@@ -21,7 +21,7 @@ fn fit_without_prior_model(c: &mut Criterion) {
2121 for ( nfeatures, nrows) in sizes. iter ( ) {
2222 let dataset = get_dataset ( & mut rng, * nrows, * nfeatures) ;
2323 group. bench_function (
24- BenchmarkId :: new ( "training on " , format ! ( "dataset {}x{}" , nfeatures , nrows ) ) ,
24+ BenchmarkId :: new ( "training on " , format ! ( "dataset {nfeatures }x{nrows}" ) ) ,
2525 |bencher| {
2626 bencher. iter ( || {
2727 params. fit_with ( None , black_box ( & dataset) ) . unwrap ( ) ;
@@ -46,7 +46,7 @@ fn fit_with_prior_model(c: &mut Criterion) {
4646 let model = Ftrl :: new ( valid_params. clone ( ) , * nfeatures) ;
4747 let dataset = get_dataset ( & mut rng, * nrows, * nfeatures) ;
4848 group. bench_function (
49- BenchmarkId :: new ( "training on " , format ! ( "dataset {}x{}" , nfeatures , nrows ) ) ,
49+ BenchmarkId :: new ( "training on " , format ! ( "dataset {nfeatures }x{nrows}" ) ) ,
5050 |bencher| {
5151 bencher. iter ( || {
5252 let _ = params
@@ -72,7 +72,7 @@ fn predict(c: &mut Criterion) {
7272 let model = Ftrl :: new ( valid_params. clone ( ) , * nfeatures) ;
7373 let dataset = get_dataset ( & mut rng, * nrows, * nfeatures) ;
7474 group. bench_function (
75- BenchmarkId :: new ( "predicting on " , format ! ( "dataset {}x{}" , nfeatures , nrows ) ) ,
75+ BenchmarkId :: new ( "predicting on " , format ! ( "dataset {nfeatures }x{nrows}" ) ) ,
7676 |bencher| {
7777 bencher. iter ( || {
7878 model. predict ( black_box ( & dataset) ) ;
0 commit comments