-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathLatentFactorModel.py
296 lines (231 loc) · 11.5 KB
/
LatentFactorModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from scipy.sparse.linalg import svds
import itertools
import numpy as np
import math
from collections import defaultdict
from MatrixOperations import convert_coo_to_csc_and_csr, center_matrix_user
import time
import os
import datetime
from scipy import sparse
class LatentFactorModel:
def __init__(self, epochs, k, learning_rate, lambda_reg):
# Load the sparse matrix from a file
self.training_filepath = 'matrices/{}_training.npz'.format('random')
self.testing_filepath = 'matrices/{}_test.npz'.format('random')
self.training_coo = self.load_sparse_matrix(self.training_filepath)
self.test_coo = self.load_sparse_matrix(self.testing_filepath)
self.P = None
self.Q = None
self.epochs = epochs
self.current_epoch = 0
self.k = k
self.learning_rate = learning_rate
self.lambda_reg = lambda_reg
self.training_csc = None
self.training_csr = None
self.test_csc = None
self.test_csr = None
self.user_average = {}
self.global_mean = 0.0
self.model_directory = None
self.model_loaded = False
self.training_csc, self.training_csr = convert_coo_to_csc_and_csr(self.training_coo)
self.test_csc, self.test_csr = convert_coo_to_csc_and_csr(self.test_coo)
self.calculate_mean_user_rating()
self.training_coo = center_matrix_user(sparse_matrix=self.training_coo, user_average=self.user_average)
# Recalculate the CSC and CSR matrices after centering
self.training_csc, self.training_csr = convert_coo_to_csc_and_csr(self.training_coo)
self.test_csc, self.test_csr = convert_coo_to_csc_and_csr(self.test_coo)
def load_sparse_matrix(self, file_name):
return sparse.load_npz(file_name)
def calculate_global_baseline_rating(self):
summed_movie_rating = 0
for i, j, v in itertools.izip(self.training_coo.row, self.training_coo.col, self.training_coo.data):
summed_movie_rating = summed_movie_rating + v
number_of_ratings = self.training_coo.nnz
self.global_mean = float(summed_movie_rating) / number_of_ratings
def calculate_mean_user_rating(self):
self.calculate_global_baseline_rating()
# Calculate the mean of each user
user_sums = self.training_csc.sum(axis=0)
# Reshape the matrix to array form for proper indexing
user_sums = user_sums.reshape((user_sums.size, 1))
# Calculate the number of ratings for each user
user_rating_counts = self.training_csc.getnnz(axis=0)
# Loop through each user
number_of_users = self.training_csc.shape[1]
for index in xrange(1, number_of_users):
# Check to see if the user has not rated
if user_sums[index] != 0:
user_average = float(user_sums[index]) / user_rating_counts[index]
self.user_average[index] = user_average
else:
self.user_average[index] = self.global_mean
def run_svd(self):
u, s, vt = svds(self.training_csc, k=self.k)
self.Q = u
diag_matrix = np.diag(s)
self.P = diag_matrix.dot(vt)
def predicted_value(self, movie, user):
col = self.P[:, user]
row = self.Q[movie, :]
return row.dot(col)
def error(self, movie, user):
actual_value = self.training_csr[movie, user]
predicted_value = self.predicted_value(movie, user)
return actual_value - predicted_value
def square_error_train(self, movie, user):
actual_value = self.training_csr[movie, user]
predicted_value = self.predicted_value(movie, user) + self.user_average[user]
return math.pow(actual_value - predicted_value, 2)
def square_error_test(self, movie, user):
actual_value = self.test_csr[movie, user]
predicted_value = self.predicted_value(movie, user) + self.user_average[user]
return math.pow(actual_value - predicted_value, 2)
def calculate_test_rmse(self):
summed_error = 0
# Loop through each entry in the test dataset
for movie, user, true_rating in itertools.izip(self.test_coo.row, self.test_coo.col, self.test_coo.data):
summed_error = summed_error + self.square_error_test(movie, user)
# Calculate the number of entries in the test set
test_dataset_size = self.test_coo.nnz
rmse = math.sqrt(float(summed_error) / test_dataset_size)
return rmse
def calculate_training_rmse(self):
summed_error = 0
# Loop through each entry in the test dataset
for movie, user, true_rating in itertools.izip(self.training_coo.row, self.training_coo.col, self.training_coo.data):
summed_error = summed_error + self.square_error_train(movie, user)
# Calculate the number of entries in the test set
training_dataset_size = self.training_coo.nnz
rmse = math.sqrt(float(summed_error) / training_dataset_size)
return rmse
def save_model(self, epoch, rmse_test, rmse_training):
# Only create the hyperparameter file once
if epoch == 0:
self.model_directory = 'optimization/{}/'.format(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
directory = '{}epoch_{}/'.format(self.model_directory, epoch)
os.makedirs(self.model_directory)
self.save_hyperparameters()
else:
directory = '{}epoch_{}/'.format(self.model_directory, epoch)
if not os.path.exists(directory):
