Skip to content

Commit d4de5d2

Browse files
committed
Shifted GIFs to Google Drive
1 parent 4dba139 commit d4de5d2

File tree

11 files changed

+10
-10
lines changed

11 files changed

+10
-10
lines changed

README.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ After this, each processed text is stored in the respective year file separated
132132
#### Training
133133

134134
<p align="center">
135-
<img src="./misc/GIFs/Training_2x.gif" alt="word_cloud_usage" height=65% width=65%/>
135+
<img src="https://drive.google.com/uc?export=view&id=1TKic-Z50mGC0JBMqc04RFkT1Shsnmpj-" alt="word_cloud_usage" height=65% width=65%/>
136136
</p>
137137

138138
The training mode uses the path where the processed text files are stored, and trains the TWEC model on the given text. The TWEC model trains a Word2Vec model on `compass.txt` and then the respective time-slices are trained on this model to get corresponding word vectors. In the sidebar, we provide several options like - whether to use Skipgram over CBOW, number of dynamic iterations for training, number of static iterations for training, negative sampling, etc. After training, we store the models at the specified path, which are used later in the analysis.
@@ -143,7 +143,7 @@ The training mode uses the path where the processed text files are stored, and t
143143
#### Word Cloud
144144

145145
<p align="center">
146-
<img src="./misc/GIFs/WordCloud_2x.gif" alt="word_cloud_usage" height=65% width=65%/>
146+
<img src="https://drive.google.com/uc?export=view&id=13v5KHWjn_JXylf1xrYRgCUGTlCM5RyTx" alt="word_cloud_usage" height=65% width=65%/>
147147
</p>
148148

149149
A word cloud, or tag cloud, is a textual data visualization which allows anyone to see in a single glance the words which have the highest frequency within a given body of text. Word clouds are typically used as a tool for processing, analyzing and disseminating qualitative sentiment data.
@@ -157,7 +157,7 @@ References:
157157
#### Productivity/Frequency Plot
158158

159159
<p align="center">
160-
<img src="./misc/GIFs/Prod_2x.gif" alt="prod_freq_usage" height=65% width=65%/>
160+
<img src="https://drive.google.com/uc?export=view&id=1YrKsMmw9MmgrzPI47c5Y-GVk4gMCPPoy" alt="prod_freq_usage" height=65% width=65%/>
161161
</p>
162162

163163
Our main reference for this method is [this paper](https://www.aclweb.org/anthology/W16-2101.pdf).
@@ -189,7 +189,7 @@ They find that the clusters formed show similar trends as expected.
189189
#### Acceleration Plot
190190

191191
<p align="center">
192-
<img src="./misc/GIFs/Acc_Plot_2x.gif" alt="acceleration_plot_usage" height=65% width=65%/>
192+
<img src="https://drive.google.com/uc?export=view&id=1aldBPCyqHJjG67tTAYzFXLuGhzpzopZb" alt="acceleration_plot_usage" height=65% width=65%/>
193193
</p>
194194

195195
This plot is based on the word-pair acceleration over time. Our inspiration for this method is [this paper](https://sci-hub.se/10.1109/ijcnn.2019.8852140).
@@ -213,7 +213,7 @@ Below, we display the top few pairs between the given start and end year in dat
213213
#### Semantic Drift
214214

215215
<p align="center">
216-
<img src="./misc/GIFs/Semantic_Drift_2x.gif" alt="semantic_drift_usage" height=65% width=65%/>
216+
<img src="https://drive.google.com/uc?export=view&id=1hwltBpJh3fVEA0sR7Zi4GRINr9Wrq_y8" alt="semantic_drift_usage" height=65% width=65%/>
217217
</p>
218218

219219
This plot represents the change in meaning of a word over time. This shift is represented on a 2-dimensional representation of the embedding space.
@@ -239,7 +239,7 @@ Below the graph, we provide a list of most drifted words (from the top-K keyword
239239
#### Tracking Clusters
240240

241241
<p align="center">
242-
<img src="./misc/GIFs/Track_Clusters_2x.gif" alt="track_clusters_usage" height=65% width=65%/>
242+
<img src="https://drive.google.com/uc?export=view&id=1iZ8BVx3woyKnF9KLxiQMAUyZQL0NcYdC" alt="track_clusters_usage" height=65% width=65%/>
243243
</p>
244244

