-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
275 lines (215 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import copy
import json
import os
import random
from collections import OrderedDict
from communication.log_communication import log_communication
import flwr as fl
import numpy as np
import torch
from torch.utils.data import DataLoader
from datasets.PFL_DocVQA import collate_fn
from tqdm import tqdm
from build_utils import (build_dataset, build_model, build_optimizer, build_provider_dataset)
from differential_privacy.dp_utils import (add_dp_noise, clip_parameters, flatten_params, get_shape, reconstruct_shape)
from eval import evaluate # fl_centralized_evaluation
from logger import Logger
from metrics import Evaluator
from checkpoint import save_model
from utils import load_config, parse_args, seed_everything
from utils_parallel import get_parameters_from_model, set_parameters_model, weighted_average
from collections import OrderedDict
# def fl_train(data_loaders, model, optimizer, lr_scheduler, evaluator, logger, client_id, fl_config):
def fl_train(data_loaders, model, optimizer, evaluator, logger, client_id, fl_config):
"""
Trains and returns the updated weights.
"""
model.model.train()
param_keys = list(model.model.state_dict().keys())
parameters = copy.deepcopy(list(model.model.state_dict().values()))
keyed_parameters = {n: p.requires_grad for n, p in model.model.named_parameters()}
frozen_parameters = [not keyed_parameters[n] if n in keyed_parameters else False for n, p in model.model.state_dict().items()]
logger.current_epoch += 1
agg_update = None
if not config.use_dp and len(data_loaders) > 1:
raise ValueError("Non private training should only use one data loader.")
total_training_steps = sum([len(data_loader) for data_loader in data_loaders]) * config.fl_params.iterations_per_fl_round
total_training_samples = sum([len(data_loader.dataset) for data_loader in data_loaders]) * config.fl_params.iterations_per_fl_round
pbar = tqdm(total=total_training_steps)
total_loss = 0
fl_round_acc = 0
fl_round_anls = 0
for provider_dataloader in data_loaders:
# Set model weights to state of beginning of federated round
state_dict = OrderedDict({k: v for k, v in zip(param_keys, parameters)})
model.model.load_state_dict(state_dict, strict=True)
model.model.train()
# Reset the optimizer
if config.use_dp:
optimizer = build_optimizer(model, config)
# Perform N provider iterations (each provider has their own dataloader in the non-private case)
for iter in range(config.fl_params.iterations_per_fl_round):
for batch_idx, batch in enumerate(provider_dataloader):
gt_answers = batch['answers']
outputs, pred_answers, answer_conf = model.forward(batch, return_pred_answer=True)
loss = outputs.loss
# total_loss += loss.item() / len(batch['question_id'])
loss.backward()
optimizer.step()
# lr_scheduler.step()
optimizer.zero_grad()
metric = evaluator.get_metrics(gt_answers, pred_answers)
total_loss += outputs.loss.item()
fl_round_acc += np.sum(metric['accuracy'])
fl_round_anls += np.sum(metric['anls'])
log_dict = {
'Train/Batch loss': outputs.loss.item(),
'Train/Batch Accuracy': np.mean(metric['accuracy']),
'Train/Batch ANLS': np.mean(metric['anls']),
'lr': optimizer.param_groups[0]['lr']
}
logger.logger.log(log_dict)
pbar.update()
# After all the iterations:
# Get the update
new_update = [w - w_0 for w, w_0 in zip(list(model.model.state_dict().values()), parameters)] # Get model update
if config.use_dp:
# flatten update
shapes = get_shape(new_update)
new_update = flatten_params(new_update)
# clip update:
new_update = clip_parameters(new_update, clip_norm=config.dp_params.sensitivity)
# Aggregate (Avg)
if agg_update is None:
agg_update = new_update
else:
agg_update += new_update
# Handle DP after all updates are done
if config.use_dp:
# Add the noise
agg_update = add_dp_noise(agg_update, noise_multiplier=config.dp_params.noise_multiplier, sensitivity=config.dp_params.sensitivity)
# Divide the noisy aggregated update by the number of providers (Average update).
agg_update = torch.div(agg_update, len(data_loaders))
# Add the noisy update to the original model
agg_update = reconstruct_shape(agg_update, shapes)
# Restore original weights (without noise) from frozen layers.
agg_update = [upd if not is_frozen else 0 for upd, params, is_frozen in zip(agg_update, parameters, frozen_parameters)]
# all([torch.all(params == new_params).item() == is_frozen for params, new_params, is_frozen in zip(parameters, agg_update, frozen_parameters)]) Restoration Test
else:
agg_update = new_update
# upd_weights = [torch.add(agg_upd, w_0).cpu() for agg_upd, w_0 in zip(agg_update, copy.deepcopy(parameters))] # Send all weights
upd_weights = [torch.add(agg_upd, w_0).cpu() for agg_upd, w_0, is_frozen in zip(agg_update, copy.deepcopy(parameters), frozen_parameters) if not is_frozen] # Send weights of NON-Frozen layers.
pbar.close()
fl_round_log_dict = {
'Train/FL Round loss': total_loss / total_training_samples,
'Train/FL Round Accuracy': fl_round_acc / total_training_samples,
'Train/FL Round ANLS': fl_round_anls / total_training_samples,
'fl_round': logger.current_epoch
}
logger.logger.log(fl_round_log_dict)
# if fl_config["log_path"] is not None:
if config.flower:
# log_communication(federated_round=fl_config.current_round, sender=client_id, receiver=-1, data=upd_weights, log_location=logger.comms_log_file) # Store model's weights bytes.
log_communication(federated_round=fl_config.current_round, sender=client_id, receiver=-1, data=upd_weights, log_location=logger.comms_log_file) # Store only communicated weights (sent parameters).
