- Python 3.7
- Pytorch>=1.8.2
- Torchvision == 0.9.2
You can directly run the code sh env.sh
and sh compile.sh
to setup the running environment.
We use 8 GPUs (24GB RTX 3090) to train our detector, you can adjust the batch size in configs by yourselves.
Your directory tree should be look like this:
$HitDet.pytorch/data
├── coco
│ ├── annotations
│ ├── train2017
│ └── val2017
│
├── VOCdevkit
│ ├── VOC2007
│ │ ├── Annotations
│ │ ├── ImageSets
│ │ ├── JPEGImages
│ │ ├── SegmentationClass
│ │ └── SegmentationObject
│ └── VOC2012
│ ├── Annotations
│ ├── ImageSets
│ ├── JPEGImages
│ ├── SegmentationClass
│ └── SegmentationObject
Our pretrained backbone params can be found in GoogleDrive
Installation
- Clone this repo:
cd CDARTS_detection
- Install dependencies:
bash env.sh
bash compile.sh
Train:
sh train.sh
Our code is based on the open source project MMDetection.