forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.yaml
265 lines (222 loc) · 7.82 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# ############################################################################
# Model: E2E ASR with Transducer ASR
# Encoder: CRDNN model
# Decoder: LiGRU + beamsearch
# losses: Transducer
# Training: TIMIT
# Authors: Abdel Heba, Mirco Ravanelli, Sung-Lin Yeh 2020
# ############################################################################
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 1986
__set_seed: !apply:speechbrain.utils.seed_everything [!ref <seed>]
output_folder: !ref results/augment_noise_CRDNN/<seed>
test_wer_file: !ref <output_folder>/wer_test.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data files
data_folder: !PLACEHOLDER # e.g. /path/to/TIMIT
train_annotation: !ref <save_folder>/train.json
valid_annotation: !ref <save_folder>/dev.json
test_annotation: !ref <save_folder>/test.json
skip_prep: False # Skip data preparation
uppercase: False # Must be True when the TIMIT dataset is in the upper-case version
# Data for augmentation
data_folder_noise: !ref <data_folder>/noise # The noisy sequences for data augmentation will automatically be downloaded here.
NOISE_DATASET_URL: https://www.dropbox.com/scl/fi/a09pj97s5ifan81dqhi4n/noises.zip?rlkey=j8b0n9kdjdr32o1f06t0cw5b7&dl=1
noise_annotation: !ref <save_folder>/noise.csv #The data manifest files are created by the data preparation script
####################### Training Parameters ####################################
number_of_epochs: 50
batch_size: 8
lr: 1.0
sorting: ascending # choose between ascending, descending and random
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 40
####################### Model Parameters #######################################
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 2
cnn_channels: (128, 256)
cnn_kernelsize: (3, 3)
rnn_layers: 4
rnn_neurons: 512
rnn_bidirectional: True
dnn_blocks: 2
dnn_neurons: 512
# emb_size: 128
dec_neurons: 128
# Outputs
output_neurons: 42
joint_dim: 128
blank_index: 0
# Decoding parameters
beam_size: 4
nbest: 1
# by default {state,expand}_beam = 2.3 as mention in paper
# https://arxiv.org/abs/1904.02619
state_beam: 1.0
expand_beam: 1.0
# Dataloader options
num_workers: 4
train_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
valid_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
test_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
normalize: !new:speechbrain.processing.features.InputNormalization
norm_type: global
############################## Augmentations ###################################
# Download and prepare the dataset of noisy sequences for augmentation
prepare_noise_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <NOISE_DATASET_URL>
dest_folder: !ref <data_folder_noise>
ext: wav
csv_file: !ref <noise_annotation>
# Add noise to input signal
add_noise: !new:speechbrain.augment.time_domain.AddNoise
csv_file: !ref <noise_annotation>
snr_low: 0
snr_high: 15
noise_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Speed perturbation
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
orig_freq: !ref <sample_rate>
speeds: [95, 100, 105]
# Frequency drop: randomly drops a number of frequency bands to zero.
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
drop_freq_low: 0
drop_freq_high: 1
drop_freq_count_low: 1
drop_freq_count_high: 3
drop_freq_width: 0.05
# Time drop: randomly drops a number of temporal chunks.
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
drop_length_low: 1000
drop_length_high: 2000
drop_count_low: 1
drop_count_high: 5
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
concat_original: True
min_augmentations: 4
max_augmentations: 4
augment_prob: 1.0
augmentations: [
!ref <add_noise>,
!ref <speed_perturb>,
!ref <drop_freq>,
!ref <drop_chunk>]
############################## Models ##########################################
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
input_shape: [null, null, !ref <n_mels>]
activation: !ref <activation>
dropout: !ref <dropout>
cnn_blocks: !ref <cnn_blocks>
cnn_channels: !ref <cnn_channels>
cnn_kernelsize: !ref <cnn_kernelsize>
time_pooling: True
rnn_layers: !ref <rnn_layers>
rnn_neurons: !ref <rnn_neurons>
rnn_bidirectional: !ref <rnn_bidirectional>
dnn_blocks: !ref <dnn_blocks>
dnn_neurons: !ref <dnn_neurons>
jit_module_keys: [enc]
enc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <joint_dim>
bias: False
emb: !new:speechbrain.nnet.embedding.Embedding
num_embeddings: !ref <output_neurons>
consider_as_one_hot: True
blank_id: !ref <blank_index>
dec: !new:speechbrain.nnet.RNN.LiGRU
input_shape: [null, null, !ref <output_neurons> - 1]
hidden_size: !ref <dec_neurons>
num_layers: 1
dropout: 0.0
normalization: layernorm
bidirectional: False
dec_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dec_neurons>
n_neurons: !ref <joint_dim>
bias: False
Tjoint: !new:speechbrain.nnet.transducer.transducer_joint.Transducer_joint
joint: sum # joint [sum | concat]
nonlinearity: !ref <activation>
output: !new:speechbrain.nnet.linear.Linear
input_size: 128
n_neurons: !ref <output_neurons> # 42 phonemes + 1 blank
bias: False
compute_cost: !name:speechbrain.nnet.losses.transducer_loss
use_torchaudio: True
blank_index: !ref <blank_index>
model: !new:torch.nn.ModuleList [[
!ref <enc>,
!ref <enc_lin>,
!ref <emb>,
!ref <dec>,
!ref <dec_lin>,
!ref <output>
]]
Greedysearcher: !new:speechbrain.decoders.transducer.TransducerBeamSearcher
decode_network_lst: [!ref <emb>, !ref <dec>, !ref <dec_lin>]
tjoint: !ref <Tjoint>
classifier_network: [!ref <output>]
blank_id: !ref <blank_index>
beam_size: 1
nbest: 1
Beamsearcher: !new:speechbrain.decoders.transducer.TransducerBeamSearcher
decode_network_lst: [!ref <emb>, !ref <dec>, !ref <dec_lin>]
tjoint: !ref <Tjoint>
classifier_network: [!ref <output>]
blank_id: !ref <blank_index>
beam_size: !ref <beam_size>
nbest: !ref <nbest>
state_beam: !ref <state_beam>
expand_beam: !ref <expand_beam>
opt_class: !name:torch.optim.Adadelta
rho: 0.95
eps: 1.e-8
lr: !ref <lr>
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr>
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
modules:
enc: !ref <enc>
enc_lin: !ref <enc_lin>
emb: !ref <emb>
dec: !ref <dec>
dec_lin: !ref <dec_lin>
Tjoint: !ref <Tjoint>
output: !ref <output>
normalize: !ref <normalize>
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
scheduler: !ref <lr_annealing>
normalizer: !ref <normalize>
counter: !ref <epoch_counter>
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
transducer_stats: !name:speechbrain.utils.metric_stats.MetricStats
metric: !name:speechbrain.nnet.losses.transducer_loss
use_torchaudio: True
blank_index: !ref <blank_index>
reduction: none
per_stats: !name:speechbrain.utils.metric_stats.ErrorRateStats