#' <https://doi.org/10.1111/j.1467-8306.1971.tb00779.x>
4147
#'
48+
#' Jiang, B., 2013. Head/tail breaks: A new classification scheme for data with a
49+
#' heavy-tailed distribution. The Professional Geographer 65, 482-494.
50+
#' <https://doi.org/10.1080/00330124.2012.700499>
51+
#'
4252
#' Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H., 2009. Thematic cartography
4353
#' and geovisualization, 3rd ed. ed, Prentice Hall Series in Geographic Information Science.
4454
#' Pearson Prentice Hall, Upper Saddle River, USA. ISBN 978-0-13-229834-6
4555
#'
56+
#' Wand, M. P., 1995. Data-based choice of histogram binwidth. The American
57+
#' Statistician 51, 59-64. <https://doi.org/10.1080/00031305.1997.10473591>
58+
#'
4659
#' @export
47-
classify_habitats <- function(raster, classes = 5, style = "fisher"){
60+
classify_habitats <- function(raster, return_breaks = FALSE, ...){
4861

4962
raster_values <- raster::values(raster) # get all values
5063

51-
breaks <- classInt::classIntervals(var = raster_values,
52-
n = classes, style = style) # get class intervals
64+
breaks <- classInt::classIntervals(var = raster_values, ...) # use classInt to find breaks
5365

5466
result <- raster::cut(raster, breaks = breaks$brks, include.lowest = TRUE) # classify raster
5567

56-
return(result)
68+
# return RasterLayer and breaks
69+
if (return_breaks) {
70+
71+
return(list(raster = result, breaks = breaks))
72+
73+
# return only RasterLayer
74+
} else {
75+
76+
return(result)
77+
78+
}
5779
}

R/classint_to_vector.R

+51
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,51 @@
1+
#' classint_to_vector
2+
#'
3+
#' @description Convert classIntervals to vector
4+
#'
5+
#' @param x classIntervals object
6+
#' @param digits Integer with digits used for rounding.
7+
#'
8+
#' @details
9+
#' Returns a character vector with breaks of a \code{classIntervals} object. If
10+
#' \code{digits = NULL}, results will not be rounded
11+
#'
12+
#' @return vector
13+
#'
14+
#' @examples
15+
#' \dontrun{
16+
#' classint_to_vector(x = landscape_classified$breaks, digits = 4)
17+
#' }
18+
#'
19+
#' @aliases classint_to_vector
20+
#' @rdname classint_to_vector
21+
#'
22+
#' @keywords internal
23+
classint_to_vector <- function(x, digits = NULL) {
24+
25+
# get interval closures
26+
if (methods::slot(x, "intervalClosure") == "left") {
27+
28+
brackets <- c("[", ")")
29+
30+
} else {
31+
32+
brackets <- c("(", "]")
33+
34+
}
35+
36+
# round if digits is present
37+
if (!is.null(digits)) {
38+
39+
x$brks <- round(x = x$brks, digits = digits)
40+
41+
}
42+
43+
# create vector of breaks
44+
breaks <- paste(x$brks[1:length(x$brks) - 1], x$brks[2:length(x$brks)], sep = ",")
45+
46+
# add intervall closures
47+
breaks <- paste0(brackets[1], breaks, brackets[2])
48+
49+
return(breaks)
50+
51+
}

R/extract_points.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
#'
1616
#' @examples
1717
#' \dontrun{
18-
#' landscape_classified <- classify_habitats(landscape, classes = 5)
18+
#' landscape_classified <- classify_habitats(landscape, n = 5, style = "fisher")
1919
#' extract_points(raster = landscape_classified, pattern = species_b)
2020
#' }
2121
#'
@@ -30,7 +30,7 @@ extract_points <- function(raster, pattern){
3030
pattern <- spatstat.geom::coords(pattern) # extract only coords of points
3131

3232
# get habitat points are located within
33-
pattern_extracted <- factor(raster::extract(x = raster, y = pattern, factor = TRUE),
33+
pattern_extracted <- factor(raster::extract(x = raster, y = pattern, factor = TRUE),
3434
levels = habitat_levels)
3535

3636
result <- utils::stack(table(pattern_extracted)) # count number of points within each habitat

R/fit_point_process.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ fit_point_process <- function(pattern,
6767

6868
result <- lapply(seq_len(n_random), function(x) {
6969

70-
simulated <- spatstat.core::runifpoint(n = pattern$n, win = pattern$window) # simulate poisson process
70+
simulated <- spatstat.random::runifpoint(n = pattern$n, win = pattern$window) # simulate poisson process
7171

7272
if (verbose) {
7373

@@ -113,7 +113,7 @@ fit_point_process <- function(pattern,
113113
difference <- pattern$n - simulated$n
114114

115115
# create missing points
116-
missing_points <- spatstat.core::runifpoint(n = difference, win = pattern$window,
116+
missing_points <- spatstat.random::runifpoint(n = difference, win = pattern$window,
117117
nsim = 1, drop = TRUE)
118118

