|
| 1 | +#include "filter.h" |
| 2 | +#include <math.h> |
| 3 | + |
| 4 | +void Filter::set_mode(Mode p_mode) { |
| 5 | + |
| 6 | + mode = p_mode; |
| 7 | +} |
| 8 | +void Filter::set_cutoff(float p_cutoff) { |
| 9 | + |
| 10 | + cutoff = p_cutoff; |
| 11 | +} |
| 12 | +void Filter::set_resonance(float p_resonance) { |
| 13 | + |
| 14 | + resonance = p_resonance; |
| 15 | +} |
| 16 | + |
| 17 | +void Filter::set_gain(float p_gain) { |
| 18 | + |
| 19 | + gain = p_gain; |
| 20 | +} |
| 21 | + |
| 22 | +void Filter::set_sampling_rate(float p_srate) { |
| 23 | + |
| 24 | + sampling_rate = p_srate; |
| 25 | +} |
| 26 | + |
| 27 | +void Filter::prepare_coefficients(Coeffs *p_coeffs) { |
| 28 | + |
| 29 | + int sr_limit = (sampling_rate / 2) + 512; |
| 30 | + |
| 31 | + double final_cutoff = (cutoff > sr_limit) ? sr_limit : cutoff; |
| 32 | + if (final_cutoff < 1) final_cutoff = 1; //don't allow less than this |
| 33 | + |
| 34 | + double omega = 2.0 * M_PI * final_cutoff / sampling_rate; |
| 35 | + |
| 36 | + double sin_v = sin(omega); |
| 37 | + double cos_v = cos(omega); |
| 38 | + |
| 39 | + double Q = resonance; |
| 40 | + if (Q <= 0.0) { |
| 41 | + Q = 0.0001; |
| 42 | + } |
| 43 | + |
| 44 | + if (mode == BANDPASS) |
| 45 | + Q *= 2.0; |
| 46 | + else if (mode == PEAK) |
| 47 | + Q *= 3.0; |
| 48 | + |
| 49 | + double tmpgain = gain; |
| 50 | + |
| 51 | + if (tmpgain < 0.001) |
| 52 | + tmpgain = 0.001; |
| 53 | + |
| 54 | + if (stages > 1) { |
| 55 | + |
| 56 | + Q = (Q > 1.0 ? pow(Q, 1.0 / stages) : Q); |
| 57 | + tmpgain = pow(tmpgain, 1.0 / (stages + 1)); |
| 58 | + } |
| 59 | + double alpha = sin_v / (2 * Q); |
| 60 | + |
| 61 | + double a0 = 1.0 + alpha; |
| 62 | + |
| 63 | + switch (mode) { |
| 64 | + |
| 65 | + case LOWPASS: { |
| 66 | + |
| 67 | + p_coeffs->b0 = (1.0 - cos_v) / 2.0; |
| 68 | + p_coeffs->b1 = 1.0 - cos_v; |
| 69 | + p_coeffs->b2 = (1.0 - cos_v) / 2.0; |
| 70 | + p_coeffs->a1 = -2.0 * cos_v; |
| 71 | + p_coeffs->a2 = 1.0 - alpha; |
| 72 | + } break; |
| 73 | + |
| 74 | + case HIGHPASS: { |
| 75 | + |
| 76 | + p_coeffs->b0 = (1.0 + cos_v) / 2.0; |
| 77 | + p_coeffs->b1 = -(1.0 + cos_v); |
| 78 | + p_coeffs->b2 = (1.0 + cos_v) / 2.0; |
| 79 | + p_coeffs->a1 = -2.0 * cos_v; |
| 80 | + p_coeffs->a2 = 1.0 - alpha; |
| 81 | + } break; |
| 82 | + |
| 83 | + case BANDPASS: { |
| 84 | + |
| 85 | + p_coeffs->b0 = alpha * sqrt(Q + 1); |
| 86 | + p_coeffs->b1 = 0.0; |
| 87 | + p_coeffs->b2 = -alpha * sqrt(Q + 1); |
| 88 | + p_coeffs->a1 = -2.0 * cos_v; |
| 89 | + p_coeffs->a2 = 1.0 - alpha; |
| 90 | + } break; |
| 91 | + |
| 92 | + case NOTCH: { |
| 93 | + |
| 94 | + p_coeffs->b0 = 1.0; |
| 95 | + p_coeffs->b1 = -2.0 * cos_v; |
| 96 | + p_coeffs->b2 = 1.0; |
| 97 | + p_coeffs->a1 = -2.0 * cos_v; |
| 98 | + p_coeffs->a2 = 1.0 - alpha; |
| 99 | + } break; |
| 100 | + case PEAK: { |
| 101 | + p_coeffs->b0 = (1.0 + alpha * tmpgain); |
| 102 | + p_coeffs->b1 = (-2.0 * cos_v); |
| 103 | + p_coeffs->b2 = (1.0 - alpha * tmpgain); |
