-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontent_model.py
226 lines (167 loc) · 7.59 KB
/
content_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import numpy as np
import click
import time
import math
from torch.autograd import Variable
from util.helper_functions import load_checkpoint, save_checkpoint, sequence_masks, load_best_model
np.random.seed(0)
torch.manual_seed(0)
class QA_RNN(nn.Module):
def __init__(self, batch_size, n_steps, n_layers, hidden_size, n_outputs, embed_mat, dropout, non_trainable = True, disable_cuda = False):
super(QA_RNN, self).__init__()
self.hidden_size = hidden_size
self.batch_size = batch_size
self.n_steps = n_steps
self.n_layers = n_layers
self.n_outputs = n_outputs
self.non_trainable = non_trainable
self.embed_mat = embed_mat
self.dropout = dropout
self.device = None
if not disable_cuda and torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
self.__build_model()
def __build_model(self):
# embedding layer
num_embeddings, embedding_dim = self.embed_mat.shape
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
emb_layer.load_state_dict({'weight': self.embed_mat})
if self.non_trainable:
emb_layer.weight.requires_grad = False
self.word_embedding = emb_layer
self.gru = nn.GRU(embedding_dim, self.hidden_size, self.n_layers, batch_first = True)
self.FC = nn.Linear(self.hidden_size, self.n_outputs)
def init_hidden(self):
# (num_layers, batch_size, n_neurons)
hidden = torch.randn(self.n_layers, self.batch_size, self.hidden_size)
hidden = hidden.cuda()
return Variable(hidden)
def forward(self, X, X_lengths):
# transforms X to dimensions: n_steps X batch_size X n_inputs
# X = X.permute(1, 0, 2)
self.hidden = self.init_hidden()
X = self.word_embedding(X) # bs X seq_len X embedding_dim
X = torch.nn.utils.rnn.pack_padded_sequence(X, X_lengths, batch_first=True)
X = self.gru(X, self.hidden)[0] # bs X seq_len X hidden_size
X, _ = torch.nn.utils.rnn.pad_packed_sequence(X, batch_first=True, total_length = self.n_steps)
# project to tag space
X = X.contiguous()
X = X.view(-1, X.shape[2])
X = self.FC(X) # BS * seq_len X n_outputs
return X
def train(loader, model, criterion, optimizer):
epoch_loss = 0
correct = 0
total = 0
last_total = 0
last_correct = 0
end = time.time()
batch_size = model.batch_size
num_batch = loader.num_batches[0] # split = 0 for train
max_seq_len = loader.max_seq_len
with click.progressbar(range(num_batch)) as batch_indexes:
for batch_i in batch_indexes:
mb_X, mb_y, mb_len, all_mask, last_mask = loader.load_next_batch(0, False)
all_mask = all_mask.flatten().float()
last_mask = last_mask.flatten().float()
mb_y = mb_y.view(-1, 1).repeat(1, max_seq_len).flatten()
outputs = model(mb_X, mb_len)
# loss = criterion(outputs, mb_y)
losses = criterion(outputs, mb_y)
loss = (all_mask.cuda() * losses).sum()
_, predicted_labels = torch.max(outputs, dim = 1)
matched = (predicted_labels == mb_y).float().cpu()
correct += (all_mask * matched).sum()
total += all_mask.sum()
last_correct += (last_mask * matched).sum()
last_total += last_mask.sum()
epoch_loss += float(loss)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5)
optimizer.step()
avg_loss = epoch_loss / total
avg_acc = correct / total
last_acc = last_correct / last_total
return avg_loss, avg_acc, last_acc
def validate(loader, model, criterion, split):
with torch.no_grad():
epoch_loss = 0
correct = 0
total = 0
last_total = 0
last_correct = 0
end = time.time()
batch_size = model.batch_size
num_batch = loader.num_batches[split]
max_seq_len = loader.max_seq_len
with click.progressbar(range(num_batch)) as batch_indexes:
for batch_i in batch_indexes:
mb_X, mb_y, mb_len, all_mask, last_mask = loader.load_next_batch(split, False)
all_mask = all_mask.flatten().float()
last_mask = last_mask.flatten().float()
mb_y = mb_y.view(-1, 1).repeat(1, max_seq_len).flatten()
outputs = model(mb_X, mb_len)
losses = criterion(outputs, mb_y)
loss = (all_mask.cuda() * losses).sum()
_, predicted_labels = torch.max(outputs, dim = 1)
matched = (predicted_labels == mb_y).float().cpu()
correct += (all_mask * matched).sum()
total += all_mask.sum()
last_correct += (last_mask * matched).sum()
last_total += last_mask.sum()
epoch_loss += float(loss)
avg_loss = epoch_loss / total
avg_acc = correct / total
last_acc = last_correct / last_total
return avg_loss, avg_acc, last_acc
def run(loader, model, criterion, optimizer, early_stopping, early_stopping_interval, checkpoint_file, num_epochs, restore = True):
logger = [{'loss' : [], 'last_acc' : [], 'avg_acc' : []} for i in range(3)]
start_epoch = 1
min_loss = 99999999999999999
ntrial = 0
if restore:
model, optimizer, start_epoch, logger, min_loss = load_checkpoint(model, optimizer, logger, checkpoint_file)
for epoch in range(start_epoch, num_epochs + 1):
train_loss, avg_acc, last_acc = train(loader, model, criterion, optimizer)
logger[0]['loss'].append(train_loss)
logger[0]['last_acc'].append(last_acc)
logger[0]['avg_acc'].append(avg_acc)
print('On training set : Epoch: %d | Loss: %.4f | avg_acc : %.2f | last_acc : %.2f'
%(epoch, train_loss, avg_acc, last_acc))
val_loss, avg_acc, last_acc = validate(loader, model, criterion, split = 1)
logger[1]['loss'].append(val_loss)
logger[1]['last_acc'].append(last_acc)
logger[1]['avg_acc'].append(avg_acc)
is_best = False
if val_loss < min_loss:
min_loss = val_loss
is_best = True
ntrial = 0
print("Best Model Found")
else:
ntrial = ntrial + 1
if early_stopping and ntrial >= early_stopping_interval:
print("Early stopping! Validation error didn't improve since last " + str(ntrial) + " epochs")
break
print('On Validation set : Epoch: %d | Loss: %.4f | avg_acc : %.2f | last_acc : %.2f'
%(epoch, val_loss, avg_acc, last_acc))
save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'logger': logger,
'min_loss' : min_loss,
'optimizer' : optimizer.state_dict()}, is_best, checkpoint_file)
model = load_best_model(model, filename = 'checkpoints/content/best_model.pth')
test_loss, avg_acc, last_acc = validate(loader, model, criterion, split = 2)
print('On Test set(Best from validation set) Loss: %.4f | avg_acc : %.2f | last_acc : %.2f'
%(test_loss, avg_acc, last_acc))
logger[2]['loss'].append(test_loss)
logger[2]['last_acc'].append(last_acc)
logger[2]['avg_acc'].append(avg_acc)
return logger