forked from nathanielherman/silo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
181 lines (152 loc) · 5.32 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import sys
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy
#import matplotlib
from collections import OrderedDict
tableau20 = None
COLORZ = True
NAME_MAP = {'us\n': 'STO-', 'silo\n': 'Silo', 'readmywrites\n': 'STO'}
PERM = [1, 0, 2]
SCALE_CORE = False
LINE = False
def settings():
# These are the "Tableau 20" colors as RGB.
global tableau20
tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
# Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts.
for i in range(len(tableau20)):
r, g, b = tableau20[i]
tableau20[i] = (r / 255., g / 255., b / 255.)
def median(l):
return sorted(l)[len(l)/2]
def permute(perm, l):
l2 = list(l)
newl = []
for p in perm:
newl.append(l2[p])
return newl
def get_loc():
return 'upper right' if SCALE_CORE else 'upper left'
def line_graph(data, labels, title, colors):
x = [int(l[:2]) for l in labels]
for ((k, d), color) in zip(permute(PERM,data.iteritems()), colors):
plt.plot(x, d.values(), marker='s', color=color, label=NAME_MAP[k])
plt.xlabel('Threads')
plt.ylabel('Thousands of transactions per second')
plt.title(title)
plt.legend(loc=get_loc())
plt.ylim(0)
return plt
def parse(dat):
f = open(dat, 'r')
first = True
labels = []
lines = f.readlines()
data = OrderedDict()
min = OrderedDict()
max = OrderedDict()
scale_by = None
cur_name = None
it = iter(xrange(len(lines)))
for i in it:
if first:
cur_name = lines[i]
labels.append(lines[i])
first = False
elif lines[i] == '\n':
for d in data.values():
if not d.has_key(cur_name):
d[cur_name] = 0
for d in min.values():
if not d.has_key(cur_name):
d[cur_name] = 0
for d in max.values():
if not d.has_key(cur_name):
d[cur_name] = 0
first = True
scale_by = None
else:
print lines[i], lines[i+1]
if not scale_by:
scale_by = int(cur_name[:2]) if SCALE_CORE else 1
#float(lines[i+1])
if not data.has_key(lines[i]):
data[lines[i]] = OrderedDict()
min[lines[i]] = OrderedDict()
max[lines[i]] = OrderedDict()
# initialize previously missed values to 0
for l in labels:
data[lines[i]][l] = 0
min[lines[i]][l] = 0
max[lines[i]][l] = 0
raw_dat = eval(lines[i+1]) # very safe lol
throughputs, neworders = raw_dat
print "XXXXX"
print throughputs
print median(throughputs)
print numpy.amin(throughputs)
print numpy.amax(throughputs)
data[lines[i]][cur_name] = median(throughputs) / scale_by
min[lines[i]][cur_name] = numpy.amin(throughputs)/scale_by
max[lines[i]][cur_name] = numpy.amax(throughputs)/scale_by
next(it)
print data
return data, min, max, labels
def plot(data, min, max, labels, title):
fig, ax = plt.subplots()
cur_width = 0
if COLORZ:
colors = tableau20
else:
colors = [(0,0,0), (.5,.5,.5), (.7,.7,.7)]
if LINE:
return line_graph(data, labels, title, colors)
n_datapoints = len(data.values()[0].values())
inds = numpy.arange(n_datapoints)
n_types = len(data.values())
width = .7 / n_types
bars = []
for (d, a, b, c) in zip(permute(PERM, data.values()), permute(PERM, min.values()), permute(PERM, max.values()), colors):
pts = d.values()
minerr = numpy.subtract(pts, a.values())
maxerr = numpy.subtract(b.values(), pts)
bars.append(ax.bar(inds + cur_width + .1, pts, width, color=c, yerr = [minerr, maxerr], ecolor = 'k'))
cur_width += width
ax.set_xticks(inds + width * n_types / 2.0)
ax.set_xticklabels(labels, size=10)
ax.set_ylabel('Thousands of transactions per second' + ' per core' if SCALE_CORE else '', rotation=90)
ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: str(int(x/1000))))
if not SCALE_CORE:
ax.set_aspect(1/900000. * 2)
# why does this work but not set_ylabel...
plt.ylabel('Thousands of transactions per second', rotation=90)
plt.xlim()
ax.legend([x[0] for x in bars], [NAME_MAP[x] for x in permute(PERM,data.keys())], ncol=4, loc=get_loc(), prop={'size': 10})
#loc='lower center', bbox_to_anchor=(.9, .05) )
ax.set_title(title)
plt.tight_layout()
return plt
try:
title = sys.argv[3]
except:
title = ''
try:
COLORZ = sys.argv[4] != 'bw'
except:
pass
try:
SCALE_CORE = sys.argv[5] == 'core'
except:
pass
try:
LINE = sys.argv[6] == 'line'
except:
pass
settings()
data, min, max, labels = parse(sys.argv[1])
plot(data, min, max, labels, title).savefig(sys.argv[2])