|
15 | 15 | # limitations under the License. |
16 | 16 | # |
17 | 17 |
|
18 | | -import platform |
19 | | - |
| 18 | +import os |
20 | 19 | import pytest |
| 20 | +import pyarrow as pa |
21 | 21 | from pyspark.storagelevel import StorageLevel |
22 | 22 | import ray |
| 23 | +from ray.cluster_utils import Cluster |
| 24 | +from ray.data import from_arrow_refs |
23 | 25 | import ray.util.client as ray_client |
| 26 | +import raydp |
| 27 | + |
| 28 | +try: |
| 29 | + # Ray cross-language calls require enabling load_code_from_local. |
| 30 | + # This is an internal Ray API; keep it isolated and optional. |
| 31 | + from ray._private.worker import global_worker as _ray_global_worker # type: ignore |
| 32 | +except Exception: # pragma: no cover |
| 33 | + _ray_global_worker = None |
| 34 | + |
| 35 | +@ray.remote(max_retries=-1) |
| 36 | +def _fetch_arrow_table_from_executor( |
| 37 | + executor_actor_name: str, |
| 38 | + rdd_id: int, |
| 39 | + partition_id: int, |
| 40 | + schema_json: str, |
| 41 | + driver_agent_url: str, |
| 42 | +) -> pa.Table: |
| 43 | + """Fetch Arrow table bytes from a JVM executor actor and decode to `pyarrow.Table`. |
| 44 | +
|
| 45 | + This is a test-local version of RayDP's recoverable fetch task. Keeping it in this test |
| 46 | + avoids Ray remote function registration issues when driver/workers import different `raydp` |
| 47 | + versions. |
| 48 | + """ |
| 49 | + if _ray_global_worker is not None: |
| 50 | + _ray_global_worker.set_load_code_from_local(True) |
24 | 51 |
|
25 | | -from raydp.spark import dataset as spark_dataset |
26 | | - |
| 52 | + executor_actor = ray.get_actor(executor_actor_name) |
| 53 | + ipc_bytes = ray.get( |
| 54 | + executor_actor.getRDDPartition.remote( |
| 55 | + rdd_id, partition_id, schema_json, driver_agent_url |
| 56 | + ) |
| 57 | + ) |
| 58 | + reader = pa.ipc.open_stream(pa.BufferReader(ipc_bytes)) |
| 59 | + table = reader.read_all() |
| 60 | + # Match RayDP behavior: strip schema metadata for stability. |
| 61 | + table = table.replace_schema_metadata() |
| 62 | + return table |
27 | 63 |
|
28 | | -if platform.system() == "Darwin": |
29 | | - # Spark-on-Ray recoverable path is unstable on macOS and can crash the raylet. |
30 | | - pytest.skip("Skip recoverable forwarding test on macOS", allow_module_level=True) |
31 | 64 |
|
32 | 65 |
|
33 | | -@pytest.mark.parametrize("spark_on_ray_2_executors", ["local"], indirect=True) |
34 | | -def test_recoverable_forwarding_via_fetch_task(spark_on_ray_2_executors): |
| 66 | +def test_recoverable_forwarding_via_fetch_task(jdk17_extra_spark_configs): |
35 | 67 | """Verify JVM-side forwarding in recoverable Spark->Ray conversion. |
36 | 68 |
|
37 | | - We deliberately trigger the recoverable fetch task to contact an executor actor that is not |
38 | | - the current owner of the cached Spark block for the chosen partition. The request should still |
39 | | - succeed because the executor refreshes the block owner and forwards the fetch one hop. |
| 69 | + This test intentionally calls the recoverable fetch task on the *wrong* Spark executor actor. |
