Skip to content

OBB detection failed with SAHI for small object detection #1679

Open
@ERYAGNIK003

Description

@ERYAGNIK003

Search before asking

  • I have searched the Supervision issues and found no similar feature requests.

Question

I am working on vehicle detection in traffic scene. I have used YOLOv11x-obb (pre-trained on DOTAv1) for vehicle detection. I tried SAHI so I can detect small vehicles successfully but it failed. I used codes from #1394. I have attached codes and results. Please guide me How to improve detection with SAHI.

Platform details:

  • Ultralytics 8.3.35 🚀 Python-3.10.12 torch-2.5.1+cu121 CPU (Intel Xeon 2.20GHz)
  • Supervision version: 0.25.0

YOLO prediction without SAHI:

from ultralytics import YOLO
import cv2
from PIL import Image

model = YOLO("yolo11x-obb.pt")  
model.hide_labels = True
model.hide_conf = True
results=model.predict("img.png",show_labels=False)
img = results[0].plot(labels=False, conf=False)
cv2_imshow(img)

yolo

YOLO prediction with SAHI

import cv2
import supervision as sv
from ultralytics import YOLO
import numpy as np

image = cv2.imread("img.png")
model = YOLO("yolo11x-obb.pt")

def callback(image_slice: np.ndarray) -> sv.Detections:
    result = model(image_slice)[0]
    return sv.Detections.from_ultralytics(result)

slicer = sv.InferenceSlicer(callback = callback,overlap_filter="NON_MAX_SUPPRESSION")
detections = slicer(image)
 
oriented_box_annotator = sv.OrientedBoxAnnotator()
annotated_frame = oriented_box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)
sv.plot_image(annotated_frame)

sahi

Additional

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions