-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsystem_model.py
175 lines (142 loc) · 4.83 KB
/
system_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
from enum import Enum
from math import asin, log2, pi, sqrt, exp, pow
from constants import (
BLADE_PROFILE_POWER,
CARRIER_FREQUENCY,
EXCESSIVE_PATH_LOSS_LOS,
EXCESSIVE_PATH_LOSS_NLOS,
FUSELAGE_DRAG_RATIO,
INDUCED_POWER_HOVER,
LOS_CONSTANT,
LARGE_SCALE_FADING,
MEAN_AIR_DENSITY,
MEAN_ROTOR_INDUCED_VELOCITY,
NUM_IOTS,
PATH_LOSS_EXPONENT,
PROPAGATION_PARAMETER,
ROTOR_DISC_AREA,
ROTOR_SOLIDITY,
SPEED_OF_LIGHT,
)
class BaseObj:
def __init__(self, x=0, y=0, z=0, **kwargs):
super().__init__(**kwargs)
self.x = x
self.y = y
self.z = z
def getDistance(self, other: "BaseObj"):
return sqrt(
(self.x - other.x) ** 2 + (self.y - other.y) ** 2 + (self.z - other.z) ** 2
)
def getElevationAngle(self, other: "BaseObj"):
return asin((other.z - self.z) / self.getDistance(other))
class Receiver(BaseObj):
def __init__(self, gaussianNoisePower: float = 1, **kwargs):
super().__init__(**kwargs)
self.gaussianNoisePowerSq = gaussianNoisePower
class Transmitter(BaseObj):
def __init__(
self,
bandwidth: float = 1,
transmissionPower: float = 1,
amountOfData: float = 1,
smallScaleFading: float = 1,
**kwargs
):
super().__init__(**kwargs)
self.bandwidth = bandwidth
self.transmissionPower = transmissionPower
self.amountOfData = amountOfData
self.smallScaleFading = smallScaleFading
def getChannelCoef(self):
return sqrt(LARGE_SCALE_FADING) * self.smallScaleFading
def getLOSProbability(self, receiver: Receiver):
raise NotImplemented()
def getSpectralEfficiency(self):
gaussianNoise = np.random.rand(1)
return log2(
1
+ (self.transmissionPower * self.getChannelCoef() ** 2)
/ (gaussianNoise**2)
)
def getDataRate(self):
return self.bandwidth * self.getSpectralEfficiency()
def getUploadLatency(self):
return self.amountOfData / self.getDataRate()
def getChannelGain(self, receiver: Receiver):
assert EXCESSIVE_PATH_LOSS_NLOS > EXCESSIVE_PATH_LOSS_LOS > 1
# return (
# (1 / x)
# * pow(
# (4 * pi * CarrirFrequency * self.getDistance(uav)) / SpeedOfLight,
# -PathLossExponent,
# )
# for x in (ExcessivePathLossNLOS, ExcessivePathLossLOS)
# )
p = self.getLOSProbability(receiver)
return (p / EXCESSIVE_PATH_LOSS_LOS + (1 - p) / EXCESSIVE_PATH_LOSS_NLOS) * pow(
(4 * pi * CARRIER_FREQUENCY * self.getDistance(receiver)) / SPEED_OF_LIGHT,
-PATH_LOSS_EXPONENT,
)
class UAV_STATUS(Enum):
HOVERING = 0
TRAVELLING = 1
class UAV(Transmitter, Receiver):
def __init__(self, initialEnergy=100, **kwargs):
super().__init__(**kwargs)
self.status = UAV_STATUS.HOVERING
self.energy = initialEnergy
def getFlightTime(self):
return 1
def getLOSProbability(self, _: Receiver):
return 1
def getTipSpeed(self):
return 1
def travel(self, distance: float, velocity: float):
self.energy -= (distance / velocity) * (
BLADE_PROFILE_POWER * (1 + (3 * velocity**2) / self.getTipSpeed() ** 2)
+ (INDUCED_POWER_HOVER * MEAN_ROTOR_INDUCED_VELOCITY / velocity)
+ FUSELAGE_DRAG_RATIO
* ROTOR_SOLIDITY
* MEAN_AIR_DENSITY
* ROTOR_DISC_AREA
* (velocity**3)
/ 2
)
assert(self.energy > 0)
class IOT(Transmitter):
def __init__(self, **kwargs):
super.__init__(**kwargs)
self.aoi = 0
def getLOSProbability(self, receiver: Receiver):
return 1 / (
1
+ PROPAGATION_PARAMETER
* exp(
-LOS_CONSTANT
* (self.getElevationAngle(receiver) - PROPAGATION_PARAMETER)
)
)
def uploadData(self, uav: UAV):
self.aoi = uav.getFlightTime() + self.getUploadLatency()
def getEnergyConsumption(self, receiver: Receiver):
return self.amountOfData / (
self.getChannelGain(receiver)
* log2(
1
+ (
self.transmissionPower
* (self.getChannelCoef() ** 2)
/ receiver.gaussianNoisePowerSq
)
)
)
def getAvgAOI(iots):
return sum((iot.aoi for iot in iots)) / len(iots)
def main():
# smallScaleFading being complex variable with, mean = 1
mags = np.sqrt(np.random.normal(1, size=NUM_IOTS))
angles = np.random.uniform(0, 2 * np.pi, NUM_IOTS)
smallScaleFadings = mags * np.exp(1j * angles)
# iots = [IOT(0, 0, x, 1, 1) for x in smallScaleFadings]