| 70 | + It should still succeed because `RayDPExecutor.getRDDPartition` refreshes the block owner and |
| 71 | + forwards the fetch one hop. |
40 | 72 | """ |
41 | 73 | if ray_client.ray.is_connected(): |
42 | 74 | pytest.skip("Skip forwarding test in Ray client mode") |
43 | 75 |
|
44 | | - spark = spark_on_ray_2_executors |
45 | | - |
46 | | - # Create enough partitions so that at least two different executors own cached blocks. |
47 | | - df = spark.range(0, 10000, numPartitions=8) |
48 | | - |
49 | | - sc = spark.sparkContext |
50 | | - storage_level = sc._getJavaStorageLevel(StorageLevel.MEMORY_AND_DISK) |
51 | | - object_store_writer = sc._jvm.org.apache.spark.sql.raydp.ObjectStoreWriter |
52 | | - |
53 | | - info = object_store_writer.prepareRecoverableRDD(df._jdf, storage_level) |
54 | | - rdd_id = info.rddId() |
55 | | - schema_json = info.schemaJson() |
56 | | - driver_agent_url = info.driverAgentUrl() |
57 | | - locations = list(info.locations()) |
58 | | - |
59 | | - assert locations |
60 | | - unique_execs = sorted(set(locations)) |
61 | | - assert len(unique_execs) >= 2, f"Need >=2 executors, got {unique_execs}" |
62 | | - |
63 | | - # Pick a partition and intentionally target the *wrong* executor actor. |
64 | | - partition_id = 0 |
65 | | - owner_executor_id = locations[partition_id] |
66 | | - wrong_executor_id = next(e for e in unique_execs if e != owner_executor_id) |
67 | | - |
68 | | - # Ensure Ray cross-language calls are enabled for the worker side. |
69 | | - spark_dataset._enable_load_code_from_local() |
70 | | - |
71 | | - wrong_executor_actor_name = f"raydp-executor-{wrong_executor_id}" |
72 | | - table = ray.get( |
73 | | - spark_dataset._fetch_arrow_table_from_executor.remote( |
74 | | - wrong_executor_actor_name, rdd_id, partition_id, schema_json, driver_agent_url |
75 | | - ) |
| 76 | + stop_after = os.environ.get("RAYDP_TRACE_STOP_AFTER", "").strip().lower() |
| 77 | + fetch_mode = os.environ.get("RAYDP_FETCH_MODE", "task").strip().lower() |
| 78 | + cluster = Cluster( |
| 79 | + initialize_head=True, |
| 80 | + head_node_args={ |
| 81 | + "num_cpus": 2, |
| 82 | + "resources": {"master": 10}, |
| 83 | + "include_dashboard": True, |
| 84 | + "dashboard_port": 0, |
| 85 | + }, |
76 | 86 | ) |
77 | | - assert table.num_rows > 0 |
| 87 | + cluster.add_node(num_cpus=4, resources={"spark_executor": 10}) |
| 88 | + |
| 89 | + def phase(name: str) -> None: |
| 90 | + # Prints are the most reliable breadcrumb if the raylet crashes. |
| 91 | + print(f"\n=== PHASE: {name} ===", flush=True) |
| 92 | + |
| 93 | + def should_stop(name: str) -> bool: |
| 94 | + return bool(stop_after) and stop_after == name.lower() |
| 95 | + |
| 96 | + spark = None |
| 97 | + try: |
| 98 | + # Single-node Ray is sufficient to reproduce / bisect the crash. |
| 99 | + phase("ray.init") |
| 100 | + ray.shutdown() |
| 101 | + ray.init(address=cluster.address, include_dashboard=False) |
| 102 | + if should_stop("ray.init"): |
| 103 | + return |
| 104 | + |
| 105 | + phase("raydp.init_spark") |
| 106 | + node_ip = ray.util.get_node_ip_address() |
| 107 | + spark = raydp.init_spark( |
