-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontent_main.py
130 lines (109 loc) · 5.87 KB
/
content_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt
import click
import pickle
import torch.backends.cudnn as cudnn
from content_model import QA_RNN, run
from util.helper_functions import plot_from_logger
from util.helper_classes import MBLoader
np.random.seed(0)
torch.manual_seed(0)
@click.command()
@click.option('--model_name', default="buzz_RL", help='Name of model.',show_default=True)
@click.option('--data_dir', default="data/", help='Path to dataset file containing questions.')
@click.option('--checkpoint_file', default="checkpoints/content/checkpoint.pth", help='Path of checkpoint_file')
@click.option('--batch_size', default=64, help="Batch size.",show_default=True)
@click.option('--num_layers', default=1, help="Number of RNN layers.",show_default=True)
@click.option('--regularisation_const', default=0, help="regularisation constant",show_default=True)
@click.option('--learning_rate', default=0.001, help="LR",show_default=True)
@click.option('--state_size', default=128, help="RNN state size.",show_default=True)
@click.option('--dropout', default=0.0, help="keep_prob for droupout.",show_default=True)
@click.option('--val_interval', default=1, help='validation interval for early stopping. ',show_default=True)
@click.option('--save_interval', default=1, help='save_interval for saving the model parameters. ',show_default=True)
@click.option('--num_epochs', default=50, help='Number of iteration to train.',show_default=True)
@click.option('--train_embeddings', default=False, is_flag=True, help='train word embeddings.',show_default=True)
@click.option('--disable_cuda', default=False, is_flag=True, help='run on gpu or not',show_default=True)
@click.option('--restore', default=False, is_flag=True, help='restore previous model',show_default=True)
@click.option('--debug', default=False, is_flag=True, help='Debug model',show_default=True)
@click.option('--early_stopping', default=True, is_flag=True, help='early stopping on validation error.',show_default=True)
@click.option('--early_stopping_interval', default=15, help='early stopping on validation error.',show_default=True)
def main(model_name,data_dir,batch_size,num_layers,learning_rate, state_size,dropout,save_interval,val_interval,early_stopping_interval,num_epochs,train_embeddings,early_stopping,disable_cuda,checkpoint_file,restore,debug,regularisation_const):
preprocessed_file = os.path.join(data_dir,"preprocessed_data.npz")
nf = np.load(preprocessed_file)
train_X,train_y,train_seq_len,\
train_buzzes,\
test_X,test_y,test_seq_len,\
test_buzzes,\
val_X,val_y,val_seq_len,\
val_buzzes,\
embd_mat, padding_index, unk_index = nf["train_X"],nf["train_y"],nf["train_seq_len"],\
nf["train_buzzes"],\
nf["test_X"],nf["test_y"],nf["test_seq_len"],\
nf["test_buzzes"],\
nf["val_X"],nf["val_y"],nf["val_seq_len"],\
nf["val_buzzes"],\
nf["embd_mat"], nf["padding_index"].item(), nf["unk_index"].item()
print(list(map(lambda x:x.shape ,[train_X,train_y,train_seq_len,train_buzzes])))
print(list(map(lambda x:x.shape ,[test_X,test_y,test_seq_len,test_buzzes])))
print(list(map(lambda x:x.shape ,[val_X,val_y,val_seq_len,val_buzzes])))
in_file = os.path.join(data_dir,"mapping_opp.pkl")
with open(in_file,"rb") as handle:
user_features = pickle.load(handle)
user_features = user_features[0]
num_ans = len(set(train_y)|set(test_y)|set(val_y))
print("#Answers :",num_ans)
if debug: # run on some random sample
train_X = train_X[1020:1021]
train_y = train_y[1020:1021]
val_X = val_X[1020:1021]
val_y = val_y[1020:1021]
test_X = test_X[1020:1021]
test_y = test_y[1020:1021]
train_seq_len = train_seq_len[1020:1021]
val_seq_len = val_seq_len[1020:1021]
test_seq_len = test_seq_len[1020:1021]
model_name = model_name+"_"+str(train_X.shape[0])+"_"+str(val_X.shape[0])+"_"+str(test_X.shape[0])+"_"+str(batch_size)+"_"+str(dropout)
train_X = torch.from_numpy(train_X)
train_y = torch.from_numpy(train_y)
train_seq_len = torch.from_numpy(train_seq_len)
val_X = torch.from_numpy(val_X)
val_y = torch.from_numpy(val_y)
val_seq_len = torch.from_numpy(val_seq_len)
test_X = torch.from_numpy(test_X)
test_y = torch.from_numpy(test_y)
test_seq_len = torch.from_numpy(test_seq_len)
embd_mat = torch.from_numpy(embd_mat)#.cuda()
model = QA_RNN(batch_size, train_X.size(1), num_layers, state_size, num_ans + 1, embd_mat, non_trainable = True, disable_cuda = disable_cuda)
print(model)
criterion = nn.CrossEntropyLoss(reduction = 'none')
if not disable_cuda:
torch.backends.cudnn.enabled = True
cudnn.benchmark = True
model.cuda()
criterion = criterion.cuda()
train_X = train_X.cuda()
# train_seq_len = train_seq_len.cpu()
train_y = train_y.cuda()
test_X = test_X.cuda()
test_y = test_y.cuda()
# test_seq_len = test_seq_len.cpu()
val_X = val_X.cuda()
val_y = val_y.cuda()
# val_seq_len = val_seq_len.cpu()
# optimizer = torch.optim.RMSprop(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate, alpha = 0.95)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate, weight_decay = regularisation_const)
print(optimizer)
print(criterion)
# print(next(model.parameters()).is_cuda)
inputs = [(train_X,train_y,train_seq_len),
(val_X,val_y,val_seq_len),
(test_X,test_y,test_seq_len)]
loader = MBLoader(inputs, batch_size)
logger = run(loader, model, criterion, optimizer, early_stopping, early_stopping_interval, checkpoint_file = checkpoint_file, num_epochs = num_epochs, restore = restore)
plot_from_logger(logger)
if __name__ == '__main__':
main()