Skip to content

How to convert the PyTorch Data Loader to sv.Detections Object #1683

Open
@shanalikhan

Description

@shanalikhan

Search before asking

  • I have searched the Supervision issues and found no similar feature requests.

Question

I've Dataloader object and I am able to convert the predicted model output using from_transformer to Detection Object. Since i want to generate the MAP and confusion matrix, I need to convert the actual object to Detection object as well.

How to do that?

for idx,batch in enumerate(tqdm(TEST_DATALOADER)):
    
    pixel_values = batch["pixel_values"].to(DEVICE)
    pixel_mask = batch["pixel_mask"].to(DEVICE)
    #print(batch["labels"])
    labels = [{k: v.to(DEVICE) for k, v in t.items()} for t in batch["labels"]]
    #print(labels)
    with torch.no_grad(): 
      outputs = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
      #outputs = model(**batch)

    orig_target_sizes = torch.stack([target["orig_size"] for target in labels], dim=0)
    #print(outputs)
    results = image_processor.post_process_object_detection(outputs, target_sizes=orig_target_sizes,threshold=0.5)
    print("LABELS")
    print(labels[0].keys())
    
    print(labels[0]['class_labels'])
    print("RESULTS")
    print(results[0].keys())
    print(results[0]['labels'])
    for result in results:
      detections = sv.Detections.from_transformers(result)#.with_nms(threshold=IOU_TRESHOLD)
      #sv.Detections.from_
      targets.append(annotations)
      predictions.append(detections)
    break

Additional

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions