|
| 1 | +# Sebastian Raschka 2014-2019 |
| 2 | +# myxtend Machine Learning Library Extensions |
| 3 | +# Author: Sebastian Raschka <sebastianraschka.com> |
| 4 | +# |
| 5 | +# License: BSD 3 clause |
| 6 | + |
| 7 | +from mlxtend.preprocessing import TransactionEncoder |
| 8 | +from mlxtend.frequent_patterns import apriori |
| 9 | +import pandas as pd |
| 10 | +import numpy as np |
| 11 | +import gzip |
| 12 | +import os |
| 13 | +import sys |
| 14 | +from time import time |
| 15 | +import signal |
| 16 | +from contextlib import contextmanager |
| 17 | + |
| 18 | + |
| 19 | +@contextmanager |
| 20 | +def timeout(time): |
| 21 | + # Register a function to raise a TimeoutError on the signal. |
| 22 | + signal.signal(signal.SIGALRM, raise_timeout) |
| 23 | + # Schedule the signal to be sent after ``time``. |
| 24 | + signal.alarm(time) |
| 25 | + |
| 26 | + try: |
| 27 | + yield |
| 28 | + except TimeoutError: |
| 29 | + pass |
| 30 | + finally: |
| 31 | + # Unregister the signal so it won't be triggered |
| 32 | + # if the timeout is not reached. |
| 33 | + signal.signal(signal.SIGALRM, signal.SIG_IGN) |
| 34 | + |
| 35 | + |
| 36 | +def raise_timeout(signum, frame): |
| 37 | + raise TimeoutError |
| 38 | + |
| 39 | + |
| 40 | +files = [ |
| 41 | + # "chess.dat.gz", |
| 42 | + # "connect.dat.gz", |
| 43 | + "mushroom.dat.gz", |
| 44 | + "pumsb.dat.gz", |
| 45 | + "pumsb_star.dat.gz", |
| 46 | + # "T10I4D100K.dat.gz", |
| 47 | + # "T40I10D100K.dat.gz", |
| 48 | + # "kosarak.dat.gz", # this file is too large in sparse format |
| 49 | + # "kosarak-1k.dat.gz", |
| 50 | + # "kosarak-10k.dat.gz", |
| 51 | + # "kosarak-50k.dat.gz", |
| 52 | + # "kosarak-100k.dat.gz", |
| 53 | + # "kosarak-200k.dat.gz", |
| 54 | +] |
| 55 | + |
| 56 | + |
| 57 | +low_memory = True |
| 58 | +commit = "b731fd2" |
| 59 | +test_supports = [0.5, 0.3, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001] |
| 60 | + |
| 61 | +for sparse, col_major in [[False, True], [False, False], [True, True]]: |
| 62 | + sys.stdout = open("Results/{}-sparse{}-col_major{}.out".format( |
| 63 | + commit, sparse, col_major), "w") |
| 64 | + for filename in files: |
| 65 | + with gzip.open(os.path.join("data", filename)) if filename.endswith( |
| 66 | + ".gz" |
| 67 | + ) else open(os.path.join("data", filename)) as f: |
| 68 | + data = f.readlines() |
| 69 | + |
| 70 | + dataset = [list(map(int, line.split())) for line in data] |
| 71 | + items = np.unique([item for itemset in dataset for item in itemset]) |
| 72 | + print("{} contains {} transactions and {} items".format( |
| 73 | + filename, len(dataset), len(items))) |
| 74 | + |
| 75 | + te = TransactionEncoder() |
| 76 | + te_ary = te.fit(dataset).transform(dataset, sparse=sparse) |
| 77 | + columns = ["c"+str(i) for i in te.columns_] |
| 78 | + if sparse: |
| 79 | + try: |
| 80 | + df = pd.DataFrame.sparse.from_spmatrix(te_ary, columns=columns) |
| 81 | + except AttributeError: |
| 82 | + # pandas < 0.25 |
| 83 | + df = pd.SparseDataFrame(te_ary, columns=columns, |
| 84 | + default_fill_value=False) |
| 85 | + else: |
| 86 | + df = pd.DataFrame(te_ary, columns=columns) |
| 87 | + if col_major: |
| 88 | + df = pd.DataFrame({col: df[col] for col in df.columns}) |
| 89 | + np.info(df.values) |
| 90 | + |
| 91 | + kwds = {"use_colnames": False, "low_memory": low_memory} |
| 92 | + for min_support in test_supports: |
| 93 | + tick = time() |
| 94 | + with timeout(120): |
| 95 | + print(apriori(df, min_support=min_support, verbose=1, **kwds)) |
| 96 | + print("\nmin_support={} temps: {}\n".format( |
| 97 | + min_support, time() - tick)) |
| 98 | + if time() - tick < 10: |
| 99 | + times = [] |
| 100 | + for _ in range(5): |
| 101 | + tick = time() |
| 102 | + apriori(df, min_support=min_support, verbose=0, **kwds) |
| 103 | + times.append(time() - tick) |
| 104 | + print("Times:", times) |
| 105 | + sys.stdout.close() |
0 commit comments