|
25 | 25 |
|
26 | 26 | #include <algorithm> |
27 | 27 |
|
| 28 | +#if defined(__arm__) || defined(__aarch64__) |
| 29 | +#include <arm_neon.h> |
| 30 | +#endif |
| 31 | + |
28 | 32 | namespace raft::neighbors::detail { |
29 | 33 |
|
| 34 | +// ----------------------------------------------------------------------------- |
| 35 | +// Generic implementation |
| 36 | +// ----------------------------------------------------------------------------- |
| 37 | + |
| 38 | +template <typename DC, typename DistanceT, typename DataT> |
| 39 | +DistanceT euclidean_distance_squared_generic(DataT const* a, DataT const* b, size_t n) { |
| 40 | + // vector register capacity in elements |
| 41 | + size_t constexpr vreg_len = (128 / 8) / sizeof(DistanceT); |
| 42 | + // unroll factor = vector register capacity * number of ports; |
| 43 | + size_t constexpr unroll_factor = vreg_len * 4; |
| 44 | + |
| 45 | + // unroll factor is a power of two |
| 46 | + size_t n_rounded = n & (0xFFFFFFFF ^ (unroll_factor - 1)); |
| 47 | + DistanceT distance[unroll_factor] = {0}; |
| 48 | + |
| 49 | + for (size_t i = 0; i < n_rounded; i += unroll_factor) { |
| 50 | + for (size_t j = 0; j < unroll_factor; ++j) { |
| 51 | + distance[j] += DC::template eval<DistanceT>(a[i + j], b[i + j]); |
| 52 | + } |
| 53 | + } |
| 54 | + |
| 55 | + for (size_t i = n_rounded; i < n; ++i) { |
| 56 | + distance[i] += DC::template eval<DistanceT>(a[i], b[i]); |
| 57 | + } |
| 58 | + |
| 59 | + for (size_t i = 1; i < unroll_factor; ++i) { |
| 60 | + distance[0] += distance[i]; |
| 61 | + } |
| 62 | + |
| 63 | + return distance[0]; |
| 64 | +} |
| 65 | + |
| 66 | +// ----------------------------------------------------------------------------- |
| 67 | +// NEON implementation |
| 68 | +// ----------------------------------------------------------------------------- |
| 69 | + |
| 70 | +struct distance_comp_l2; |
| 71 | +struct distance_comp_inner; |
| 72 | + |
| 73 | +// fallback |
| 74 | +template<typename DC, typename DistanceT, typename DataT> |
| 75 | +DistanceT euclidean_distance_squared(DataT const* a, DataT const* b, size_t n) { |
| 76 | + return euclidean_distance_squared_generic<DC, DistanceT, DataT>(a, b, n); |
| 77 | +} |
| 78 | + |
| 79 | +#if defined(__arm__) || defined(__aarch64__) |
| 80 | + |
| 81 | +template<> |
| 82 | +inline float euclidean_distance_squared<distance_comp_l2, float, float>( |
| 83 | + float const* a, float const* b, size_t n) { |
| 84 | + |
| 85 | + int n_rounded = n - (n % 4); |
| 86 | + |
| 87 | + float32x4_t vreg_dsum = vdupq_n_f32(0.f); |
| 88 | + for (int i = 0; i < n_rounded; i += 4) { |
| 89 | + float32x4_t vreg_a = vld1q_f32(&a[i]); |
| 90 | + float32x4_t vreg_b = vld1q_f32(&b[i]); |
| 91 | + float32x4_t vreg_d = vsubq_f32(vreg_a, vreg_b); |
| 92 | + vreg_dsum = vfmaq_f32(vreg_dsum, vreg_d, vreg_d); |
| 93 | + } |
| 94 | + |
| 95 | + float dsum = vaddvq_f32(vreg_dsum); |
| 96 | + for (int i = n_rounded; i < n; ++i) { |
| 97 | + float d = a[i] - b[i]; |
| 98 | + dsum += d * d; |
| 99 | + } |
| 100 | + |
| 101 | + return dsum; |
| 102 | +} |
| 103 | + |
| 104 | +template<> |
| 105 | +inline float euclidean_distance_squared<distance_comp_l2, float, ::std::int8_t>( |
| 106 | + ::std::int8_t const* a, ::std::int8_t const* b, size_t n) { |
| 107 | + |
| 108 | + int n_rounded = n - (n % 16); |
