forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.yaml
149 lines (117 loc) · 4.21 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# #######################################
# Model: wavlm for Emotion Diarization
# Authors:
# * Yingzhi Wang 2023
# ################################
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 78
__set_seed: !apply:speechbrain.utils.seed_everything [!ref <seed>]
output_folder: !ref results/zed_wavlm_large/<seed>
eder_file: !ref <output_folder>/eder.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
wav2vec2_hub: "microsoft/wavlm-large" # "facebook/wav2vec2-large" "facebook/hubert-large-ll60k"
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
# Data files
zed_folder: !PLACEHOLDER # e,g./path/to/ZED
emovdb_folder: !PLACEHOLDER # e,g./path/to/EmoV-DB
esd_folder: !PLACEHOLDER # e,g./path/to/ESD
iemocap_folder: !PLACEHOLDER # e,g./path/to/IEMOCAP_full_release
jlcorpus_folder: !PLACEHOLDER # e,g./path/to/JL_corpus
ravdess_folder: !PLACEHOLDER # e,g./path/to/RAVDESS
split_ratio: [90, 10]
skip_prep: False
train_annotation: !ref <output_folder>/train.json
valid_annotation: !ref <output_folder>/valid.json
test_annotation: !ref <output_folder>/test.json
####################### Training Parameters ####################################
number_of_epochs: 15
lr: 0.0001
lr_wav2vec: 0.00001
# precision: fp32 # bf16, fp16 or fp32
# do_resample: False
# sample_rate: 16000
# With data_parallel batch_size is split into N jobs
# With DDP batch_size is multiplied by N jobs
# Must be 3 per GPU to fit 32GB of VRAM
batch_size: 2
test_batch_size: 1
#freeze all wav2vec2
freeze_wav2vec2: False
freeze_wav2vec2_conv: True
window_length: 1 # win_len = 0.02 * 1 = 0.02s
stride: 1 # stride = 0.02 * 1 = 0.02s
encoder_dim: 1024
# Outputs
out_n_neurons: 4 # BPE size, index(blank/eos/bos) = 0
use_threshold: False
threshold: -0.05
# Dataloader options
dataloader_options:
batch_size: !ref <batch_size>
shuffle: True
num_workers: 2 # 2 on linux but 0 works on windows
drop_last: False
test_dataloader_opts:
batch_size: !ref <test_batch_size>
# # DER evaluation parameters
# ignore_overlap: True
# forgiveness_collar: 0.25
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
input_norm: !new:speechbrain.processing.features.InputNormalization
norm_type: sentence
std_norm: False
wav2vec2: !new:speechbrain.lobes.models.huggingface_transformers.wavlm.WavLM
source: !ref <wav2vec2_hub>
output_norm: True
freeze: !ref <freeze_wav2vec2>
freeze_feature_extractor: !ref <freeze_wav2vec2_conv>
save_path: !ref <wav2vec2_folder>
# output_all_hiddens: False
avg_pool: !new:speechbrain.nnet.pooling.Pooling1d
pool_type: "avg"
kernel_size: !ref <window_length>
stride: !ref <stride>
ceil_mode: True
output_mlp: !new:speechbrain.nnet.linear.Linear
input_size: !ref <encoder_dim>
n_neurons: !ref <out_n_neurons>
bias: False
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
compute_cost: !name:speechbrain.nnet.losses.nll_loss
modules:
input_norm: !ref <input_norm>
wav2vec2: !ref <wav2vec2>
output_mlp: !ref <output_mlp>
model: !new:torch.nn.ModuleList
- [!ref <output_mlp>]
opt_class: !name:torch.optim.Adam
lr: !ref <lr>
wav2vec2_opt_class: !name:torch.optim.Adam
lr: !ref <lr_wav2vec>
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr>
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
lr_annealing_wav2vec2: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr_wav2vec>
improvement_threshold: 0.0025
annealing_factor: 0.9
patient: 0
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
input_norm: !ref <input_norm>
wav2vec2: !ref <wav2vec2>
model: !ref <model>
scheduler_model: !ref <lr_annealing>
scheduler_wav2vec: !ref <lr_annealing_wav2vec2>
counter: !ref <epoch_counter>
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_stats: !name:speechbrain.utils.metric_stats.MetricStats
metric: !name:speechbrain.nnet.losses.classification_error
reduction: batch