-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproportionalRecoveryPower.txt
23 lines (22 loc) · 1.05 KB
/
proportionalRecoveryPower.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
model{
for (nn in 1:NMeasurements){
y[nn] ~ dnorm(ym[nn],yp)T(0,66) # Model fit to data
ym[nn] <- max(min(ymm[nn],66),0)
ymm[nn] <- alpha[id[nn]] + (r[g[id[nn]]]*(66-alpha[id[nn]])) * (1-exp(-t[nn]/tau[g[id[nn]]]))+ stEff[id[nn]]* (1-exp(-max(t[nn]-tStart[id[nn]],0)/tau[g[id[nn]]])) # Model estimate
}
for (ss in 1:NSubjects) {
alpha[ss] <- alphaT[ss] * 66 # Patient specific intercept in range 0-66
logit(alphaT[ss]) <- alphaL[ss] # Patient specific intercept in range 0-1
alphaL[ss] ~ dnorm(alpham[g[ss]],alphap[g[ss]]) # Patient specific intercept in range -inf +inf
g[ss] ~ dcat(gp[]) # Group assignment for a patient
c[ss] <- clust[g[ss]]
stEff[ss] <- trEff*trGr[ss] + plEff
}
trEff ~ dnorm(0,10E-2)T(-22,22)
p <- (trEff > 0)
plEff ~ dnorm(0,10E-2)T(-22,22)
gagr <- (sum(g == gorg))/NSubjects
cagr <- (sum(c == corg))/NSubjects
yp ~ dgamma(3.33,0.67)
ys <- pow(yp,-0.5)
}