-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdecoupleR-decouple.R
259 lines (242 loc) · 9.07 KB
/
decoupleR-decouple.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#' Evaluate multiple statistics with same input data
#'
#' Calculate the source activity per sample out of a gene expression matrix by
#' coupling a regulatory network with a variety of statistics.
#'
#' @inheritParams .decoupler_mat_format
#' @inheritParams .decoupler_network_format
#' @param statistics Statistical methods to be run sequentially. If none are
#' provided, only top performer methods are run (mlm, ulm and wsum).
#' @param args A list of argument-lists the same length as `statistics`
#' (or length 1). The default argument, list(NULL), will be recycled to the
#' same length as `statistics`, and will call each function with no arguments
#' (apart from `mat`, `network`, `.source` and, `.target`).
#' @param consensus_score Boolean whether to run a consensus score between
#' methods.
#' @param consensus_stats List of estimate names to use for the calculation
#' of the consensus score. This is used to filter out extra estimations
#' from some methods, for example wsum returns wsum, corr_wsum and norm_wsum. If
#' none are provided, and also no statstics where provided, only top performer
#' methods are used (mlm, ulm and norm_wsum). Else, it will use all available
#' estimates after running all methods in the statistics argument.
#' @param include_time Should the time per statistic evaluated be informed?
#' @param minsize Integer indicating the minimum number of targets per source.
#' @param show_toy_call The call of each statistic must be informed?
#'
#' @return A long format tibble of the enrichment scores for each source
#' across the samples. Resulting tibble contains the following columns:
#' 1. `run_id`: Indicates the order in which the methods have been executed.
#' 2. `statistic`: Indicates which method is associated with which score.
#' 3. `source`: Source nodes of `network`.
#' 4. `condition`: Condition representing each column of `mat`.
#' 5. `score`: Regulatory activity (enrichment score).
#' 6. `statistic_time`: If requested, internal execution time indicator.
#' 7. `p_value`: p-value (if available) of the obtained score.
#' @export
#' @import purrr
#' @family decoupleR statistics
#' @examples
#' if (FALSE) {
#' inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
#'
#' mat <- readRDS(file.path(inputs_dir, "mat.rds"))
#' net <- readRDS(file.path(inputs_dir, "net.rds"))
#'
#' decouple(
#' mat = mat,
#' network = net,
#' .source = "source",
#' .target = "target",
#' statistics = c("gsva", "wmean", "wsum", "ulm", "aucell"),
#' args = list(
#' gsva = list(verbose = FALSE),
#' wmean = list(.mor = "mor", .likelihood = "likelihood"),
#' wsum = list(.mor = "mor"),
#' ulm = list(.mor = "mor")
#' ),
#' minsize = 0
#' )
#' }
decouple <- function(mat,
network,
.source = source,
.target = target,
statistics = NULL,
args = list(NULL),
consensus_score = TRUE,
consensus_stats = NULL,
include_time = FALSE,
show_toy_call = FALSE,
minsize = 5) {
# NSE vs. R CMD check workaround
condition <- run_id <- score <- source <- statistic <- target <- NULL
# If NULL use top performer methods.
if (is.null(statistics)){
statistics <- c('mlm','ulm','wsum')
if (is.null(consensus_stats)) {
consensus_stats <- c('mlm','ulm','norm_wsum')
}
} else if (length(statistics) == 1) {
if (tolower(statistics)=='all') {
statistics <- c('udt','mdt','aucell','wmean','wsum','ulm',
'mlm','viper','gsva','ora','fgsea')
}
}
# Match statistic names with arguments
for (stat in setdiff(statistics, names(args))) {
args[[stat]] = list()
}
args <- args[names(args) %in% statistics]
statistics <- statistics[match(names(args),statistics)]
# Overwrite minsize
for (name in names(args)) {
args[[name]][['minsize']] <- minsize
}
# Match statistics to couple ----------------------------------------------
statistics <- .select_statistics(statistics)
# Evaluate statistics -----------------------------------------------------
mat_symbol <- .label_expr({{ mat }})
network_symbol <- .label_expr({{ network }})
