|
4 | 4 | "cell_type": "markdown", |
5 | 5 | "metadata": {}, |
6 | 6 | "source": [ |
7 | | - "```{currentmodule} optimap\n", |
8 | | - "```" |
| 7 | + "# Filters \n", |
| 8 | + "\n", |
| 9 | + "in this tutorial:\n", |
| 10 | + "- [ ] invert and normalize signal\n", |
| 11 | + "- [ ] using temporal filter(s)\n", |
| 12 | + "- [ ] using spatial filter(s)\n" |
9 | 13 | ] |
10 | 14 | }, |
11 | 15 | { |
12 | 16 | "cell_type": "markdown", |
13 | 17 | "metadata": {}, |
14 | 18 | "source": [ |
15 | | - "```{tip}\n", |
16 | | - "Download this tutorial as a {download}`Jupyter notebook <converted/filter.ipynb>`, or as a {download}`python script <converted/filter.py>` with code cells. We highly recommend using [Visual Studio Code](https://code.visualstudio.com/) to execute this tutorial. Alternatively, you could run the Python script in a terminal with ``python filter.py`` from the folder where the file is located.\n", |
17 | | - "```" |
| 19 | + "Before we proceed to use the different filters to process and imporve the signal quality of the traces, let's first try to pree-process this example image by inverting and normalizing the signal." |
18 | 20 | ] |
19 | 21 | }, |
20 | 22 | { |
21 | 23 | "cell_type": "markdown", |
22 | 24 | "metadata": {}, |
23 | 25 | "source": [ |
24 | | - "# Filters \n", |
| 26 | + "## Invert and normalize" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "metadata": {}, |
| 32 | + "source": [ |
| 33 | + "" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "markdown", |
| 38 | + "metadata": {}, |
| 39 | + "source": [ |
| 40 | + "Note that there are three different normalization options:\n", |
25 | 41 | "\n", |
26 | | - "{{under_construction_warn}}\n", |
| 42 | + " 1. Local Max: perform pixel wise normalization.\n", |
27 | 43 | "\n", |
28 | | - "todo list:\n", |
29 | | - "- using temporal filter(s)\n", |
30 | | - "- using spatial filter(s)\n" |
| 44 | + " 2. Slide window: same as local max but max is defined by a defined slide window.\n", |
| 45 | + "\n", |
| 46 | + " 1. Global: uses the averaged maximum value for normalization.\n", |
| 47 | + "\n", |
| 48 | + "In the previous example, we use the default normalization method (Local max)" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "markdown", |
| 53 | + "metadata": {}, |
| 54 | + "source": [ |
| 55 | + "Let's playback the whole sequence to visualize the AP propagation after normalization of the signal. " |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "markdown", |
| 60 | + "metadata": {}, |
| 61 | + "source": [ |
| 62 | + "" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "## Spatial filters\n" |
31 | 70 | ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "markdown", |
| 74 | + "metadata": {}, |
| 75 | + "source": [ |
| 76 | + "The foldable filter tab will display a number of filter that we can use. The filter operations are typically costly for large images, however, if you have a GPU available you can benefit of optimized accelerated version of these filters." |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "metadata": {}, |
| 82 | + "source": [ |
| 83 | + "" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "markdown", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "## Temporal filters\n" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "markdown", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "markdown", |
| 102 | + "metadata": {}, |
| 103 | + "source": [] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "markdown", |
| 107 | + "metadata": {}, |
| 108 | + "source": [ |
| 109 | + "To better visualize the effect of the filter, specially the temporal filter, let's compare the profiles of the different resulting images after applying the spatial and temporal filters." |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "metadata": {}, |
| 115 | + "source": [ |
| 116 | + "" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "metadata": {}, |
| 122 | + "source": [] |
32 | 123 | } |
33 | 124 | ], |
34 | 125 | "metadata": { |
|
0 commit comments