-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
executable file
·252 lines (243 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 5 17:34:27 2020
@author: luokai
"""
import torch
from transformers import BertModel, BertTokenizer
import json
from utils import get_f1, print_result, load_pretrained_model, load_tokenizer
from net import Net
from data_generator import Data_generator
from calculate_loss import Calculate_loss
def train(epochs=20, batchSize=64, lr=0.0001, device='cuda:3', accumulate=True, a_step=16, load_saved=False, file_path='./saved_best.pt', use_dtp=False, pretrained_model='./bert_pretrain_model', tokenizer_model='bert-base-chinese', weighted_loss=False):
device = device
tokenizer = load_tokenizer(tokenizer_model)
my_net = torch.load(file_path) if load_saved else Net(load_pretrained_model(pretrained_model))
my_net.to(device, non_blocking=True)
label_dict = dict()
with open('./tianchi_datasets/label.json') as f:
for line in f:
label_dict = json.loads(line)
break
label_weights_dict = dict()
with open('./tianchi_datasets/label_weights.json') as f:
for line in f:
label_weights_dict = json.loads(line)
break
ocnli_train = dict()
with open('./tianchi_datasets/OCNLI/train.json') as f:
for line in f:
ocnli_train = json.loads(line)
break
ocnli_dev = dict()
with open('./tianchi_datasets/OCNLI/dev.json') as f:
for line in f:
ocnli_dev = json.loads(line)
break
ocemotion_train = dict()
with open('./tianchi_datasets/OCEMOTION/train.json') as f:
for line in f:
ocemotion_train = json.loads(line)
break
ocemotion_dev = dict()
with open('./tianchi_datasets/OCEMOTION/dev.json') as f:
for line in f:
ocemotion_dev = json.loads(line)
break
tnews_train = dict()
with open('./tianchi_datasets/TNEWS/train.json') as f:
for line in f:
tnews_train = json.loads(line)
break
tnews_dev = dict()
with open('./tianchi_datasets/TNEWS/dev.json') as f:
for line in f:
tnews_dev = json.loads(line)
break
train_data_generator = Data_generator(ocnli_train, ocemotion_train, tnews_train, label_dict, device, tokenizer)
dev_data_generator = Data_generator(ocnli_dev, ocemotion_dev, tnews_dev, label_dict, device, tokenizer)
tnews_weights = torch.tensor(label_weights_dict['TNEWS']).to(device, non_blocking=True)
ocnli_weights = torch.tensor(label_weights_dict['OCNLI']).to(device, non_blocking=True)
ocemotion_weights = torch.tensor(label_weights_dict['OCEMOTION']).to(device, non_blocking=True)
loss_object = Calculate_loss(label_dict, weighted=weighted_loss, tnews_weights=tnews_weights, ocnli_weights=ocnli_weights, ocemotion_weights=ocemotion_weights)
optimizer=torch.optim.Adam(my_net.parameters(), lr=lr)
best_dev_f1 = 0.0
best_epoch = -1
for epoch in range(epochs):
my_net.train()
train_loss = 0.0
train_total = 0
train_correct = 0
train_ocnli_correct = 0
train_ocemotion_correct = 0
train_tnews_correct = 0
train_ocnli_pred_list = []
train_ocnli_gold_list = []
train_ocemotion_pred_list = []
train_ocemotion_gold_list = []
train_tnews_pred_list = []
train_tnews_gold_list = []
cnt_train = 0
while True:
raw_data = train_data_generator.get_next_batch(batchSize)
if raw_data == None:
break
data = dict()
data['input_ids'] = raw_data['input_ids']
data['token_type_ids'] = raw_data['token_type_ids']
data['attention_mask'] = raw_data['attention_mask']
data['ocnli_ids'] = raw_data['ocnli_ids']
data['ocemotion_ids'] = raw_data['ocemotion_ids']
data['tnews_ids'] = raw_data['tnews_ids']
tnews_gold = raw_data['tnews_gold']