| 108 | + app_name="test_recoverable_forwarding_via_fetch_task", |
| 109 | + num_executors=2, |
| 110 | + executor_cores=1, |
| 111 | + executor_memory="500M", |
| 112 | + configs={ |
| 113 | + "spark.driver.host": node_ip, |
| 114 | + "spark.driver.bindAddress": node_ip, |
| 115 | + **jdk17_extra_spark_configs, |
| 116 | + }, |
| 117 | + ) |
| 118 | + if should_stop("raydp.init_spark"): |
| 119 | + return |
| 120 | + |
| 121 | + phase("spark.range.count") |
| 122 | + df = spark.range(0, 10000, numPartitions=8) |
| 123 | + _ = df.count() |
| 124 | + if should_stop("spark.range.count"): |
| 125 | + return |
| 126 | + |
| 127 | + phase("prepareRecoverableRDD") |
| 128 | + sc = spark.sparkContext |
| 129 | + storage_level = sc._getJavaStorageLevel(StorageLevel.MEMORY_AND_DISK) |
| 130 | + object_store_writer = sc._jvm.org.apache.spark.sql.raydp.ObjectStoreWriter |
| 131 | + info = object_store_writer.prepareRecoverableRDD(df._jdf, storage_level) |
| 132 | + rdd_id = info.rddId() |
| 133 | + schema_json = info.schemaJson() |
| 134 | + driver_agent_url = info.driverAgentUrl() |
| 135 | + locations = list(info.locations()) |
| 136 | + if should_stop("preparerecoverablerdd"): |
| 137 | + return |
| 138 | + |
| 139 | + assert locations |
| 140 | + unique_execs = sorted(set(locations)) |
| 141 | + assert len(unique_execs) >= 2, f"Need >=2 executors, got {unique_execs}" |
| 142 | + |
| 143 | + partition_id = 0 |
| 144 | + owner_executor_id = locations[partition_id] |
| 145 | + wrong_executor_id = next(e for e in unique_execs if e != owner_executor_id) |
| 146 | + wrong_executor_actor_name = f"raydp-executor-{wrong_executor_id}" |
| 147 | + |
| 148 | + phase("fetch_wrong_executor") |
| 149 | + |
| 150 | + phase("get_wrong_executor_actor") |
| 151 | + wrong_executor_actor = ray.get_actor(wrong_executor_actor_name) |
| 152 | + if should_stop("get_wrong_executor_actor"): |
| 153 | + return |
| 154 | + |
| 155 | + phase("call_fetch_task") |
| 156 | + if fetch_mode == "driver": |
| 157 | + phase("driver_call_java_actor") |
| 158 | + if _ray_global_worker is not None: |
| 159 | + _ray_global_worker.set_load_code_from_local(True) |
| 160 | + ipc_bytes = ray.get( |
| 161 | + wrong_executor_actor.getRDDPartition.remote( |
| 162 | + rdd_id, partition_id, schema_json, driver_agent_url |
| 163 | + ) |
| 164 | + ) |
| 165 | + reader = pa.ipc.open_stream(pa.BufferReader(ipc_bytes)) |
| 166 | + table = reader.read_all() |
| 167 | + table = table.replace_schema_metadata() |
| 168 | + else: |
| 169 | + phase("task_call_java_actor") |
| 170 | + refs: list[ray.ObjectRef] = [] |
| 171 | + refs.append( |
| 172 | + _fetch_arrow_table_from_executor.remote( |
| 173 | + wrong_executor_actor_name, |
| 174 | + rdd_id, |
| 175 | + partition_id, |
| 176 | + schema_json, |
| 177 | + driver_agent_url, |
| 178 | + ) |
| 179 | + ) |
| 180 | + table = from_arrow_refs(refs) |
| 181 | + assert table.count() > 0 |
| 182 | + finally: |
| 183 | + phase("teardown") |
| 184 | + |
| 185 | + spark.stop() |
| 186 | + raydp.stop_spark() |
| 187 | + ray.shutdown() |
| 188 | + cluster.shutdown() |
78 | 189 |
|
0 commit comments