| 109 | + float dsum = 0.f; |
| 110 | + |
| 111 | + if (n_rounded > 0) { |
| 112 | + float32x4_t vreg_dsum_fp32_0 = vdupq_n_f32(0.f); |
| 113 | + float32x4_t vreg_dsum_fp32_1 = vreg_dsum_fp32_0; |
| 114 | + float32x4_t vreg_dsum_fp32_2 = vreg_dsum_fp32_0; |
| 115 | + float32x4_t vreg_dsum_fp32_3 = vreg_dsum_fp32_0; |
| 116 | + |
| 117 | + for (int i = 0; i < n_rounded; i += 16) { |
| 118 | + int8x16_t vreg_a = vld1q_s8(&a[i]); |
| 119 | + int16x8_t vreg_a_s16_0 = vmovl_s8(vget_low_s8(vreg_a)); |
| 120 | + int16x8_t vreg_a_s16_1 = vmovl_s8(vget_high_s8(vreg_a)); |
| 121 | + |
| 122 | + int8x16_t vreg_b = vld1q_s8(&b[i]); |
| 123 | + int16x8_t vreg_b_s16_0 = vmovl_s8(vget_low_s8(vreg_b)); |
| 124 | + int16x8_t vreg_b_s16_1 = vmovl_s8(vget_high_s8(vreg_b)); |
| 125 | + |
| 126 | + int16x8_t vreg_d_s16_0 = vsubq_s16(vreg_a_s16_0, vreg_b_s16_0); |
| 127 | + int16x8_t vreg_d_s16_1 = vsubq_s16(vreg_a_s16_1, vreg_b_s16_1); |
| 128 | + |
| 129 | + float32x4_t vreg_d_fp32_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16(vreg_d_s16_0))); |
| 130 | + float32x4_t vreg_d_fp32_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vreg_d_s16_0))); |
| 131 | + float32x4_t vreg_d_fp32_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16(vreg_d_s16_1))); |
| 132 | + float32x4_t vreg_d_fp32_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vreg_d_s16_1))); |
| 133 | + |
| 134 | + vreg_dsum_fp32_0 = vfmaq_f32(vreg_dsum_fp32_0, vreg_d_fp32_0, vreg_d_fp32_0); |
| 135 | + vreg_dsum_fp32_1 = vfmaq_f32(vreg_dsum_fp32_1, vreg_d_fp32_1, vreg_d_fp32_1); |
| 136 | + vreg_dsum_fp32_2 = vfmaq_f32(vreg_dsum_fp32_2, vreg_d_fp32_2, vreg_d_fp32_2); |
| 137 | + vreg_dsum_fp32_3 = vfmaq_f32(vreg_dsum_fp32_3, vreg_d_fp32_3, vreg_d_fp32_3); |
| 138 | + } |
| 139 | + |
| 140 | + vreg_dsum_fp32_0 = vaddq_f32(vreg_dsum_fp32_0, vreg_dsum_fp32_1); |
| 141 | + vreg_dsum_fp32_2 = vaddq_f32(vreg_dsum_fp32_2, vreg_dsum_fp32_3); |
| 142 | + vreg_dsum_fp32_0 = vaddq_f32(vreg_dsum_fp32_0, vreg_dsum_fp32_2); |
| 143 | + |
| 144 | + dsum = vaddvq_f32(vreg_dsum_fp32_0); // faddp |
| 145 | + } |
| 146 | + |
| 147 | + for (int i = n_rounded; i < n; ++i) { |
| 148 | + float d = a[i] - b[i]; |
| 149 | + dsum += d * d; // [nvc++] faddp, [clang] fadda, [gcc] vecsum+fadda |
| 150 | + } |
| 151 | + |
| 152 | + return dsum; |
| 153 | +} |
| 154 | + |
| 155 | +template<> |
| 156 | +inline float euclidean_distance_squared<distance_comp_l2, float, ::std::uint8_t>( |
| 157 | + ::std::uint8_t const* a, ::std::uint8_t const* b, size_t n) { |
| 158 | + |
| 159 | + int n_rounded = n - (n % 16); |
| 160 | + float dsum = 0.f; |
| 161 | + |
| 162 | + if (n_rounded > 0) { |
| 163 | + float32x4_t vreg_dsum_fp32_0 = vdupq_n_f32(0.f); |
| 164 | + float32x4_t vreg_dsum_fp32_1 = vreg_dsum_fp32_0; |
| 165 | + float32x4_t vreg_dsum_fp32_2 = vreg_dsum_fp32_0; |
| 166 | + float32x4_t vreg_dsum_fp32_3 = vreg_dsum_fp32_0; |
| 167 | + |
| 168 | + for (int i = 0; i < n_rounded; i += 16) { |
| 169 | + uint8x16_t vreg_a = vld1q_u8(&a[i]); |
| 170 | + uint16x8_t vreg_a_u16_0 = vmovl_u8(vget_low_u8(vreg_a)); |
| 171 | + uint16x8_t vreg_a_u16_1 = vmovl_u8(vget_high_u8(vreg_a)); |
| 172 | + float32x4_t vreg_a_fp32_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(vreg_a_u16_0))); |
| 173 | + float32x4_t vreg_a_fp32_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vreg_a_u16_0))); |