# Send the weights to the server
return upd_weights
class FlowerClient(fl.client.NumPyClient):
# def __init__(self, model, trainloader, valloader, optimizer, lr_scheduler, evaluator, logger, config, client_id):
def __init__(self, model, trainloader, valloader, optimizer, evaluator, logger, config, client_id):
self.model = model
self.trainloader = trainloader
self.valloader = valloader
self.optimizer = optimizer
# self.lr_scheduler = lr_scheduler
self.evaluator = evaluator
self.logger = logger
self.logger.log_model_parameters(self.model)
self.config = config
self.client_id = client_id
def fit(self, parameters, config):
self.set_parameters(self.model, parameters, config)
# updated_weigths = fl_train(self.trainloader, self.model, self.optimizer, self.lr_scheduler, self.evaluator, self.logger, self.client_id, config)
updated_weigths = fl_train(self.trainloader, self.model, self.optimizer, self.evaluator, self.logger, self.client_id, config)
return updated_weigths, 1, {} # TODO 1 ==> Number of selected clients.
def set_parameters(self, model, parameters, config):
set_parameters_model(model, parameters) # Use standard set_parameters model function.
# params_dict = zip(model.model.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
log_communication(federated_round=config.current_round, sender=-1, receiver=self.client_id, data=parameters, log_location=self.logger.comms_log_file)
# model.model.load_state_dict(state_dict, strict=True)
# The `evaluate` function will be called by Flower after every round
def evaluate(self, parameters, config):
set_parameters_model(self.model, parameters)
accuracy, anls, _, _ = evaluate(self.valloader, self.model, self.evaluator, config) # data_loader, model, evaluator, **kwargs
is_updated = self.evaluator.update_global_metrics(accuracy, anls, 0)
self.logger.log_val_metrics(accuracy, anls, update_best=is_updated)
save_model(model, config.current_round, update_best=is_updated, kwargs=config)
return float(0), len(self.valloader), {"accuracy": float(accuracy), "anls": anls}
def client_fn(client_id):
"""Create a Flower client representing a single organization."""
# Create a list of train data loaders with one dataloader per provider
if config.use_dp:
# Pick a subset of providers
provider_to_doc = json.load(open(config.provider_docs, 'r'))
provider_to_doc = provider_to_doc["client_" + client_id]
providers = random.sample(list(provider_to_doc.keys()), k=config.dp_params.providers_per_fl_round) # 50
train_datasets = [build_provider_dataset(config, 'train', provider_to_doc, provider, client_id) for provider in providers]
else:
train_datasets = [build_dataset(config, 'train', client_id=client_id)]
train_data_loaders = [DataLoader(train_dataset, batch_size=config.batch_size, shuffle=False, collate_fn=collate_fn) for train_dataset in train_datasets]
total_training_steps = sum([len(data_loader) for data_loader in train_data_loaders])
# Create validation data loader
val_dataset = build_dataset(config, 'val')
val_data_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, collate_fn=collate_fn)
# lr_scheduler disabled due to malfunction in FL setup.
# optimizer, lr_scheduler = build_optimizer(model, length_train_loader=total_training_steps, config=config)
optimizer = build_optimizer(model, config=config)
evaluator = Evaluator(case_sensitive=False)
logger = Logger(config=config)
return FlowerClient(model, train_data_loaders, val_data_loader, optimizer, evaluator, logger, config, client_id)
def get_config_fn():
"""Return a function which returns custom configuration."""
def custom_config(server_round: int):
"""Return evaluate configuration dict for each round."""
config.current_round = server_round
return config
return custom_config
if __name__ == '__main__':
args = parse_args()
config = load_config(args)
seed_everything(config.seed)
# Set `MASTER_ADDR` and `MASTER_PORT` environment variables
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '9957'
model = build_model(config)
params = get_parameters_from_model(model)
# Create FedAvg strategy
strategy = fl.server.strategy.FedAvg(
# fraction_fit=config.dp_params.client_sampling_probability, # Sample 100% of available clients for training
fraction_fit=config.fl_params.sample_clients/config.fl_params.total_clients,
# fraction_evaluate=config.fl_params.sample_clients/config.fl_params.total_clients, # Sample N of available clients for evaluation
fraction_evaluate=0.1, # Sample only 1 client for evaluation
min_fit_clients=config.fl_params.sample_clients, # Never sample less than N clients for training
# min_evaluate_clients=config.fl_params.sample_clients, # Never sample less than N clients for evaluation
min_evaluate_clients=1, # Sample only 1 client for evaluation.
min_available_clients=config.fl_params.sample_clients, # Wait until N clients are available
fit_metrics_aggregation_fn=weighted_average, # <-- pass the metric aggregation function
evaluate_metrics_aggregation_fn=weighted_average, # <-- pass the metric aggregation function
initial_parameters=fl.common.ndarrays_to_parameters(params),
on_fit_config_fn=get_config_fn(), # Log path hardcoded according to /save dir
# evaluate_fn=fl_centralized_evaluation, # Pass the centralized evaluation function
on_evaluate_config_fn=get_config_fn(),
)
# Specify client resources if you need GPU (defaults to 1 CPU and 0 GPU)
client_resources = None
if config.device == "cuda":
client_resources = {"num_gpus": 1} # TODO Check number of GPUs
# Start simulation
fl.simulation.start_simulation(
client_fn=client_fn,
num_clients=config.fl_params.total_clients,
config=fl.server.ServerConfig(num_rounds=config.fl_params.num_rounds),
strategy=strategy,
client_resources=client_resources,
# ray_init_args={"local_mode": True} # run in one process to avoid zombie ray processes
)