-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Description
Bug Description
QdrantVectorStore is currently broken with the latest versions of qdrant-client because it still calls search_batch, which no longer exists on QdrantClient. The correct method is now search_batch_points.
This results in a hard runtime error
Version
llama-index-vector-stores-qdrant 0.8.7
Steps to Reproduce
Steps to reproduce
-
Install the Qdrant integration with a recent qdrant-client:
pip install llama-index-vector-stores-qdrant qdrant-client 2. Start Qdrant:
docker run -p 6333:6333 qdrant/qdrant
3. Run this minimal script:
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.schema import TextNode
from llama_index.core.vector_stores.types import VectorStoreQuery
import qdrant_client
client = qdrant_client.QdrantClient("http://localhost:6333")
vs = QdrantVectorStore(
collection_name="test",
client=client,
enable_hybrid=True, # triggers the broken path
)
vs.add([TextNode(text="hi", embedding=[0.1,0.2,0.3])])
query = VectorStoreQuery(query_embedding=[0.1,0.2,0.3], similarity_top_k=1)
vs.query(query) # <-- crashes
4. You immediately get:
"'QdrantClient' object has no attribute 'search_batch'