| 104 | + p_coeffs->a1 = -2 * cos_v; |
| 105 | + p_coeffs->a2 = (1 - alpha / tmpgain); |
| 106 | + } break; |
| 107 | + case BANDLIMIT: { |
| 108 | + //this one is extra tricky |
| 109 | + double hicutoff = resonance; |
| 110 | + double centercutoff = (cutoff + resonance) / 2.0; |
| 111 | + double bandwidth = (log(centercutoff) - log(hicutoff)) / log((double)2); |
| 112 | + omega = 2.0 * M_PI * centercutoff / sampling_rate; |
| 113 | + alpha = sin(omega) * sinh(log((double)2) / 2 * bandwidth * omega / sin(omega)); |
| 114 | + a0 = 1 + alpha; |
| 115 | + |
| 116 | + p_coeffs->b0 = alpha; |
| 117 | + p_coeffs->b1 = 0; |
| 118 | + p_coeffs->b2 = -alpha; |
| 119 | + p_coeffs->a1 = -2 * cos(omega); |
| 120 | + p_coeffs->a2 = 1 - alpha; |
| 121 | + |
| 122 | + } break; |
| 123 | + case LOWSHELF: { |
| 124 | + |
| 125 | + double tmpq = sqrt(Q); |
| 126 | + if (tmpq <= 0) |
| 127 | + tmpq = 0.001; |
| 128 | + alpha = sin_v / (2 * tmpq); |
| 129 | + double beta = sqrt(tmpgain) / tmpq; |
| 130 | + |
| 131 | + a0 = (tmpgain + 1.0) + (tmpgain - 1.0) * cos_v + beta * sin_v; |
| 132 | + p_coeffs->b0 = tmpgain * ((tmpgain + 1.0) - (tmpgain - 1.0) * cos_v + beta * sin_v); |
| 133 | + p_coeffs->b1 = 2.0 * tmpgain * ((tmpgain - 1.0) - (tmpgain + 1.0) * cos_v); |
| 134 | + p_coeffs->b2 = tmpgain * ((tmpgain + 1.0) - (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 135 | + p_coeffs->a1 = -2.0 * ((tmpgain - 1.0) + (tmpgain + 1.0) * cos_v); |
| 136 | + p_coeffs->a2 = ((tmpgain + 1.0) + (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 137 | + |
| 138 | + } break; |
| 139 | + case HIGHSHELF: { |
| 140 | + double tmpq = sqrt(Q); |
| 141 | + if (tmpq <= 0) |
| 142 | + tmpq = 0.001; |
| 143 | + alpha = sin_v / (2 * tmpq); |
| 144 | + double beta = sqrt(tmpgain) / tmpq; |
| 145 | + |
| 146 | + a0 = (tmpgain + 1.0) - (tmpgain - 1.0) * cos_v + beta * sin_v; |
| 147 | + p_coeffs->b0 = tmpgain * ((tmpgain + 1.0) + (tmpgain - 1.0) * cos_v + beta * sin_v); |
| 148 | + p_coeffs->b1 = -2.0 * tmpgain * ((tmpgain - 1.0) + (tmpgain + 1.0) * cos_v); |
| 149 | + p_coeffs->b2 = tmpgain * ((tmpgain + 1.0) + (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 150 | + p_coeffs->a1 = 2.0 * ((tmpgain - 1.0) - (tmpgain + 1.0) * cos_v); |
| 151 | + p_coeffs->a2 = ((tmpgain + 1.0) - (tmpgain - 1.0) * cos_v - beta * sin_v); |
| 152 | + |
| 153 | + } break; |
| 154 | + }; |
| 155 | + |
| 156 | + p_coeffs->b0 /= a0; |
| 157 | + p_coeffs->b1 /= a0; |
| 158 | + p_coeffs->b2 /= a0; |
| 159 | + p_coeffs->a1 /= 0.0 - a0; |
| 160 | + p_coeffs->a2 /= 0.0 - a0; |
| 161 | + |
| 162 | + //undenormalise |
| 163 | + /* p_coeffs->b0=undenormalise(p_coeffs->b0); |
| 164 | + p_coeffs->b1=undenormalise(p_coeffs->b1); |
| 165 | + p_coeffs->b2=undenormalise(p_coeffs->b2); |
| 166 | + p_coeffs->a1=undenormalise(p_coeffs->a1); |
| 167 | + p_coeffs->a2=undenormalise(p_coeffs->a2);*/ |
| 168 | +} |
| 169 | + |
| 170 | +void Filter::set_stages(int p_stages) { //adjust for multiple stages |
