-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
38 lines (28 loc) · 1.25 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from torchvision import datasets
from .transforms import train_transforms, test_transforms
def convert(trainset,testset,seed=1,batch_size=128, num_workers=2,pin_memory=True):
"""
Converts DataSet Object to DataLoader
"""
SEED = 1
cuda = torch.cuda.is_available()
torch.manual_seed(SEED)
if cuda:
torch.cuda.manual_seed(SEED)
dataloader_args = dict(shuffle=True, batch_size=128, num_workers=2, pin_memory=pin_memory) if cuda else dict(shuffle=True, batch_size=64)
trainloader = torch.utils.data.DataLoader(trainset, **dataloader_args)
testloader = torch.utils.data.DataLoader(testset, **dataloader_args)
return trainloader, testloader
def MNIST_Loader(batch: int, train_transforms=train_transforms, test_transforms=test_transforms):
torch.manual_seed(1)
batch_size = batch
kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=train_transforms),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=test_transforms),
batch_size=batch_size, shuffle=True, **kwargs)
return train_loader, test_loader