-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathknn_cuda.cu
144 lines (120 loc) · 4.42 KB
/
knn_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include "radius_cuda.h"
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
#define THREADS 256
template <typename scalar_t> struct Cosine {
static inline __device__ scalar_t dot(const scalar_t *a, const scalar_t *b,
int64_t n_a, int64_t n_b,
int64_t size) {
scalar_t result = 0;
for (int64_t i = 0; i < size; i++) {
result += a[n_a * size + i] * b[n_b * size + i];
}
return result;
}
static inline __device__ scalar_t norm(const scalar_t *a, int64_t n_a,
int64_t size) {
scalar_t result = 0;
for (int64_t i = 0; i < size; i++) {
result += a[n_a * size + i] * a[n_a * size + i];
}
return sqrt(result);
}
};
template <typename scalar_t>
__global__ void
knn_kernel(const scalar_t *__restrict__ x, const scalar_t *__restrict__ y,
const int64_t *__restrict__ ptr_x, const int64_t *__restrict__ ptr_y,
int64_t *__restrict__ row, int64_t *__restrict__ col,
scalar_t *__restrict__ dist, const int64_t k, const int64_t n,
const int64_t m, const int64_t dim, const int64_t num_examples,
const bool cosine) {
const int64_t n_y = blockIdx.x * blockDim.x + threadIdx.x;
if (n_y >= m)
return;
const int64_t example_idx = get_example_idx(n_y, ptr_y, num_examples);
scalar_t best_dist[100];
int64_t best_idx[100];
for (int e = 0; e < k; e++) {
best_dist[e] = 5e4;
best_idx[e] = -1;
}
for (int64_t n_x = ptr_x[example_idx]; n_x < ptr_x[example_idx + 1]; n_x++) {
scalar_t tmp_dist = 0;
if (cosine) {
tmp_dist = Cosine<scalar_t>::dot(x, y, n_x, n_y, dim) /
(Cosine<scalar_t>::norm(x, n_x, dim) *
Cosine<scalar_t>::norm(y, n_y, dim));
tmp_dist = 1. - tmp_dist;
} else {
for (int64_t d = 0; d < dim; d++) {
tmp_dist += (x[n_x * dim + d] - y[n_y * dim + d]) *
(x[n_x * dim + d] - y[n_y * dim + d]);
}
}
for (int64_t e1 = 0; e1 < k; e1++) {
if (best_dist[e1] > tmp_dist) {
for (int64_t e2 = k - 1; e2 > e1; e2--) {
best_dist[e2] = best_dist[e2 - 1];
best_idx[e2] = best_idx[e2 - 1];
}
best_dist[e1] = tmp_dist;
best_idx[e1] = n_x;
break;
}
}
}
for (int64_t e = 0; e < k; e++) {
row[n_y * k + e] = n_y;
col[n_y * k + e] = best_idx[e];
dist[n_y * k + e] = best_dist[e];
}
}
std::tuple<torch::Tensor, torch::Tensor>
knn_cuda(const torch::Tensor x,
const torch::Tensor y,
torch::optional<torch::Tensor> ptr_x,
torch::optional<torch::Tensor> ptr_y,
const int64_t k,
const bool cosine) {
CHECK_CUDA(x);
CHECK_CONTIGUOUS(x);
CHECK_INPUT(x.dim() == 2);
CHECK_CUDA(y);
CHECK_CONTIGUOUS(y);
CHECK_INPUT(y.dim() == 2);
CHECK_INPUT(x.size(1) == y.size(1));
AT_ASSERTM(k <= 100, "`k` needs to smaller than or equal to 100");
if (ptr_x.has_value()) {
CHECK_CUDA(ptr_x.value());
CHECK_INPUT(ptr_x.value().dim() == 1);
} else
ptr_x = torch::arange(0, x.size(0) + 1, x.size(0),
x.options().dtype(torch::kLong));
if (ptr_y.has_value()) {
CHECK_CUDA(ptr_y.value());
CHECK_INPUT(ptr_y.value().dim() == 1);
} else
ptr_y = torch::arange(0, y.size(0) + 1, y.size(0),
y.options().dtype(torch::kLong));
CHECK_INPUT(ptr_x.value().numel() == ptr_y.value().numel());
cudaSetDevice(x.get_device());
auto row = torch::empty({y.size(0) * k}, ptr_y.value().options());
auto col = torch::full(y.size(0) * k, -1, ptr_y.value().options());
auto dist = torch::empty({y.size(0) * k}, y.options());
dim3 BLOCKS((y.size(0) + THREADS - 1) / THREADS);
auto stream = at::cuda::getCurrentCUDAStream();
auto scalar_type = x.scalar_type();
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
knn_kernel<scalar_t><<<BLOCKS, THREADS, 0, stream>>>(
x.data_ptr<scalar_t>(), y.data_ptr<scalar_t>(),
ptr_x.value().data_ptr<int64_t>(), ptr_y.value().data_ptr<int64_t>(),
row.data_ptr<int64_t>(), col.data_ptr<int64_t>(), dist.data_ptr<scalar_t>(),
k, x.size(0), y.size(0), x.size(1), ptr_x.value().numel() - 1, cosine);
});
auto mask = col != -1;
return std::make_tuple(
torch::stack({row.masked_select(mask), col.masked_select(mask)}, 0),
dist.masked_select(mask)
);
}