os.makedirs(directory)
self.save_matrices(directory=directory)
self.save_rmse_file(directory=directory, rmse_training=rmse_training, rmse_test=rmse_test)
else:
print "Error: directory already exists"
def find_current_epoch(self, model_directory):
highest_epoch = -1
for directory in os.listdir(model_directory):
# Check that it's actually a directory
if os.path.isdir(model_directory + directory):
temp, current_epoch = directory.split('_')
current_epoch = int(current_epoch)
if current_epoch > highest_epoch:
highest_epoch = current_epoch
return highest_epoch
def load_hyperparameters(self, path_to_hyperparam_file):
with open(path_to_hyperparam_file) as f:
lines = f.readlines()
temp, learning_rate = lines[0].split(':')
temp, reg_rate = lines[1].split(':')
temp, num_factors = lines[2].split(':')
temp, epochs = lines[3].split(':')
self.learning_rate = float(learning_rate.strip())
self.lambda_reg = float(reg_rate.strip())
self.k = int(num_factors.strip())
self.epochs = int(epochs.strip())
def save_hyperparameters(self):
hyper_param_file = '{}hyperparams.txt'.format(self.model_directory)
params = 'Learning rate: {} \nRegularization rate: {} \nNumber of factors (k): {} \n# of epochs: {}'.format(self.learning_rate, self.lambda_reg, self.k, self.epochs)
f = open(hyper_param_file, "w+")
f.write(params)
f.close()
def save_rmse_file(self, directory, rmse_training, rmse_test):
rmse_file = directory + "RMSE.txt"
rmse_info = 'RMSE Training: {} \nRMSE Test: {}'.format(rmse_training, rmse_test)
f = open(rmse_file, "w+")
f.write(rmse_info)
f.close()
def save_matrices(self, directory):
p_matrix = "{}{}".format(directory, "P.npy")
q_matrix = "{}{}".format(directory, "Q.npy")
np.save(arr=self.P, file=p_matrix)
np.save(arr=self.Q, file=q_matrix)
def load_model(self, model_directory):
self.model_loaded = True
# Find the last epoch that was saved
epoch = self.find_current_epoch(model_directory=model_directory)
if epoch >= 0:
self.current_epoch = epoch
else:
print "Failed to find epoch folder"
exit(1)
path_to_model = model_directory + 'epoch_{}/'.format(epoch)
path_to_hyperparam = model_directory + 'hyperparams.txt'
self.model_directory = model_directory
# Check that hyperparamter file exists
if os.path.exists(path_to_hyperparam):
self.load_hyperparameters(path_to_hyperparam)
else:
print "Failed to find the hyperparameter file."
exit(1)
path_to_matrix_P = path_to_model + 'P.npy'
path_to_matrix_Q = path_to_model + 'Q.npy'
# Check that the models exist
if os.path.exists(path_to_model):
self.P = np.load(path_to_matrix_P)
self.Q = np.load(path_to_matrix_Q)
else:
print "Failed to load model."
exit(1)
def calculate_epoch_error(self, epoch):
#print "Movie 4830, user 47914, true rating: 6. Predicted rating: " + str( self.predicted_value(4830, 47914) + self.user_average[47914])
start = time.time()
rmse_test = self.calculate_test_rmse()
end = time.time()
print "Time to calculate RMSE test: {}".format(end - start)
start = time.time()
rmse_training = self.calculate_training_rmse()
end = time.time()
print "Time to calculate RMSE training: {}".format(end - start)
print "Training RMSE for epoch {}: {}".format(epoch, rmse_training)
print "Test RMSE for epoch {}: {}".format(epoch, rmse_test)
return rmse_test, rmse_training
def optimize_matrices(self):
model_already_tested_and_saved = self.model_loaded
for epoch in xrange(self.current_epoch, self.epochs):
if not model_already_tested_and_saved:
rmse_test, rmse_training = self.calculate_epoch_error(epoch)
self.save_model(epoch=epoch, rmse_test=rmse_test, rmse_training=rmse_training)
print "Epoch {} model saved".format(epoch)
else:
model_already_tested_and_saved = False
count = 0
start = time.time()
# Loop through each entry in the training dataset
for movie, user, true_rating in itertools.izip(self.training_coo.row, self.training_coo.col, self.training_coo.data):
if count % 100000 == 0:
print "Current count {}".format(count)
end = time.time()
print "Time taken {}".format(end-start)
start = end
count = count + 1
# Loop through every latent factor
for k in xrange(self.k):
error = 2 * self.error(movie, user) * self.P[k, user]
regularization = - 2 * self.lambda_reg * self.Q[movie, k]
gradient_q = self.learning_rate * (error + regularization)
self.Q[movie, k] = self.Q[movie, k] + gradient_q
gradient_p = self.learning_rate * (2 * self.error(movie, user) * self.Q[movie, k] - 2 * self.lambda_reg * self.P[k, user])
self.P[k, user] = self.P[k, user] + gradient_p
# self.Q[movie, k] = self.Q[movie, k] + self.learning_rate * (2 * self.error(movie, user) * self.P[k, user] - 2 * self.lambda_reg * self.Q[movie, k])
# self.P[k, user] = self.P[k, user] + self.learning_rate * (2 * self.error(movie, user) * self.Q[movie, k] - 2 * self.lambda_reg * self.P[k, user])
def run_new_model(self):
self.run_svd()
self.optimize_matrices()
def run_old_model(self, model_directory):
self.load_model(model_directory=model_directory)
self.optimize_matrices()