ocnli_gold = raw_data['ocnli_gold']
ocemotion_gold = raw_data['ocemotion_gold']
if not accumulate:
optimizer.zero_grad()
ocnli_pred, ocemotion_pred, tnews_pred = my_net(**data)
if use_dtp:
tnews_kpi = 0.1 if len(train_tnews_pred_list) == 0 else train_tnews_correct / len(train_tnews_pred_list)
ocnli_kpi = 0.1 if len(train_ocnli_pred_list) == 0 else train_ocnli_correct / len(train_ocnli_pred_list)
ocemotion_kpi = 0.1 if len(train_ocemotion_pred_list) == 0 else train_ocemotion_correct / len(train_ocemotion_pred_list)
current_loss = loss_object.compute_dtp(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold,
ocemotion_gold, tnews_kpi, ocnli_kpi, ocemotion_kpi)
else:
current_loss = loss_object.compute(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold, ocemotion_gold)
train_loss += current_loss.item()
current_loss.backward()
if accumulate and (cnt_train + 1) % a_step == 0:
optimizer.step()
optimizer.zero_grad()
if not accumulate:
optimizer.step()
if use_dtp:
good_tnews_nb, good_ocnli_nb, good_ocemotion_nb, total_tnews_nb, total_ocnli_nb, total_ocemotion_nb = loss_object.correct_cnt_each(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold, ocemotion_gold)
tmp_good = sum([good_tnews_nb, good_ocnli_nb, good_ocemotion_nb])
tmp_total = sum([total_tnews_nb, total_ocnli_nb, total_ocemotion_nb])
train_ocemotion_correct += good_ocemotion_nb
train_ocnli_correct += good_ocnli_nb
train_tnews_correct += good_tnews_nb
else:
tmp_good, tmp_total = loss_object.correct_cnt(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold, ocemotion_gold)
train_correct += tmp_good
train_total += tmp_total
p, g = loss_object.collect_pred_and_gold(ocnli_pred, ocnli_gold)
train_ocnli_pred_list += p
train_ocnli_gold_list += g
p, g = loss_object.collect_pred_and_gold(ocemotion_pred, ocemotion_gold)
train_ocemotion_pred_list += p
train_ocemotion_gold_list += g
p, g = loss_object.collect_pred_and_gold(tnews_pred, tnews_gold)
train_tnews_pred_list += p
train_tnews_gold_list += g
cnt_train += 1
#torch.cuda.empty_cache()
if (cnt_train + 1) % 1000 == 0:
print('[', cnt_train + 1, '- th batch : train acc is:', train_correct / train_total, '; train loss is:', train_loss / cnt_train, ']')
if accumulate:
optimizer.step()
optimizer.zero_grad()
train_ocnli_f1 = get_f1(train_ocnli_gold_list, train_ocnli_pred_list)
train_ocemotion_f1 = get_f1(train_ocemotion_gold_list, train_ocemotion_pred_list)
train_tnews_f1 = get_f1(train_tnews_gold_list, train_tnews_pred_list)
train_avg_f1 = (train_ocnli_f1 + train_ocemotion_f1 + train_tnews_f1) / 3
print(epoch, 'th epoch train average f1 is:', train_avg_f1)
print(epoch, 'th epoch train ocnli is below:')
print_result(train_ocnli_gold_list, train_ocnli_pred_list)
print(epoch, 'th epoch train ocemotion is below:')
print_result(train_ocemotion_gold_list, train_ocemotion_pred_list)
print(epoch, 'th epoch train tnews is below:')
print_result(train_tnews_gold_list, train_tnews_pred_list)
train_data_generator.reset()
my_net.eval()
dev_loss = 0.0
dev_total = 0
dev_correct = 0
dev_ocnli_correct = 0
dev_ocemotion_correct = 0
dev_tnews_correct = 0
dev_ocnli_pred_list = []
dev_ocnli_gold_list = []
dev_ocemotion_pred_list = []
dev_ocemotion_gold_list = []
dev_tnews_pred_list = []
dev_tnews_gold_list = []
cnt_dev = 0
with torch.no_grad():
while True:
raw_data = dev_data_generator.get_next_batch(batchSize)
if raw_data == None:
break
data = dict()
data['input_ids'] = raw_data['input_ids']
