Skip to content

Commit 0cb64e5

Browse files
committed
Use bagging terminology
1 parent 6a36998 commit 0cb64e5

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed
File renamed without changes.

algorithms/linfa-ensemble/src/lib.rs

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -3,18 +3,18 @@
33
//! Ensemble methods combine the predictions of several base estimators built with a given
44
//! learning algorithm in order to improve generalizability / robustness over a single estimator.
55
//!
6-
//! ## Random Forest
6+
//! ## Bootstrap Aggregation (aka Bagging)
77
//!
8-
//! A typical example of ensemble method is random forest, which combines the predictions of
9-
//! several decision trees (see `linfa-trees`) trained on different parts of the same training set.
8+
//! A typical example of ensemble method is Bootstrapo AGgregation, which combines the predictions of
9+
//! several decision trees (see `linfa-trees`) trained on different samples subset of the training dataset.
1010
//!
1111
//! ## Reference
1212
//!
1313
//! * [Scikit-Learn User Guide](https://scikit-learn.org/stable/modules/ensemble.html)
1414
//!
1515
//! ## Example
1616
//!
17-
//! This example shows how to train a random forest model using 100 decision trees,
17+
//! This example shows how to train a bagging model using 100 decision trees,
1818
//! each trained on 70% of the training data (bootstrap sampling).
1919
//!
2020
//! ```no_run
@@ -30,15 +30,15 @@
3030
//! .shuffle(&mut rng)
3131
//! .split_with_ratio(0.8);
3232
//!
33-
//! // Train a random forest model on the iris dataset
34-
//! let random_forest_model = EnsembleLearnerParams::new(DecisionTree::params())
33+
//! // Train the model on the iris dataset
34+
//! let bagging_model = EnsembleLearnerParams::new(DecisionTree::params())
3535
//! .ensemble_size(100)
3636
//! .bootstrap_proportion(0.7)
3737
//! .fit(&train)
3838
//! .unwrap();
3939
//!
4040
//! // Make predictions on the test set
41-
//! let predictions = random_forest_model.predict(&test);
41+
//! let predictions = bagging_model.predict(&test);
4242
//! ```
4343
//!
4444
mod algorithm;

0 commit comments

Comments
 (0)