245245
Word meanings change over time. They come closer or drift apart. In a certain year, words are clumped together, i.e., they belong to one cluster. But over time, clusters can break into two/coalesce together to form one. Unlike the previous module which tracks movement of one word at a time, here, we track the movement of clusters.
@@ -251,7 +251,7 @@ We plot the formed clusters for all the years lying in the selected range of yea
251251
#### Acceleration Heatmap
252252

253253
<p align="center">
254-
<img src="./misc/GIFs/Acc_Heatmap_2x.gif" alt="acceleration_heatmap_usage" height=65% width=65%/>
254+
<img src="https://drive.google.com/uc?export=view&id=11xdjnckFuzCgiJ8ihTosAH_tfSeec41c" alt="acceleration_heatmap_usage" height=65% width=65%/>
255255
</p>
256256

257257
This plot is based on the word-pair acceleration over time. Our inspiration for this method is [this paper](https://sci-hub.se/10.1109/ijcnn.2019.8852140).
@@ -274,7 +274,7 @@ For all the selected keywords, we display a heatmap, where the brightness of the
274274
#### Track Trends with Similarity
275275

276276
<p align="center">
277-
<img src="./misc/GIFs/Track_Trends_2x.gif" alt="track_trends_usage" height=65% width=65%/>
277+
<img src="https://drive.google.com/uc?export=view&id=1pxDhkDXLE84QH_QhZR2VEbNGM6QlPAxg" alt="track_trends_usage" height=65% width=65%/>
278278
</p>
279279

280280
In this method, we wish to chart the trajectory of a word/topic from year 1 to year 2.
@@ -287,7 +287,7 @@ The user has to select a word and click on ```Generate Dataframe```. This gives
287287
#### Keyword Visualisation
288288

289289
<p align="center">
290-
<img src="./misc/GIFs/Keyword_Viz_2x.gif" alt="keyword_viz_usage" height=65% width=65%/>
290+
<img src="https://drive.google.com/uc?export=view&id=1Ds45T3I05wKod6Gtdjy6tJeJODcTeuGj" alt="keyword_viz_usage" height=65% width=65%/>
291291
</p>
292292

293293
Here, we use the [YAKE Keyword Extraction](https://www.sciencedirect.com/science/article/abs/pii/S0020025519308588) method to extract keywords. You can read more about YAKE [here](https://amitness.com/keyphrase-extraction/).
@@ -305,7 +305,7 @@ In our code, we use an [open source implementation](https://github.com/LIAAD/yak
305305
#### LDA Topic Modelling
306306

307307
<p align="center">
308-
<img src="./misc/GIFs/LDA_2x.gif" alt="lda_usage" height=65% width=65%/>
308+
<img src="https://drive.google.com/uc?export=view&id=1Lsjfm1gwRswB4hrJJ4bGaFGUKbsTN1nd" alt="lda_usage" height=65% width=65%/>
309309
</p>
310310

311311
[Latent Dirichlet Allocation](https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf) is a generative probabilistic model for an assortment of documents, generally used for topic modelling and extraction. LDA clusters the text data into imaginary topics.

misc/GIFs/Acc_Heatmap_2x.gif

-11.4 MB
Binary file not shown.

misc/GIFs/Acc_Plot_2x.gif

-21.7 MB
Binary file not shown.

misc/GIFs/Keyword_Viz_2x.gif

-6.25 MB
Binary file not shown.

misc/GIFs/LDA_2x.gif

-12.9 MB
Binary file not shown.

misc/GIFs/Prod_2x.gif

-24.7 MB
Binary file not shown.

misc/GIFs/Semantic_Drift_2x.gif

-11.5 MB
Binary file not shown.

misc/GIFs/Track_Clusters_2x.gif

-11.7 MB
Binary file not shown.

misc/GIFs/Track_Trends_2x.gif

-12 MB
Binary file not shown.

misc/GIFs/Training_2x.gif

-11.2 MB
Binary file not shown.

0 commit comments

Comments
 (0)