| 171 | + |
| 172 | + stages = p_stages; |
| 173 | +} |
| 174 | + |
| 175 | +/* Fouriertransform kernel to obtain response */ |
| 176 | + |
| 177 | +float Filter::get_response(float p_freq, Coeffs *p_coeffs) { |
| 178 | + |
| 179 | + float freq = p_freq / sampling_rate * M_PI * 2.0f; |
| 180 | + |
| 181 | + float cx = p_coeffs->b0, cy = 0.0; |
| 182 | + |
| 183 | + cx += cos(freq) * p_coeffs->b1; |
| 184 | + cy -= sin(freq) * p_coeffs->b1; |
| 185 | + cx += cos(2 * freq) * p_coeffs->b2; |
| 186 | + cy -= sin(2 * freq) * p_coeffs->b2; |
| 187 | + |
| 188 | + float H = cx * cx + cy * cy; |
| 189 | + cx = 1.0; |
| 190 | + cy = 0.0; |
| 191 | + |
| 192 | + cx -= cos(freq) * p_coeffs->a1; |
| 193 | + cy += sin(freq) * p_coeffs->a1; |
| 194 | + cx -= cos(2 * freq) * p_coeffs->a2; |
| 195 | + cy += sin(2 * freq) * p_coeffs->a2; |
| 196 | + |
| 197 | + H = H / (cx * cx + cy * cy); |
| 198 | + return H; |
| 199 | +} |
| 200 | + |
| 201 | +Filter::Filter() { |
| 202 | + |
| 203 | + sampling_rate = 44100; |
| 204 | + resonance = 0.5; |
| 205 | + cutoff = 5000; |
| 206 | + gain = 1.0; |
| 207 | + mode = LOWPASS; |
| 208 | + stages = 1; |
| 209 | +} |
| 210 | + |
| 211 | +Filter::Processor::Processor() { |
| 212 | + |
| 213 | + set_filter(NULL); |
| 214 | +} |
| 215 | + |
| 216 | +void Filter::Processor::set_filter(Filter *p_filter, bool p_clear_history) { |
| 217 | + |
| 218 | + if (p_clear_history) { |
| 219 | + ha1 = ha2 = hb1 = hb2 = 0; |
| 220 | + } |
| 221 | + filter = p_filter; |
| 222 | +} |
| 223 | + |
| 224 | +void Filter::Processor::update_coeffs(int p_interp_buffer_len) { |
| 225 | + |
| 226 | + if (!filter) |
| 227 | + return; |
| 228 | + |
| 229 | + if (p_interp_buffer_len) { //interpolate |
| 230 | + Coeffs old_coeffs = coeffs; |
| 231 | + filter->prepare_coefficients(&coeffs); |
| 232 | + incr_coeffs.a1 = (coeffs.a1 - old_coeffs.a1) / p_interp_buffer_len; |
| 233 | + incr_coeffs.a2 = (coeffs.a2 - old_coeffs.a2) / p_interp_buffer_len; |
| 234 | + incr_coeffs.b0 = (coeffs.b0 - old_coeffs.b0) / p_interp_buffer_len; |
| 235 | + incr_coeffs.b1 = (coeffs.b1 - old_coeffs.b1) / p_interp_buffer_len; |
| 236 | + incr_coeffs.b2 = (coeffs.b2 - old_coeffs.b2) / p_interp_buffer_len; |
| 237 | + coeffs = old_coeffs; |
| 238 | + } else { |
| 239 | + filter->prepare_coefficients(&coeffs); |
| 240 | + } |
| 241 | +} |
| 242 | + |
| 243 | +void Filter::Processor::process(float *p_samples, int p_amount, int p_stride, bool p_interpolate) { |
| 244 | + |
| 245 | + if (!filter) |
| 246 | + return; |
| 247 | + |
| 248 | + if (p_interpolate) { |
| 249 | + for (int i = 0; i < p_amount; i++) { |
| 250 | + |
| 251 | + process_one_interp(*p_samples); |
| 252 | + p_samples += p_stride; |
| 253 | + } |
| 254 | + } else { |
| 255 | + for (int i = 0; i < p_amount; i++) { |
| 256 | + |
| 257 | + process_one(*p_samples); |
| 258 | + p_samples += p_stride; |
| 259 | + } |
| 260 | + } |
| 261 | +} |
0 commit comments