@@ -195,89 +195,6 @@ def load_from_source(self):
195195 parent = choice [conditional_column3 ],
196196 )
197197 )
198-
199- # load from attached cvs
200- # URL = f"https://kobo.ifrc.org/api/v2/assets/{self.settings['source-origin']}/files"
201- # file_url = requests.get(URL, headers=headers).json()["results"][0]["content"]
202- # file = requests.get(file_url, headers=headers, allow_redirects=True)
203- # open("schema.csv", "wb").write(file.content)
204- # try:
205- # df_schema = pd.read_csv("schema.csv")
206- # except pd.errors.ParserError:
207- # try:
208- # df_schema = pd.read_csv("schema.csv", delimiter=";")
209- # except pd.errors.ParserError:
210- # raise HTTPException(
211- # status_code=400,
212- # detail="Could not parse the schema file. Please check the file format.",
213- # )
214- # df_schema_lvl1 = df_schema.dropna(
215- # subset=[self.settings["source-level1"] + "_name"]
216- # ).drop_duplicates(subset=[self.settings["source-level1"] + "_name"])
217- # for ix, level1_record in df_schema_lvl1.iterrows():
218- # cs_records.append(
219- # ClassificationSchemaRecord(
220- # name=level1_record[self.settings["source-level1"] + "_name"],
221- # label=level1_record[self.settings["source-level1"] + "_label"],
222- # level=1,
223- # )
224- # )
225- # if self.settings["source-level2"]:
226- # df_schema_lvl2 = df_schema.dropna(
227- # subset=[
228- # self.settings["source-level1"] + "_name",
229- # self.settings["source-level2"] + "_name",
230- # ]
231- # ).drop_duplicates(
232- # subset=[
233- # self.settings["source-level1"] + "_name",
234- # self.settings["source-level2"] + "_name",
235- # ]
236- # )
237- # for ix, level2_record in df_schema_lvl2.iterrows():
238- # cs_records.append(
239- # ClassificationSchemaRecord(
240- # name=level2_record[
241- # self.settings["source-level2"] + "_name"
242- # ],
243- # label=level2_record[
244- # self.settings["source-level2"] + "_label"
245- # ],
246- # level=2,
247- # parent=level2_record[
248- # self.settings["source-level1"] + "_name"
249- # ],
250- # )
251- # )
252- # if self.settings["source-level3"]:
253- # df_schema_lvl3 = df_schema.dropna(
254- # subset=[
255- # self.settings["source-level1"] + "_name",
256- # self.settings["source-level2"] + "_name",
257- # self.settings["source-level3"] + "_name",
258- # ]
259- # ).drop_duplicates(
260- # subset=[
261- # self.settings["source-level1"] + "_name",
262- # self.settings["source-level2"] + "_name",
263- # self.settings["source-level3"] + "_name",
264- # ]
265- # )
266- # for ix, level3_record in df_schema_lvl3.iterrows():
267- # cs_records.append(
268- # ClassificationSchemaRecord(
269- # name=level3_record[
270- # self.settings["source-level3"] + "_name"
271- # ],
272- # label=level3_record[
273- # self.settings["source-level3"] + "_label"
274- # ],
275- # level=3,
276- # parent=level3_record[
277- # self.settings["source-level2"] + "_name"
278- # ],
279- # )
280- # )
281198 else :
282199 raise NotImplementedError (
283200 f"Classification schema source { self .source } is not supported"
0 commit comments