| 174 | + float32x4_t vreg_a_fp32_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(vreg_a_u16_1))); |
| 175 | + float32x4_t vreg_a_fp32_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vreg_a_u16_1))); |
| 176 | + |
| 177 | + uint8x16_t vreg_b = vld1q_u8(&b[i]); |
| 178 | + uint16x8_t vreg_b_u16_0 = vmovl_u8(vget_low_u8(vreg_b)); |
| 179 | + uint16x8_t vreg_b_u16_1 = vmovl_u8(vget_high_u8(vreg_b)); |
| 180 | + float32x4_t vreg_b_fp32_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(vreg_b_u16_0))); |
| 181 | + float32x4_t vreg_b_fp32_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vreg_b_u16_0))); |
| 182 | + float32x4_t vreg_b_fp32_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(vreg_b_u16_1))); |
| 183 | + float32x4_t vreg_b_fp32_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vreg_b_u16_1))); |
| 184 | + |
| 185 | + float32x4_t vreg_d_fp32_0 = vsubq_f32(vreg_a_fp32_0, vreg_b_fp32_0); |
| 186 | + float32x4_t vreg_d_fp32_1 = vsubq_f32(vreg_a_fp32_1, vreg_b_fp32_1); |
| 187 | + float32x4_t vreg_d_fp32_2 = vsubq_f32(vreg_a_fp32_2, vreg_b_fp32_2); |
| 188 | + float32x4_t vreg_d_fp32_3 = vsubq_f32(vreg_a_fp32_3, vreg_b_fp32_3); |
| 189 | + |
| 190 | + vreg_dsum_fp32_0 = vfmaq_f32(vreg_dsum_fp32_0, vreg_d_fp32_0, vreg_d_fp32_0); |
| 191 | + vreg_dsum_fp32_1 = vfmaq_f32(vreg_dsum_fp32_1, vreg_d_fp32_1, vreg_d_fp32_1); |
| 192 | + vreg_dsum_fp32_2 = vfmaq_f32(vreg_dsum_fp32_2, vreg_d_fp32_2, vreg_d_fp32_2); |
| 193 | + vreg_dsum_fp32_3 = vfmaq_f32(vreg_dsum_fp32_3, vreg_d_fp32_3, vreg_d_fp32_3); |
| 194 | + } |
| 195 | + |
| 196 | + vreg_dsum_fp32_0 = vaddq_f32(vreg_dsum_fp32_0, vreg_dsum_fp32_1); |
| 197 | + vreg_dsum_fp32_2 = vaddq_f32(vreg_dsum_fp32_2, vreg_dsum_fp32_3); |
| 198 | + vreg_dsum_fp32_0 = vaddq_f32(vreg_dsum_fp32_0, vreg_dsum_fp32_2); |
| 199 | + |
| 200 | + dsum = vaddvq_f32(vreg_dsum_fp32_0); // faddp |
| 201 | + } |
| 202 | + |
| 203 | + for (int i = n_rounded; i < n; ++i) { |
| 204 | + float d = a[i] - b[i]; |
| 205 | + dsum += d * d; // [nvc++] faddp, [clang] fadda, [gcc] vecsum+fadda |
| 206 | + } |
| 207 | + |
| 208 | + return dsum; |
| 209 | +} |
| 210 | + |
| 211 | +#endif // defined(__arm__) || defined(__aarch64__) |
| 212 | + |
| 213 | +// ----------------------------------------------------------------------------- |
| 214 | +// Refine kernel |
| 215 | +// ----------------------------------------------------------------------------- |
| 216 | + |
30 | 217 | template <typename DC, typename IdxT, typename DataT, typename DistanceT, typename ExtentsT> |
31 | 218 | [[gnu::optimize(3), gnu::optimize("tree-vectorize")]] void refine_host_impl( |
32 | 219 | raft::host_matrix_view<const DataT, ExtentsT, row_major> dataset, |
@@ -112,9 +299,7 @@ template <typename DC, typename IdxT, typename DataT, typename DistanceT, typena |
112 | 299 | distance = std::numeric_limits<DistanceT>::max(); |
113 | 300 | } else { |
114 | 301 | const DataT* row = dataset.data_handle() + dim * id; |
115 | | - for (size_t k = 0; k < dim; k++) { |
116 | | - distance += DC::template eval<DistanceT>(query[k], row[k]); |
117 | | - } |
| 302 | + distance = euclidean_distance_squared<DC, DistanceT, DataT>(query, row, dim); |
118 | 303 | } |
119 | 304 | refined_pairs[j] = std::make_tuple(distance, id); |
120 | 305 | } |
|
0 commit comments