-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdrug_over_mut_stats.Rnw
72 lines (67 loc) · 2.74 KB
/
drug_over_mut_stats.Rnw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
<<setup_drug_over_mut_stats, include=FALSE>>=
library(magrittr)
library(dplyr)
b = import('base')
io = import('io')
df = import('data_frame')
util = import('./util_3')
config = import('../config')
mapk_mut = c("NRAS", "KRAS", "BRAF")
strats = list(
`MAPK + Trametinib` = util$cmp_mut_path("MAPK", mapk_mut, "Trametinib", "mut"),
`MAPK + AZ628` = util$cmp_mut_path("MAPK", mapk_mut, "AZ628", "mut"),
`BRAF + Dabrafenib` = util$cmp_mut_path("MAPK", "BRAF", "Dabrafenib", "mut")
# `p53 + Nutlin-3a` = util$cmp_mut_path("p53", "TP53", "Nutlin-3a", "wt")
)
@
\begin{table}[H]
\centering
\caption{Stratification statistics: subsets and numbers for figure 4c. Shown is
the combination between a mutation/pathway, the number of cell lines, and
median drug response in each subset. Subsets are defined by: (1)
Whether a mutation is present (mut) or not (wt), or disregarding
mutational status (blank). (2) Whether the pathway score is in the top
(active) or bottom quartile (inactive), or neither (blank) of the
subset defined by mutations.}
{\small
<<strat_table, echo=FALSE, warning=FALSE>>=
path_lookup = setNames(c("active", "inactive", "average"), c("+", "-", "0"))
tab = df$bind_rows(strats, name_col="treatment") %>%
group_by(treatment, subset) %>%
summarize(n = n_distinct(cosmic),
median = median(resp, na.rm=TRUE)) %>%
ungroup() %>%
transmute(Treatment = treatment,
Mutation = b$grep("_(mut|wt)", subset),
Pathway = path_lookup[b$grep("([+-0])", subset)],
`Number of cell lines` = n,
`Median DR [log uM]` = median)
tab[is.na(tab)] = " "
arrange(tab, Treatment, Mutation, Pathway) %>%
kable(digits=2, booktabs=TRUE)
@
}
\end{table}
\begin{table}[H]
\centering
\caption{Stratification statistics: significance tests for figure 4c. For the
same subsets, results of the Mann-Whitney U test between different
quartiles of the pathway score within different subsets defined by
mutational status with p-value as indicated. Difference in mutations
indicated by wt (wild-type), mut (mutated), or blank (any). Inferred
pathway activity is indicated by $+$ (top quartile) $-$ (bottom
quartile) or blank (any). Distance reported as a fold change of medians
where positive numbers mean more, negative numbers less sensitive.}
{\small
<<strat_table_test, echo=FALSE>>=
b$lnapply(strats, util$contrast_stats) %>%
df$bind_rows(name_col="treatment") %>%
transmute(Treatment = treatment,
Reference = ref,
Comparison = sample,
`p-value` = format(p.value, digits=3),
`FC (medians)` = median_folds) %>%
kable(digits=50, booktabs=TRUE)
@
}
\end{table}