data['token_type_ids'] = raw_data['token_type_ids']
data['attention_mask'] = raw_data['attention_mask']
data['ocnli_ids'] = raw_data['ocnli_ids']
data['ocemotion_ids'] = raw_data['ocemotion_ids']
data['tnews_ids'] = raw_data['tnews_ids']
tnews_gold = raw_data['tnews_gold']
ocnli_gold = raw_data['ocnli_gold']
ocemotion_gold = raw_data['ocemotion_gold']
ocnli_pred, ocemotion_pred, tnews_pred = my_net(**data)
if use_dtp:
tnews_kpi = 0.1 if len(dev_tnews_pred_list) == 0 else dev_tnews_correct / len(
dev_tnews_pred_list)
ocnli_kpi = 0.1 if len(dev_ocnli_pred_list) == 0 else dev_ocnli_correct / len(
dev_ocnli_pred_list)
ocemotion_kpi = 0.1 if len(dev_ocemotion_pred_list) == 0 else dev_ocemotion_correct / len(
dev_ocemotion_pred_list)
current_loss = loss_object.compute_dtp(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold,
ocnli_gold,
ocemotion_gold, tnews_kpi, ocnli_kpi, ocemotion_kpi)
else:
current_loss = loss_object.compute(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold, ocemotion_gold)
dev_loss += current_loss.item()
if use_dtp:
good_tnews_nb, good_ocnli_nb, good_ocemotion_nb, total_tnews_nb, total_ocnli_nb, total_ocemotion_nb = loss_object.correct_cnt_each(
tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold, ocemotion_gold)
tmp_good += sum([good_tnews_nb, good_ocnli_nb, good_ocemotion_nb])
tmp_total += sum([total_tnews_nb, total_ocnli_nb, total_ocemotion_nb])
dev_ocemotion_correct += good_ocemotion_nb
dev_ocnli_correct += good_ocnli_nb
dev_tnews_correct += good_tnews_nb
else:
tmp_good, tmp_total = loss_object.correct_cnt(tnews_pred, ocnli_pred, ocemotion_pred, tnews_gold, ocnli_gold, ocemotion_gold)
dev_correct += tmp_good
dev_total += tmp_total
p, g = loss_object.collect_pred_and_gold(ocnli_pred, ocnli_gold)
dev_ocnli_pred_list += p
dev_ocnli_gold_list += g
p, g = loss_object.collect_pred_and_gold(ocemotion_pred, ocemotion_gold)
dev_ocemotion_pred_list += p
dev_ocemotion_gold_list += g
p, g = loss_object.collect_pred_and_gold(tnews_pred, tnews_gold)
dev_tnews_pred_list += p
dev_tnews_gold_list += g
cnt_dev += 1
#torch.cuda.empty_cache()
#if (cnt_dev + 1) % 1000 == 0:
# print('[', cnt_dev + 1, '- th batch : dev acc is:', dev_correct / dev_total, '; dev loss is:', dev_loss / cnt_dev, ']')
dev_ocnli_f1 = get_f1(dev_ocnli_gold_list, dev_ocnli_pred_list)
dev_ocemotion_f1 = get_f1(dev_ocemotion_gold_list, dev_ocemotion_pred_list)
dev_tnews_f1 = get_f1(dev_tnews_gold_list, dev_tnews_pred_list)
dev_avg_f1 = (dev_ocnli_f1 + dev_ocemotion_f1 + dev_tnews_f1) / 3
print(epoch, 'th epoch dev average f1 is:', dev_avg_f1)
print(epoch, 'th epoch dev ocnli is below:')
print_result(dev_ocnli_gold_list, dev_ocnli_pred_list)
print(epoch, 'th epoch dev ocemotion is below:')
print_result(dev_ocemotion_gold_list, dev_ocemotion_pred_list)
print(epoch, 'th epoch dev tnews is below:')
print_result(dev_tnews_gold_list, dev_tnews_pred_list)
dev_data_generator.reset()
if dev_avg_f1 > best_dev_f1:
best_dev_f1 = dev_avg_f1
best_epoch = epoch
torch.save(my_net, file_path)
print('best epoch is:', best_epoch, '; with best f1 is:', best_dev_f1)
if __name__ == '__main__':
print('---------------------start training-----------------------')
pretrained_model = './robert_pretrain_model'
tokenizer_model = './robert_pretrain_model'
train(batchSize=16, device='cuda:3', lr=0.0001, use_dtp=True, pretrained_model=pretrained_model, tokenizer_model=tokenizer_model, weighted_loss=True)