Open
Description
it would be great if skimr's summary() reported counts and the names of columns under each type category, for example:
skim(iris) %>% summary()
## A skim object
##
## Name: iris
## Number of Rows: 150
## Number of Columns: 5
##
## Column types
## factor (N): fact_col_1, fact_col_2, ..., fact_col_N
## dbl (M): dbl_col_1, dbl_col_2, ..., dbl_col_M
## int (...)
## lgl (...)
## chr (...)
this way we could quickly assess type distributions. idea: identify column types with the 3-letter symbols in the purrr::map_* family