# For the moment this will only ensure that the parameters passed
# to decoupleR are the same when invoking the functions.
df <- map2_dfr(
.x = statistics,
.y = args,
.f = .invoke_statistic,
mat = mat,
network = network,
.source = {{ .source }},
.target = {{ .target }},
mat_symbol = {{ mat_symbol }},
network_symbol = {{ network_symbol }},
include_time = include_time,
minsize = minsize,
show_toy_call = show_toy_call,
.id = "run_id"
) %>%
select(
run_id,
statistic,
source,
condition,
score,
everything()
) %>%
mutate(run_id = as.numeric(run_id))
if (consensus_score){
if (!is.null(consensus_stats)) {
consensus <- df %>%
dplyr::filter(statistic %in% consensus_stats) %>%
decoupleR::run_consensus(., include_time=include_time)
} else {
consensus <- decoupleR::run_consensus(df, include_time=include_time)
}
df <- dplyr::bind_rows(df, consensus)
}
df
}
# Helpers -----------------------------------------------------------------
#' Choose statistics to run
#'
#' It allows the user to select multiple statistics to run,
#' no matter if they are repeated or not.
#'
#' @details
#' From the user perspective, this could be useful since any traceback
#' would look something like decoupleR::run_{statistic}().
#'
#' @inheritParams decouple
#'
#' @return list of expressions of statistics to run.
#' @keywords internal
#' @noRd
.select_statistics <- function(statistics) {
available_statistics <- list(
aucell = expr(run_aucell),
udt = expr(run_udt),
mdt = expr(run_mdt),
wmean = expr(run_wmean),
ulm = expr(run_ulm),
mlm = expr(run_mlm),
wsum = expr(run_wsum),
viper = expr(run_viper),
gsva = expr(run_gsva),
ora = expr(run_ora),
fgsea = expr(run_fgsea)
)
statistics %>%
match.arg(names(available_statistics), several.ok = TRUE) %>%
available_statistics[.] %>%
unname()
}
#' Construct an expression to evaluate a decoupleR statistic.
#'
#' @details
#' `.invoke_statistic()` was designed because [purrr::invoke_map_dfr()] is
#' retired. The alternative proposed by the developers by purrr is to use
#' [rlang::exec()] in combination with [purrr::map2()], however, the function
#' is not a quoting function, so the parameters that require the
#' `curly-curly` (`{{}}`) operator require a special pre-processing.
#' In practical terms, creating an expression of zero allows us to have better
#' control over the function call as suggested in the [rlang::exec()]
#' documentation. For instance, we can see how the function itself is being
#' called. Therefore, if an error occurs in one of the statistics, we will
#' have a direct traceback to the problematic call, as opposed to what happens
#' directly using [rlang::exec()].
#'
#' @inheritParams decouple
#' @param fn Expression containing the name of the function to execute.
#' @param args Extra arguments to pass to the statistician under evaluation.
#'
#' @keywords internal
#' @noRd
.invoke_statistic <- function(fn,
args,
mat,
network,
.source,
.target,
mat_symbol,
network_symbol,
include_time,
minsize,
show_toy_call) {
.toy_call <- expr(
(!!fn)(
mat = {{ mat_symbol }},
network = {{ network_symbol }},
.source = {{ .source }},
.target = {{ .target }},
!!!args)
)
if (show_toy_call) {
utils::capture.output(rlang::qq_show(!!.toy_call)) %>%
stringr::str_replace_all(pattern = "= \\^", "= ") %>%
rlang::inform()
}
.call <- expr(
(!!fn)(
mat = mat,
network = network,
.source = {{ .source }},
.target = {{ .target }},
!!!args)
)
if (include_time) {
.start_time <- Sys.time()
eval(.call) %>%
add_column(
statistic_time = difftime(Sys.time(), .start_time),
.after = "score"
)
} else {
eval(.call)
}
}
#' Convert object to symbol expression
#'
#' @param x An object or expression to convert to symbol
#'
#' @keywords internal
#' @noRd
.label_expr <- function(x) rlang::get_expr(enquo(x))