Skip to content

Not able to train HAN because of the following error. #32

@kk54709

Description

@kk54709

sentence_input = Input(shape=(MAX_SENT_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sentence_input)
l_lstm = Bidirectional(GRU(100, return_sequences=True))(embedded_sequences)
l_att = AttLayer(100)(l_lstm)
sentEncoder = Model(sentence_input, l_att)

review_input = Input(shape=(MAX_SENTS, MAX_SENT_LENGTH), dtype='int32')
review_encoder = TimeDistributed(sentEncoder)(review_input)
l_lstm_sent = Bidirectional(GRU(100, return_sequences=True))(review_encoder)
l_att_sent = AttLayer(100)(l_lstm_sent)
preds = Dense(2, activation='softmax')(l_att_sent)
model = Model(review_input, preds)

model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])

print("model fitting - Hierachical attention network")

Error
ValueError: Dimensions must be equal, but are 15 and 100 for 'att_layer_10/mul' (op: 'Mul') with input shapes: [?,15], [?,15,100].

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions