forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_BPE_5000.yaml
375 lines (319 loc) · 11.3 KB
/
train_BPE_5000.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# ############################################################################
# Model: E2E ASR with attention-based ASR
# Encoder: CRDNN model
# Decoder: GRU + beamsearch + Transformer
# Tokens: BPE with unigram
# losses: CTC+ NLL
# Training: Librispeech 960h
# Authors: Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga,
# Samuele Cornell, Sung-Lin Yeh, Titouan Parcollet 2021
# ############################################################################
# Seed needs to be set at top of yaml, before objects with parameters
# are instantiated
seed: 1986
__set_seed: !apply:speechbrain.utils.seed_everything [!ref <seed>]
output_folder: !ref results/CRDNN_BPE_960h_5k_LM/<seed>
output_wer_folder: !ref <output_folder>/
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Language model (LM) pretraining
# NB: To avoid mismatch, the speech recognizer must be trained with the same
# tokenizer used for LM training. Here, we download everything from the
# speechbrain HuggingFace repository. However, a local path pointing to a
# directory containing the lm.ckpt and tokenizer.ckpt may also be specified
# instead. E.g if you want to use your own LM / tokenizer.
pretrained_lm_tokenizer_path: speechbrain/asr-crdnn-transformerlm-librispeech
# Data files
data_folder: !PLACEHOLDER # e,g./path/to/LibriSpeech
train_splits: ["train-clean-100", "train-clean-360", "train-other-500"]
dev_splits: ["dev-clean"]
test_splits: ["test-clean", "test-other"]
skip_prep: False
ckpt_interval_minutes: 25 # save checkpoint every N min
train_csv: !ref <save_folder>/train.csv
valid_csv: !ref <save_folder>/dev-clean.csv
test_csv:
- !ref <save_folder>/test-clean.csv
- !ref <save_folder>/test-other.csv
# Data for augmentation
data_folder_noise: !ref <data_folder>/noise # The noisy sequences for data augmentation will automatically be downloaded here.
NOISE_DATASET_URL: https://www.dropbox.com/scl/fi/a09pj97s5ifan81dqhi4n/noises.zip?rlkey=j8b0n9kdjdr32o1f06t0cw5b7&dl=1
noise_annotation: !ref <save_folder>/noise.csv #The data manifest files are created by the data preparation script
####################### Training Parameters ####################################
number_of_epochs: 25
number_of_ctc_epochs: 25
batch_size: 8
lr: 1.0
ctc_weight: 0.5
sorting: ascending
dynamic_batching: False
precision: fp32 # bf16, fp16 or fp32
# dynamic batching parameters, if used
feats_hop_size: 0.01
max_batch_length: 20000 # in terms of frames
shuffle: True
batch_ordering: random
num_buckets: 20
dynamic_batch_sampler:
max_batch_length: !ref <max_batch_length>
shuffle: !ref <shuffle>
batch_ordering: !ref <batch_ordering>
num_buckets: !ref <num_buckets>
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 40
opt_class: !name:torch.optim.Adadelta
lr: !ref <lr>
rho: 0.95
eps: 1.e-8
# Dataloader options
num_workers: 4
train_dataloader_opts:
num_workers: !ref <num_workers>
batch_size: !ref <batch_size>
valid_dataloader_opts:
num_workers: !ref <num_workers>
batch_size: !ref <batch_size>
test_dataloader_opts:
batch_size: 1
####################### Model Parameters #######################################
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 2
cnn_channels: (64, 128)
inter_layer_pooling_size: (2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 4
rnn_neurons: 1024
rnn_bidirectional: True
dnn_blocks: 1
dnn_neurons: 1024
emb_size: 1024
dec_neurons: 1024
output_neurons: 5000 # Number of tokens (same as LM)
blank_index: 0
bos_index: 1
eos_index: 2
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
valid_beam_size: 20
test_beam_size: 40
using_eos_threshold: True
eos_threshold: 1.5
using_max_attn_shift: True
max_attn_shift: 300
lm_weight: 0.8
temperature: 1.0
ctc_window_size: 200
# Scoring parameters
ctc_weight_decode: 0.40
coverage_penalty: 1.5
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
normalize: !new:speechbrain.processing.features.InputNormalization
norm_type: global
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
input_shape: [null, null, !ref <n_mels>]
activation: !ref <activation>
dropout: !ref <dropout>
cnn_blocks: !ref <cnn_blocks>
cnn_channels: !ref <cnn_channels>
cnn_kernelsize: !ref <cnn_kernelsize>
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
time_pooling: True
using_2d_pooling: False
time_pooling_size: !ref <time_pooling_size>
rnn_class: !ref <rnn_class>
rnn_layers: !ref <rnn_layers>
rnn_neurons: !ref <rnn_neurons>
rnn_bidirectional: !ref <rnn_bidirectional>
rnn_re_init: True
dnn_blocks: !ref <dnn_blocks>
dnn_neurons: !ref <dnn_neurons>
use_rnnp: True
emb: !new:speechbrain.nnet.embedding.Embedding
num_embeddings: !ref <output_neurons>
embedding_dim: !ref <emb_size>
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
enc_dim: !ref <dnn_neurons>
input_size: !ref <emb_size>
rnn_type: gru
attn_type: location
hidden_size: !ref <dec_neurons>
attn_dim: 1024
num_layers: 1
scaling: 1.0
channels: 10
kernel_size: 100
re_init: True
dropout: !ref <dropout>
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dec_neurons>
n_neurons: !ref <output_neurons>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
seq_cost: !name:speechbrain.nnet.losses.nll_loss
label_smoothing: 0.1
# This is the TransformerLM that is used according to the Huggingface repository
# Visit the HuggingFace model corresponding to the pretrained_lm_tokenizer_path
# For more details about the model!
# NB: It has to match the pre-trained TransformerLM!!
lm_model: !new:speechbrain.lobes.models.transformer.TransformerLM.TransformerLM
vocab: 5000
d_model: 768
nhead: 12
num_encoder_layers: 12
num_decoder_layers: 0
d_ffn: 3072
dropout: 0.0
activation: !name:torch.nn.GELU
normalize_before: False
tokenizer: !new:sentencepiece.SentencePieceProcessor
modules:
enc: !ref <enc>
emb: !ref <emb>
dec: !ref <dec>
ctc_lin: !ref <ctc_lin>
seq_lin: !ref <seq_lin>
normalize: !ref <normalize>
lm_model: !ref <lm_model>
model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
############################## Decoding & optimiser ############################
ctc_scorer: !new:speechbrain.decoders.scorer.CTCScorer
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
ctc_fc: !ref <ctc_lin>
ctc_window_size: !ref <ctc_window_size>
coverage_scorer: !new:speechbrain.decoders.scorer.CoverageScorer
vocab_size: !ref <output_neurons>
transformerlm_scorer: !new:speechbrain.decoders.scorer.TransformerLMScorer
language_model: !ref <lm_model>
valid_scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
full_scorers: [!ref <coverage_scorer>]
weights:
coverage: !ref <coverage_penalty>
test_scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
full_scorers: [
!ref <transformerlm_scorer>,
!ref <coverage_scorer>]
partial_scorers: [!ref <ctc_scorer>]
weights:
transformerlm: !ref <lm_weight>
coverage: !ref <coverage_penalty>
ctc: !ref <ctc_weight_decode>
# Search
valid_search: !new:speechbrain.decoders.S2SRNNBeamSearcher
embedding: !ref <emb>
decoder: !ref <dec>
linear: !ref <seq_lin>
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <valid_beam_size>
eos_threshold: !ref <eos_threshold>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
temperature: !ref <temperature>
scorer: !ref <valid_scorer>
test_search: !new:speechbrain.decoders.S2SRNNBeamSearcher
embedding: !ref <emb>
decoder: !ref <dec>
linear: !ref <seq_lin>
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <test_beam_size>
eos_threshold: !ref <eos_threshold>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
using_eos_threshold: !ref <using_eos_threshold>
temperature: !ref <temperature>
scorer: !ref <test_scorer>
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr>
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
############################## Augmentations ###################################
prepare_noise_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <NOISE_DATASET_URL>
dest_folder: !ref <data_folder_noise>
ext: wav
csv_file: !ref <noise_annotation>
# Add noise to input signal
add_noise: !new:speechbrain.augment.time_domain.AddNoise
csv_file: !ref <noise_annotation>
snr_low: 0
snr_high: 15
noise_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Speed perturbation
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
orig_freq: !ref <sample_rate>
speeds: [95, 100, 105]
# Frequency drop: randomly drops a number of frequency bands to zero.
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
drop_freq_low: 0
drop_freq_high: 1
drop_freq_count_low: 1
drop_freq_count_high: 3
drop_freq_width: 0.05
# Time drop: randomly drops a number of temporal chunks.
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
drop_length_low: 1000
drop_length_high: 2000
drop_count_low: 1
drop_count_high: 5
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
concat_original: True
min_augmentations: 4
max_augmentations: 4
augment_prob: 1.0
augmentations: [
!ref <add_noise>,
!ref <speed_perturb>,
!ref <drop_freq>,
!ref <drop_chunk>]
############################## Logging and Pretrainer ##########################
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
scheduler: !ref <lr_annealing>
normalizer: !ref <normalize>
counter: !ref <epoch_counter>
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
split_tokens: True
# The pretrainer allows a mapping between pretrained files and instances that
# are declared in the yaml. E.g here, we will download the file lm.ckpt
# and it will be loaded into "lm" which is pointing to the <lm_model> defined
# before.
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
collect_in: !ref <save_folder>
loadables:
lm: !ref <lm_model>
tokenizer: !ref <tokenizer>
paths:
lm: !ref <pretrained_lm_tokenizer_path>/lm.ckpt
tokenizer: !ref <pretrained_lm_tokenizer_path>/tokenizer.ckpt