119119
# add missing points to simulated

R/plot.rd_ras.R

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
#'
2424
#' @examples
2525
#' \dontrun{
26-
#' landscape_classified <- classify_habitats(landscape, classes = 5)
26+
#' landscape_classified <- classify_habitats(landscape, n = 5, style = "fisher")
2727
#' landscape_random <- randomize_raster(landscape_classified, n_random = 19)
2828
#' plot(landscape_random)
2929
#' }

R/print.rd_ras.R

+1-1
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717
#'
1818
#' @examples
1919
#' \dontrun{
20-
#' landscape_classified <- classify_habitats(landscape, classes = 5)
20+
#' landscape_classified <- classify_habitats(landscape, n = 5, style = "fisher")
2121
#' landscape_random <- randomize_raster(landscape_classified, n_random = 19)
2222
#'
2323
#' print(landscape_random)

R/randomize_raster.R

+1-1
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@
2828
#'
2929
#' @examples
3030
#' \dontrun{
31-
#' landscape_classified <- classify_habitats(landscape, classes = 5)
31+
#' landscape_classified <- classify_habitats(landscape, n = 5, style = "fisher")
3232
#' landscape_random <- randomize_raster(landscape_classified, n_random = 19)
3333
#' }
3434
#'

R/reconstruct_pattern_cluster.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ reconstruct_pattern_cluster <- function(pattern,
155155
# difference between patterns
156156
difference <- pattern$n - simulated$n
157157
# create missing points
158-
missing_points <- spatstat.core::runifpoint(n = difference, nsim = 1, drop = TRUE,
158+
missing_points <- spatstat.random::runifpoint(n = difference, nsim = 1, drop = TRUE,
159159
win = pattern$window,
160160
warn = FALSE)
161161
# add missing points to simulated
@@ -216,7 +216,7 @@ reconstruct_pattern_cluster <- function(pattern,
216216
rp_id <- sample(x = seq_len(simulated_current$n), size = max_runs, replace = TRUE)
217217

218218
# create random new points
219-
rp_coords <- spatstat.core::runifpoint(n = max_runs, nsim = 1, drop = TRUE,
219+
rp_coords <- spatstat.random::runifpoint(n = max_runs, nsim = 1, drop = TRUE,
220220
win = simulated_current$window, warn = FALSE)
221221

222222
# create random number for annealing prob

R/reconstruct_pattern_hetero.R

+3-3
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@
2727
#'
2828
#' @examples
2929
#' \dontrun{
30-
#' input_pattern <- spatstat.core::rpoispp(lambda = function(x, y) {100 * exp(-3 * x)},
30+
#' input_pattern <- spatstat.random::rpoispp(lambda = function(x, y) {100 * exp(-3 * x)},
3131
#' nsim = 1)
3232
#' pattern_recon <- reconstruct_pattern_hetero(input_pattern, n_random = 19, max_runs = 1000)
3333
#' }
@@ -131,7 +131,7 @@ reconstruct_pattern_hetero <- function(pattern,
131131
lambda <- spatstat.core::density.ppp(pattern)
132132

133133
# create starting pattern
134-
simulated <- spatstat.core::rpoint(n = pattern$n, f = lambda, win = pattern$window)
134+
simulated <- spatstat.random::rpoint(n = pattern$n, f = lambda, win = pattern$window)
135135

136136

137137
# fast computation of summary functions
@@ -186,7 +186,7 @@ reconstruct_pattern_hetero <- function(pattern,
186186
rp_id <- sample(x = seq_len(simulated_current$n), size = max_runs, replace = TRUE)
187187

188188
# create random new points
189-
rp_coords <- spatstat.core::rpoint(n = max_runs, f = lambda, win = pattern$window)
189+
rp_coords <- spatstat.random::rpoint(n = max_runs, f = lambda, win = pattern$window)
190190

191191
# create random number for annealing prob
192192
if (annealing != 0) {

R/reconstruct_pattern_homo.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ reconstruct_pattern_homo <- function(pattern,
153153
length.out = r_length)
154154

155155
# create Poisson simulation data
156-
simulated <- spatstat.core::runifpoint(n = n_points, nsim = 1, drop = TRUE,
156+
simulated <- spatstat.random::runifpoint(n = n_points, nsim = 1, drop = TRUE,
157157
win = window, warn = FALSE)
158158

159159
# fast computation of summary functions
@@ -208,7 +208,7 @@ reconstruct_pattern_homo <- function(pattern,
208208
rp_id <- sample(x = seq_len(simulated_current$n), size = max_runs, replace = TRUE)
209209

210210
# create random new points
211-
rp_coords <- spatstat.core::runifpoint(n = max_runs, nsim = 1, drop = TRUE,
211+
rp_coords <- spatstat.random::runifpoint(n = max_runs, nsim = 1, drop = TRUE,
212212
win = simulated_current$window,
213213
warn = FALSE)
214214

0 commit comments

Comments
 (0)