-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
213 lines (189 loc) · 9.02 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import json, os, pickle, random, sys, time, numpy as np, torch
from torch.nn.functional import softmax
from transformers import GPT2Tokenizer
from tqdm import tnrange
from torch.utils.data import Dataset
class SummarizationDataset(Dataset):
def __init__(self, root_dir, ids_file, tokenizer):
self.root_dir = root_dir
self.tokenizer = tokenizer
self.idxs = os.listdir(root_dir)
self.len = len(self.idxs)
def __len__(self):
return self.len
def __getitem__(self, idx):
idx = self.idxs[idx]
file_name = os.path.join(self.root_dir, str(idx))
with open(file_name,'r') as f:
data = json.load(f)
content = (
self.tokenizer.encode('Name Surname') +
self.tokenizer.encode(self.tokenizer.sep_token) +
data['article']
)
sum_idx = len(content)
content += self.tokenizer.encode(self.tokenizer.sep_token) + data['abstract']
text = torch.tensor(content)
sample = {
'article': text,
'sum_idx': sum_idx
}
return sample
class FineTuningDataset(Dataset):
def __init__(self, root_dir, tokenizer, mode='train', length=None, addnews=True, trash=False):
trash_str = ''
if trash:
trash_str = '_trash'
with open(root_dir + '/dataset' + trash_str +'.pickle', 'rb') as f:
self.dataset = pickle.load(f)
self.tokenizer = tokenizer
self.mode = mode
self.addnews = addnews
if length is None:
self.len = len(self.dataset.items)
else:
self.len = length
def __len__(self):
return self.len
def __getitem__(self, idx):
if self.mode=='valid':
idx = -idx - 1
shortnews = 'Empty'
if self.addnews:
shortnews = self.dataset.items[idx].news
content = (
self.tokenizer.encode(self.dataset.items[idx].name) +
self.tokenizer.encode(self.tokenizer.sep_token) +
self.tokenizer.encode(shortnews) +
self.tokenizer.encode(self.tokenizer.sep_token) +
self.tokenizer.encode(self.dataset.items[idx].name)
)
sum_idx = len(content)
content += (
self.tokenizer.encode(self.tokenizer.sep_token) +
self.tokenizer.encode(
self.dataset.items[idx].name + ' ' + self.dataset.items[idx].bio)
)
text = torch.tensor(content)
sample = {
'article': text,
'sum_idx': sum_idx,
'name' : self.dataset.items[idx].name
}
return sample
def get_tokenizer(net_name):
""" Returns GPT2 tokenizer after adding separator and padding tokens """
tokenizer = GPT2Tokenizer.from_pretrained(net_name)
special_tokens = {'pad_token':'<|pad|>','sep_token':'<|sep|>'}
_ = tokenizer.add_special_tokens(special_tokens)
return tokenizer
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_seq(model, context, length, device, temperature=1, top_k=0, top_p=0.0):
""" Generates a sequence of tokens
Args:
model: gpt/gpt2 model
context: tokenized text using gpt/gpt2 tokenizer
length: length of generated sequence.
device: torch.device object.
temperature >0: used to control the randomness of predictions by scaling the logits before applying softmax.
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
"""
context = torch.tensor(context, dtype=torch.long, device=device)
generated = context.unsqueeze(0)
with torch.no_grad():
for _ in range(length):
outputs = model(generated)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
return generated
def beam_search(model, context, length, beam_size, device, temperature=1):
""" Generate sequence using beam search https://machinelearningmastery.com/beam-search-decoder-natural-language-processing/
Args:
model: gpt/gpt2 model
context: tokenized text using gpt/gpt2 tokenizer
length: length of generated sequence.
beam_size: >=1 and <= total_no_of_tokens
device: torch.device object.
temperature >0: used to control the randomness of predictions by scaling the logits before applying softmax.
"""
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0)
with torch.no_grad():
inputs = {'input_ids': context}
outputs = model(**inputs)
next_token_logits = outputs[0][0, -1, :] / temperature
next_token_probs = softmax(next_token_logits, dim=-1)
scores, indices = torch.topk(next_token_probs, beam_size)
indices = indices.tolist()
sequences = [[c] for c in indices]
for _ in tnrange(length-1):
logits = torch.zeros(beam_size*len(next_token_logits))
for j in range(len(sequences)):
new_generated = torch.cat((context,torch.tensor([sequences[j]], dtype=torch.long, device=device)),dim=1)
inputs = {'input_ids': new_generated}
outputs = model(**inputs)
next_token_logits = outputs[0][0, -1, :] / temperature
next_token_probs = softmax(next_token_logits, dim=-1)
start, stop = j*len(next_token_logits), (j+1)*len(next_token_logits)
logits[start:stop] = scores[j]*next_token_probs
scores, new_logits_indices = torch.topk(logits,beam_size)
logits = (new_logits_indices%50259).tolist()
for j in range(len(sequences)):
sequences[j] = sequences[j]+[logits[j]]
return scores, sequences
def generate_sample(data, tokenizer, model, device, num=1, length=100, temperature=1, top_k=10, top_p=0.5):
""" Generate summaries for "num" number of articles.
Args:
data = GPT21024Dataset object
tokenizer = gpt/gpt2 tokenizer
model = gpt/gpt2 model
num = number of articles for which summaries has to be generated
eval_step = can be True/False, checks generating during evaluation or not
"""
for i in range(num):
sample = data[i]
idx = sample['sum_idx']
context = sample['article'][:idx+1].tolist()
summary = sample['article'][idx+1:][:100].tolist()
generated_text = sample_seq(model, context, length, device, temperature, top_k, top_p)
generated_text = generated_text[0, len(context):].tolist()
print('new_article', end='\n\n')
print(tokenizer.decode(context), end='\n\n')
print('generated_summary', end='\n\n')
print(tokenizer.decode(generated_text, skip_special_tokens=True), end='\n\n')
print('actual_summary', end='\n\n')
print(tokenizer.decode(summary, skip_special_tokens=True), end='\n\n')