8
8
# ' @param max_runs Maximum number of iterations of e_threshold is not reached.
9
9
# ' @param no_change Reconstrucction will stop if energy does not decrease for this number of iterations.
10
10
# ' @param annealing Probability to keep relocated point even if energy did not decrease.
11
+ # ' @param n_points Number of points to be simulated.
12
+ # ' @param window Window of simulated pattern.
11
13
# ' @param comp_fast If pattern contains more points than threshold, summary functions are estimated in a computational fast way.
12
14
# ' @param weights Weights used to calculate energy. The first number refers to Gest(r), the second number to pcf(r).
13
15
# ' @param r_length Number of intervals from r = 0 to r = rmax the summary functions are evaluated.
32
34
# ' decrease. The number of steps can be controlled by \code{no_change} and is set to
33
35
# ' \code{no_change = Inf} as default to never stop automatically.
34
36
# '
37
+ # ' If \code{n_points} and \code{window} are not specified (default), the simulated pattern
38
+ # ' has the same number of points and window as the input pattern.
39
+ # '
35
40
# ' The weights must be 0 < sum(weights) <= 1. To weight both summary functions identical,
36
41
# ' use \code{weights = c(0.5, 0.5)}.
37
42
# '
49
54
# '
50
55
# ' @examples
51
56
# ' \dontrun{
52
- # ' pattern_recon <- reconstruct_pattern_homo(species_a, n_random = 19, max_runs = 1000)
57
+ # ' pattern_recon_a <- reconstruct_pattern_homo(species_a, n_random = 19,
58
+ # ' max_runs = 1000)
59
+ # '
60
+ # ' pattern_recon_b <- reconstruct_pattern_homo(species_a, n_points = 70,
61
+ # ' n_random = 19, max_runs = 1000)
53
62
# ' }
54
63
# '
55
64
# ' @aliases reconstruct_pattern_homo
@@ -69,6 +78,8 @@ reconstruct_pattern_homo <- function(pattern,
69
78
max_runs = 1000 ,
70
79
no_change = Inf ,
71
80
annealing = 0.01 ,
81
+ n_points = NULL ,
82
+ window = NULL ,
72
83
comp_fast = 1000 ,
73
84
weights = c(0.5 , 0.5 ),
74
85
r_length = 250 ,
@@ -79,22 +90,50 @@ reconstruct_pattern_homo <- function(pattern,
79
90
80
91
# check if n_random is >= 1
81
92
if (n_random < 1 ) {
93
+
82
94
stop(" n_random must be >= 1." , call. = FALSE )
95
+
96
+ }
97
+
98
+ # use number of points of pattern if not provided
99
+ if (is.null(n_points )) {
100
+
101
+ message(" > Using number of points 'pattern'." )
102
+
103
+ n_points <- pattern $ n
104
+
105
+ }
106
+
107
+ # use window of pattern if not provided
108
+ if (is.null(window )) {
109
+
110
+ message(" > Using window of 'pattern'." )
111
+
112
+ window <- pattern $ window
113
+
83
114
}
84
115
116
+ # calculate intensity
117
+ intensity <- n_points / spatstat.geom :: area(window )
118
+
85
119
# check if number of points exceed comp_fast limit
86
- if (pattern $ n > comp_fast ) {
120
+ if (n_points > comp_fast ) {
87
121
88
122
# Print message that summary functions will be computed fast
89
123
if (verbose ) {
124
+
90
125
message(" > Using fast compuation of summary functions." )
126
+
91
127
}
92
128
93
129
comp_fast <- TRUE
130
+
94
131
}
95
132
96
133
else {
134
+
97
135
comp_fast <- FALSE
136
+
98
137
}
99
138
100
139
# set names of randomization randomized_1 ... randomized_n
@@ -116,6 +155,7 @@ reconstruct_pattern_homo <- function(pattern,
116
155
if (sum(weights ) > 1 || sum(weights ) == 0 ) {
117
156
118
157
stop(" The sum of 'weights' must be 0 < sum(weights) <= 1." , call. = FALSE )
158
+
119
159
}
120
160
121
161
# unmark pattern
@@ -126,20 +166,21 @@ reconstruct_pattern_homo <- function(pattern,
126
166
if (verbose ) {
127
167
warning(" Unmarked provided input pattern. For marked pattern, see reconstruct_pattern_marks()." ,
128
168
call. = FALSE )
169
+
129
170
}
130
171
}
131
172
132
173
# calculate r
133
174
r <- seq(from = 0 ,
134
- to = spatstat.core :: rmax.rule(W = pattern $ window ,
135
- lambda = spatstat.geom :: intensity.ppp( pattern ) ),
175
+ to = spatstat.core :: rmax.rule(W = window ,
176
+ lambda = intensity ),
136
177
length.out = r_length )
137
178
138
179
# create Poisson simulation data
139
- simulated <- spatstat.core :: runifpoint(n = pattern $ n ,
140
- nsim = 1 , drop = TRUE ,
141
- win = pattern $ window ,
142
- warn = FALSE )
180
+ simulated <- spatstat.core :: runifpoint(n = n_points ,
181
+ nsim = 1 , drop = TRUE ,
182
+ win = window ,
183
+ warn = FALSE )
143
184
144
185
# fast computation of summary functions
145
186
if (comp_fast ) {
@@ -212,11 +253,13 @@ reconstruct_pattern_homo <- function(pattern,
212
253
if (annealing != 0 ) {
213
254
214
255
random_annealing <- stats :: runif(n = max_runs , min = 0 , max = 1 )
256
+
215
257
}
216
258
217
259
else {
218
260
219
261
random_annealing <- rep(0 , max_runs )
262
+
220
263
}
221
264
222
265
# pattern reconstruction algorithm (optimaztion of energy) - not longer than max_runs
@@ -294,7 +337,9 @@ reconstruct_pattern_homo <- function(pattern,
294
337
295
338
# increase counter no change
296
339
else {
340
+
297
341
energy_counter <- energy_counter + 1
342
+
298
343
}
299
344
300
345
# count iterations
@@ -307,13 +352,16 @@ reconstruct_pattern_homo <- function(pattern,
307
352
if (verbose ) {
308
353
309
354
if (! plot ) {
355
+
310
356
Sys.sleep(0.01 )
357
+
311
358
}
312
359
313
360
message(" \r > Progress: n_random: " , current_pattern , " /" , n_random ,
314
361
" || max_runs: " , floor(i / max_runs * 100 ), " %" ,
315
362
" || energy = " , round(energy_current , 5 ), " \t\t " ,
316
363
appendLF = FALSE )
364
+
317
365
}
318
366
319
367
# exit loop if e threshold or no_change counter max is reached
@@ -323,13 +371,15 @@ reconstruct_pattern_homo <- function(pattern,
323
371
stop_criterion_list [[current_pattern ]] <- " e_threshold/no_change"
324
372
325
373
break
374
+
326
375
}
327
376
}
328
377
329
378
# close plotting device
330
379
if (plot ) {
331
380
332
381
grDevices :: dev.off()
382
+
333
383
}
334
384
335
385
# remove NAs if stopped due to energy
0 commit comments