forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ecapa_tdnn.yaml
229 lines (190 loc) · 7.95 KB
/
train_ecapa_tdnn.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# #################################
# Basic training parameters for urban sound classification. We have first a network that
# computes some embeddings. On the top of that, we employ a classifier.
#
# Author:
# * David Whipps 2021
# * Ala Eddine Limame 2021
# #################################
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 1988
__set_seed: !apply:speechbrain.utils.seed_everything [!ref <seed>]
# Set up folders for reading from and writing to
# Dataset must already exist at `audio_data_folder`
data_folder: !PLACEHOLDER # e.g., /localscratch/UrbanSound8K
data_folder_noise: !ref <data_folder>/noise # The noisy sequences for data augmentation will automatically be downloaded here.
data_folder_rir: !ref <data_folder>/rir # The impulse responses used for data augmentation will automatically be downloaded here.
audio_data_folder: !ref <data_folder>/audio
# TODO the following folder will contain the resampled audio files (mono channel and config SR) to train on
# resampled_audio_data_folder: !ref <data_folder>/audio_mono16kHz
output_folder: !ref ./results/urban_sound/<seed>
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data for augmentation
NOISE_DATASET_URL: https://www.dropbox.com/scl/fi/a09pj97s5ifan81dqhi4n/noises.zip?rlkey=j8b0n9kdjdr32o1f06t0cw5b7&dl=1
RIR_DATASET_URL: https://www.dropbox.com/scl/fi/linhy77c36mu10965a836/RIRs.zip?rlkey=pg9cu8vrpn2u173vhiqyu743u&dl=1
# torch.Tensorboard logs
use_tensorboard: True
tensorboard_logs_folder: !ref <output_folder>/tb_logs/
# Path where data manifest files will be stored
train_annotation: !ref <save_folder>/manifest/train.json
valid_annotation: !ref <save_folder>/manifest/valid.json
test_annotation: !ref <save_folder>/manifest/test.json
noise_annotation: !ref <save_folder>/noise.csv
rir_annotation: !ref <save_folder>/rir.csv
# To standardize results, UrbanSound8k has pre-separated samples into
# 10 folds for multi-fold validation
train_fold_nums: [1, 2, 3, 4, 5, 6, 7, 8]
valid_fold_nums: [9]
test_fold_nums: [10]
skip_manifest_creation: False
ckpt_interval_minutes: 15 # save checkpoint every N min
####################### Training Parameters ####################################
number_of_epochs: 25
batch_size: 32
lr: 0.001
base_lr: 0.00000001
max_lr: !ref <lr>
step_size: 65000
sample_rate: 16000
# Feature parameters
n_mels: 80
left_frames: 0
right_frames: 0
deltas: False
amp_to_db: False
normalize: True
# Number of classes
out_n_neurons: 10
# Note that it's actually important to shuffle the data here
# (or at the very least, not sort the data by duration)
# Also note that this does not violate the UrbanSound8k "no-shuffle" policy
# because this does not mix samples from folds in train to valid/test, only
# within train or valid, or test
shuffle: True
num_workers: 4
dataloader_options:
batch_size: !ref <batch_size>
shuffle: !ref <shuffle>
num_workers: !ref <num_workers>
# Functions
compute_features: !new:speechbrain.lobes.features.Fbank
n_mels: !ref <n_mels>
left_frames: !ref <left_frames>
right_frames: !ref <right_frames>
deltas: !ref <deltas>
embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
input_size: !ref <n_mels>
channels: [1024, 1024, 1024, 1024, 3072]
kernel_sizes: [5, 3, 3, 3, 1]
dilations: [1, 2, 3, 4, 1]
attention_channels: 128
lin_neurons: 192
classifier: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
input_size: 192
out_neurons: !ref <out_n_neurons>
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
# Download and prepare the dataset of noisy sequences for augmentation
prepare_noise_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <NOISE_DATASET_URL>
dest_folder: !ref <data_folder_noise>
ext: wav
csv_file: !ref <noise_annotation>
# Speed perturbation
speed_changes: [95, 100, 105] # List of speed changes for time-stretching
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
orig_freq: !ref <sample_rate>
speeds: !ref <speed_changes>
# Add noise to input signal
snr_low: 0 # Min SNR for noise augmentation
snr_high: 15 # Max SNR for noise augmentation
add_noise: !new:speechbrain.augment.time_domain.AddNoise
csv_file: !ref <noise_annotation>
snr_low: !ref <snr_low>
snr_high: !ref <snr_high>
noise_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Download and prepare the dataset of room impulse responses for augmentation
prepare_rir_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <RIR_DATASET_URL>
dest_folder: !ref <data_folder_rir>
ext: wav
csv_file: !ref <rir_annotation>
# Add reverberation to input signal
add_reverb: !new:speechbrain.augment.time_domain.AddReverb
csv_file: !ref <rir_annotation>
reverb_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Frequency drop: randomly drops a number of frequency bands to zero.
drop_freq_low: 0 # Min frequency band dropout probability
drop_freq_high: 1 # Max frequency band dropout probability
drop_freq_count_low: 1 # Min number of frequency bands to drop
drop_freq_count_high: 3 # Max number of frequency bands to drop
drop_freq_width: 0.05 # Width of frequency bands to drop
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
drop_freq_low: !ref <drop_freq_low>
drop_freq_high: !ref <drop_freq_high>
drop_freq_count_low: !ref <drop_freq_count_low>
drop_freq_count_high: !ref <drop_freq_count_high>
drop_freq_width: !ref <drop_freq_width>
# Time drop: randomly drops a number of temporal chunks.
drop_chunk_count_low: 1 # Min number of audio chunks to drop
drop_chunk_count_high: 5 # Max number of audio chunks to drop
drop_chunk_length_low: 1000 # Min length of audio chunks to drop
drop_chunk_length_high: 2000 # Max length of audio chunks to drop
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
drop_length_low: !ref <drop_chunk_length_low>
drop_length_high: !ref <drop_chunk_length_high>
drop_count_low: !ref <drop_chunk_count_low>
drop_count_high: !ref <drop_chunk_count_high>
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
parallel_augment: True
concat_original: True
repeat_augment: 1
shuffle_augmentations: False
min_augmentations: 4
max_augmentations: 4
augment_prob: 1.0
augmentations: [
!ref <speed_perturb>,
!ref <add_noise>,
!ref <add_reverb>,
!ref <drop_freq>,
!ref <drop_chunk>]
mean_var_norm: !new:speechbrain.processing.features.InputNormalization
norm_type: sentence
std_norm: False
modules:
compute_features: !ref <compute_features>
embedding_model: !ref <embedding_model>
classifier: !ref <classifier>
mean_var_norm: !ref <mean_var_norm>
compute_cost: !new:speechbrain.nnet.losses.LogSoftmaxWrapper
loss_fn: !new:speechbrain.nnet.losses.AdditiveAngularMargin
margin: 0.2
scale: 30
# compute_error: !name:speechbrain.nnet.losses.classification_error
opt_class: !name:torch.optim.Adam
lr: !ref <lr>
weight_decay: 0.000002
lr_annealing: !new:speechbrain.nnet.schedulers.CyclicLRScheduler
base_lr: !ref <base_lr>
max_lr: !ref <max_lr>
step_size: !ref <step_size>
# Logging + checkpoints
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_stats: !name:speechbrain.utils.metric_stats.MetricStats
metric: !name:speechbrain.nnet.losses.classification_error
reduction: batch
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
embedding_model: !ref <embedding_model>
classifier: !ref <classifier>
normalizer: !ref <mean_var_norm>
counter: !ref <epoch_counter>